Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Evaluation of Stability and In vitro Anti-Cancer Activity of Dihydroquercetin Nanoemulsion

In Press, (this is not the final "Version of Record"). Available online 15 January, 2024
Author(s): Mai Huong Thi Nguyen, Thu Huong Thi Nguyen, Thuy Thi Phan, Son Thanh Bach, Thien Xuan Phan, Tinh Trong Nguyen, Huong Thi Le and Binh Thanh Nguyen*
Published on: 15 January, 2024

DOI: 10.2174/0115734137267596231203135754

open access plus

Abstract

Background: Dihydroquercetin (DHQ), also known as taxifolin, is a flavonoid commonly found in many plants. Dihydroquercetin has been documented to have powerful antioxidant activity and many beneficial properties for human health, especially its ability to inhibit certain types of cancer cells. However, its low solubility and bioavailability are major obstacles to biomedical applications. Moreover, DHQ is chemically unstable and quickly degrades when exposed to alkaline conditions.

Objective: In the present study, a DHQ nanoemulsion formulation was prepared by Self Nano- Emulsifying Drug Delivery System (SNEDDS) technique to overcome the above disadvantages.

Methods: The obtained nanoemulsion system was evaluated for its micro-properties, stability, and in vitro cytotoxic activity against some cancer cells using tetrazolium dyes (MTS assay).

Results: Measurement results showed that the DHQ nanoemulsion was successfully synthesized with typical mean droplet sizes from 9 to 11 nm, and revealed excellent stability over time. Dihydroquercetin in nanoemulsion form is more stable than the non-encapsulated form, as evidenced by the maintenance of droplet size in the nanometer range when dispersed in aqueous solution for up to 48 hours. This stability is particularly pronounced in both acidic and neutral environments. In vitro experiments on cytotoxic activities against A549, Hela, and HepG2 cancer cell lines indicated that the prepared DHQ nanoemulsion effectively inhibited the growth of all these cell lines with IC50 values (μg/mL) of 8.0, 20.4, and 29.5 respectively.

Conclusion: From the detailed results above, it is evident that the solubility and bioavailability of DHQ can be improved by creating its nanostructure in the form of nanoemulsions. Furthermore, the nano form of DHQ carried within stable nanoemulsions exhibited better performance in inhibiting cancer cells compared to free DHQ. Therefore, further research is required to explore the development of cancer therapeutics utilizing nano DHQ emulsions.

