Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Systematic Review Article

Beneficial Effects of Spirulina on Brain Health: A Systematic Review

In Press, (this is not the final "Version of Record"). Available online 12 January, 2024
Author(s): Shivendra Kumar*, Sunam Saha, Kuldeep Singh, Talever Singh, Avinash Kumar Mishra, Braj Nandan Dubey and Shubham Singh
Published on: 12 January, 2024

Article ID: e120124225622

DOI: 10.2174/0126668629269256231222092721

Price: $95

Abstract

Background: This review provides a concise overview of existing scientific research concerning the potential advantages of incorporating spirulina, a blue-green algae, into one's diet to promote brain health. The substantial nutritional composition and associated health benefits of algae have drawn significant interest.

Methods: Numerous studies have illuminated the neuroprotective characteristics of spirulina, contributing to its positive influence on brain functionality. Primarily, spirulina boasts antioxi-dants, like phycocyanin and beta-carotene, that effectively counter oxidative stress and curb in-flammation within the brain. This is particularly significant as these factors play roles in the ad-vancement of neurodegenerative conditions like Parkinson's and Alzheimer's disease. Additional-ly, spirulina has demonstrated the capacity to enhance cognitive capabilities and enrich memory and learning aptitudes.

Results: Animal-based investigations have revealed that introducing spirulina can bolster spatial learning and memory, as well as guard against cognitive decline linked to aging. Research has in-dicated its potential in shielding against neurotoxins, encompassing heavy metals and specific en-vironmental pollutants. Its potential to neutralize heavy metals and counteract free radicals con-tributes to these protective effects, potentially thwarting neuronal harm.

Conclusion: In conclusion, the extant scientific literature proposes that spirulina integration can elicit advantageous outcomes for brain health. Its antioxidative, neuroprotective, cognitive-enhancing, and mood-regulating properties present a promising avenue for bolstering brain health and potentially diminishing the susceptibility to neurodegenerative ailments. Nonetheless, further research, notably well-designed human clinical trials, is imperative to ascertain the optimal dos-ing, duration, and enduring consequences of spirulina supplementation concerning brain health.