[1]
Chobot, V.; Hadacek, F.; Bachmann, G.; Weckwerth, W.; Kubicova, L. Pro- and antioxidant activity of three selected flavan type flavonoids: Catechin, eriodictyol and taxifolin. Int. J. Mol. Sci., 2016, 17(12), 1986.
[http://dx.doi.org/10.3390/ijms17121986] [PMID: 27898046]
[2]
Jain, S.; Vaidya, A. Comprehensive review on pharmacological effects and mechanism of actions of taxifolin: A bioactive flavonoid. Pharmacol. Res. - Modern Chinese Med., 2023, 7, 100240.
[http://dx.doi.org/10.1016/j.prmcm.2023.100240]
[3]
Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother., 2021, 142, 112004.
[http://dx.doi.org/10.1016/j.biopha.2021.112004] [PMID: 34388527]
[4]
Sudhakaran, M.; Sardesai, S.; Doseff, A.I. Flavonoids: New frontier for immuno-regulation and breast cancer control. Antioxidants, 2019, 8(4), 103.
[http://dx.doi.org/10.3390/antiox8040103] [PMID: 30995775]
[5]
Wang, R.; Zhu, X.; Wang, Q.; Li, X.; Wang, E.; Zhao, Q.; Wang, Q.; Cao, H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med., 2020, 8(9), 590.
[http://dx.doi.org/10.21037/atm-20-3329] [PMID: 32566617]
[6]
Li, J.; Hu, L.; Zhou, T.; Gong, X.; Jiang, R.; Li, H.; Kuang, G.; Wan, J.; Li, H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci., 2019, 232, 116617.
[http://dx.doi.org/10.1016/j.lfs.2019.116617] [PMID: 31260685]
[7]
Mahmood, M.A.; Mandade, R.; Ibrahim, M.Z.; Shabbir, S.A.; Sheaikh, S.S. Pharmacological action of taxifolin: A review. Open Access J. Pharmaceut. Res., 2023, 7(2), 1-6.
[http://dx.doi.org/10.23880/oajpr-16000280]
[8]
Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 2019, 166, 112066.
[http://dx.doi.org/10.1016/j.phytochem.2019.112066] [PMID: 31325613]
[9]
Orlova, S.V.; Tatarinov, V.V.; Nikitina, E.A.; Sheremeta, A.V.; Ivlev, V.A.; Vasil’ev, V.G.; Paliy, K.V.; Goryainov, S.V. Bioavailability and safety of dihydroquercetin (Review). Pharm. Chem. J., 2022, 55(11), 1133-1137.
[http://dx.doi.org/10.1007/s11094-022-02548-8] [PMID: 35194263]
[10]
Zu, Y.; Wu, W.; Zhao, X.; Li, Y.; Wang, W.; Zhong, C.; Zhang, Y.; Zhao, X. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int. J. Pharm., 2014, 471(1-2), 366-376.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.049] [PMID: 24882039]
[11]
Zinchenko, V.P.; Kim, IuA.; Tarakhovskiĭ, IuS.; Bronnikov, G.E. Biological activity of water-soluble nanostructures of dihydroquercetin with cyclodextrins. Biofizika, 2011, 56(3), 433-438.
[PMID: 21786696]
[12]
Tshweu, L.; Katata, L.; Kalombo, L.; Chiappetta, D.A.; Hocht, C.; Sosnik, A.; Swai, H. Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in poly(ε-caprolactone) nanoparticles by a spray-drying method. Nanomedicine, 2014, 9(12), 1821-1833.
[http://dx.doi.org/10.2217/nnm.13.167] [PMID: 24364871]
[13]
Nguyen, T.B.; Nguyen, T.M.H.; Le, T.T.H.; Phan, T.T.; Nguyen, T.T.; Melnikova, G.; Chizhik, S.A.; Le, H.D. Curcumin nanoemulsion: Evaluation of stability and anti-cancer activity in vitro. J. Nano Res., 2020, 64, 21-37.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.64.21]
[14]
Huang, T.H.; Chen, C.J.; Lin, H.C.A.; Chen, C.H.; Fang, J.Y. Self-nanoemulsifying drug delivery system-containing the poorly absorbed drug - valsartan in post-bariatric surgery. Int. J. Nanomedicine, 2023, 18, 2647-2658.
[http://dx.doi.org/10.2147/IJN.S394624] [PMID: 37220630]
[15]
Parveen, N.; Sheikh, A.; Abourehab, M.A.S.; Karwasra, R.; Singh, S.; Kesharwani, P. Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur. Polym. J., 2023, 190, 111993.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111993]
[16]
Chen, X.; Gu, N.; Xue, C.; Li, B.R. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol. Med. Rep., 2017, 17(2), 3239-3245.
[http://dx.doi.org/10.3892/mmr.2017.8271] [PMID: 29257319]
[17]
Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alkholief, M.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/β -catenin signaling pathway. BMC Cancer, 2018, 18(1), 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[18]
Morakul, B. Self-nanoemulsifying drug delivery systems (SNEDDS): An advancement technology for oral drug delivery. Pharmaceut. Sci. Asia, 2020, 47(3), 205-220.
[http://dx.doi.org/10.29090/psa.2020.03.019.0121]
[19]
La, H.T.; Tran, D.B.T.; Tran, H.M.; Nguyen, L.T. Third-generation anti-CD47-specific CAR-T cells effectively kill cancer cells and reduce the genes expression in lung cancer cell metastasis. J. Immunol. Res., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/5575260] [PMID: 34189144]
[20]
Duong Le, T.T.; La, T.H.; Phuc Le, T.M.; Pham, V.P.; Huyen Nguyen, T.M.; Le, Q.H. Docetaxel and curcumin-containing poly(ethylene glycol)-block-poly(ε-caprolactone) polymer micelles. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2013, 4(2), 025006.
[http://dx.doi.org/10.1088/2043-6262/4/2/025006]
[21]
Jomová, K.; Hudecova, L.; Lauro, P.; Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Valko, M. A Switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3′,4′-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the presence of Copper(II) Ions: A spectroscopic, absorption titration and DNA damage study. Molecules, 2019, 24(23), 4335.
[http://dx.doi.org/10.3390/molecules24234335] [PMID: 31783535]
[22]
Shah, N.H.; Carvajal, M.T.; Patel, C.I.; Infeld, M.H.; Malick, A.W. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm., 1994, 106(1), 15-23.
[http://dx.doi.org/10.1016/0378-5173(94)90271-2]
[23]
Salawi, A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Deliv., 2022, 29(1), 1811-1823.
[http://dx.doi.org/10.1080/10717544.2022.2083724] [PMID: 35666090]
[24]
Rani, E.R.; Radha, G.V. Insights into novel excipients of self-emulsifying drug delivery systems and their significance: An updated review. Crit. Rev. Ther. Drug Carrier Syst., 2021, 38(2), 27-74.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020034975] [PMID: 33639067]
[25]
Kalinina, I.; Potoroko, I.; Nenasheva, A.; Velyamov, M.; Bagale, U. Prospects for the application of taxifolin-based nanoemulsions as a part of sport nutrition products. Human Sport Medicine, 2019, 19(1), 100-107.
[http://dx.doi.org/10.14529/hsm190114]
[26]
Hasibi, F.; Nasirpour, A.; Varshosaz, J.; García-Manrique, P.; Blanco-López, M.C.; Gutiérrez, G.; Matos, M. Formulation and characterization of taxifolin‐loaded lipid nanovesicles (liposomes, niosomes, and transfersomes) for beverage fortification. Eur. J. Lipid Sci. Technol., 2020, 122(2), 1900105.
[http://dx.doi.org/10.1002/ejlt.201900105]
[27]
Tomou, E.M.; Papakyriakopoulou, P.; Saitani, E.M.; Valsami, G.; Pippa, N.; Skaltsa, H. Recent advances in nanoformulations for quercetin delivery. Pharmaceutics, 2023, 15(6), 1656.
[http://dx.doi.org/10.3390/pharmaceutics15061656] [PMID: 37376104]
[28]
Varlamova, E.G.; Khabatova, V.V.; Gudkov, S.V.; Plotnikov, E.Y.; Turovsky, E.A. Cytoprotective properties of a new nanocomplex of selenium with taxifolin in the cells of the cerebral cortex exposed to ischemia/reoxygenation. Pharmaceutics, 2022, 14(11), 2477.
[http://dx.doi.org/10.3390/pharmaceutics14112477] [PMID: 36432668]
[29]
Varlamova, E.G.; Uspalenko, N.I.; Khmil, N.V.; Shigaeva, M.I.; Stepanov, M.R.; Ananyan, M.A.; Timchenko, M.A.; Molchanov, M.V.; Mironova, G.D.; Turovsky, E.A. A comparative analysis of neuroprotective properties of taxifolin and its water-soluble form in ischemia of cerebral cortical cells of the mouse. Int. J. Mol. Sci., 2023, 24(14), 11436.
[http://dx.doi.org/10.3390/ijms241411436] [PMID: 37511195]

© 2025 Bentham Science Publishers | Privacy Policy