[1]
Abdel-Moneim AME, El-Saadony MT, Shehata AM, et al. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J Biol Sci 2022; 29(2): 1197-209.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.046] [PMID: 35197787]
[2]
Sorrenti V, Castagna DA, Fortinguerra S, Buriani A, Scapagnini G, Willcox DC. Spirulina microalgae and brain health: A scoping review of experimental and clinical evidence. Mar Drugs 2021; 19(6): 293.
[http://dx.doi.org/10.3390/md19060293] [PMID: 34067317]
[3]
Trotta T, Porro C, Cianciulli A, Panaro MA. Beneficial effects of spirulina consumption on brain health. Nutrients 2022; 14(3): 676.
[http://dx.doi.org/10.3390/nu14030676] [PMID: 35277035]
[4]
Bortolini DG, Maciel GM, Fernandes IAA, et al. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences 2022; 5: 100134.
[http://dx.doi.org/10.1016/j.fochms.2022.100134] [PMID: 36177108]
[5]
Lopez MJ, Mohiuddin SS. Biochemistry, Essential Amino Acids. StatPearls 2023.
[6]
Sinha S, Patro N, Patro IK. Amelioration of neurobehavioral and cognitive abilities of F1 progeny following dietary supplementation with Spirulina to protein malnourished mothers. Brain Behav Immun 2020; 85: 69-87.
[http://dx.doi.org/10.1016/j.bbi.2019.08.181] [PMID: 31425827]
[7]
Monjotin N, Amiot MJ, Fleurentin J, Morel JM, Raynal S. Clinical evidence of the benefits of phytonutrients in human healthcare. Nutrients 2022; 14(9): 1712.
[http://dx.doi.org/10.3390/nu14091712] [PMID: 35565680]
[8]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[9]
Abdelghany AK, Gamal A, Abdel-Wahab A, et al. RETRACTED ARTICLE: Evaluating the neuroprotective effect of spirulina platensis-loaded niosomes against Azheimer’s disease induced in rats. Drug Deliv Transl Res 2023; 13(10): 2690.
[http://dx.doi.org/10.1007/s13346-023-01301-2] [PMID: 36790720]
[10]
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9(7): a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[11]
Pabon MM, Jernberg JN, Morganti J, et al. A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease. PLoS One 2012; 7(9): e45256.
[http://dx.doi.org/10.1371/journal.pone.0045256] [PMID: 23028885]
[12]
McCarthy B, O’Neill G, Abu-Ghannam N. Potential psychoactive effects of microalgal bioactive compounds for the case of sleep and mood regulation: Opportunities and challenges. Mar Drugs 2022; 20: 493.
[http://dx.doi.org/10.3390/md20080493]
[13]
Subermaniam K, Teoh SL, Yow YY, Tang YQ, Lim LW, Wong KH. Marine algae as emerging therapeutic alternatives for depression: A review. Iran J Basic Med Sci 2021; 24(8): 997-1013.
[http://dx.doi.org/10.22038/IJBMS.2021.54800.12291] [PMID: 34804417]
[14]
Parkkinen VP, Wallmann C, Wilde M, et al. An Introduction to Mechanisms. SpringerBriefs Philos 2018; pp. 11-21.
[http://dx.doi.org/10.1007/978-3-319-94610-8_2]
[15]
Kunnumakkara AB, Hegde M, Parama D, et al. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacol Transl Sci 2023; 6(4): 447-518.
[http://dx.doi.org/10.1021/acsptsci.2c00012] [PMID: 37082752]
[16]
Dwyer J, Coates P, Smith M. Dietary supplements: Regulatory challenges and research resources. Nutrients 2018; 10(1): 41.
[http://dx.doi.org/10.3390/nu10010041] [PMID: 29300341]
[17]
Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical practice: Evidence-based human applications. Evid Based Complement Alternat Med 2011; 2011: 1-4.
[http://dx.doi.org/10.1093/ecam/nen058] [PMID: 18955364]
[18]
Gentscheva G, Nikolova K, Panayotova V, et al. Application of arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life 2023; 13: 845.
[http://dx.doi.org/10.3390/life13030845]
[19]
Deng R, Chow TJ. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 2010; 28(4): e33-45.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00200.x] [PMID: 20633020]
[20]
AlFadhly NKZ, Alhelfi N, Altemimi AB, Verma DK, Cacciola F, Narayanankutty A. Trends and technological advancements in the possible food applications of spirulina and their health benefits: A review. Molecules 2022; 27(17): 5584.
[http://dx.doi.org/10.3390/molecules27175584] [PMID: 36080350]
[21]
Ardiet D-L, Von Der Weid D. Spirulina as a food complement to support health and cognitive development. In: Nutrition and cognitive development. 2004.
[22]
Stunda-Zujeva A, Berele M, Lece A, Šķesters A. Comparison of antioxidant activity in various spirulina containing products and factors affecting it. Sci Rep 2023; 13(1): 4529.
[http://dx.doi.org/10.1038/s41598-023-31732-3] [PMID: 36941370]
[23]
Uttara B, Singh A, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[24]
Wang Y, Chang CF, Chou J, et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp Neurol 2005; 193(1): 75-84.
[http://dx.doi.org/10.1016/j.expneurol.2004.12.014] [PMID: 15817266]
[25]
Liu R, Qin S, Li W. Phycocyanin: Anti-inflammatory effect and mechanism. Biomed Pharmacother 2022; 153: 113362.
[http://dx.doi.org/10.1016/j.biopha.2022.113362] [PMID: 36076518]
[26]
Fan HX, Sheng S, Zhang F. New hope for Parkinson’s disease treatment: Targeting gut microbiota. CNS Neurosci Ther 2022; 28(11): 1675-88.
[http://dx.doi.org/10.1111/cns.13916] [PMID: 35822696]
[27]
Han P, Li J, Zhong H, et al. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res 2021; 55: 102240.
[http://dx.doi.org/10.1016/j.algal.2021.102240]
[28]
Ang ET, Tai YK, Lo SQ, Seet R, Soong TW. Neurodegenerative diseases: Exercising towards neurogenesis and neuroregeneration. Front Aging Neurosci 2010; 2: 25.
[http://dx.doi.org/10.3389/fnagi.2010.00025] [PMID: 20725635]
[29]
Choi WY, Lee WK, Kim TH, et al. The effects of spirulina maxima extract on memory improvement in those with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2022; 14(18): 3714.
[http://dx.doi.org/10.3390/nu14183714] [PMID: 36145090]
[30]
Gasmi A, Nasreen A, Menzel A, et al. Neurotransmitters regulation and food intake: The role of dietary sources in neurotransmission. Mol 2022; 28: 210.
[http://dx.doi.org/10.3390/molecules28010210]
[31]
Martins T, Barros AN, Rosa E, Antunes L. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Mol 2023; 28: 5344.
[http://dx.doi.org/10.3390/molecules28145344]
[32]
Gao HM, Hong JS. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol 2008; 29(8): 357-65.
[http://dx.doi.org/10.1016/j.it.2008.05.002] [PMID: 18599350]
[33]
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: The devil is in the details. J Neurochem 2016; 139(S2): 136-53.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[34]
Chen Y, Qin C, Huang J, et al. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif 2020; 53(3): e12781.
[http://dx.doi.org/10.1111/cpr.12781] [PMID: 32035016]
[35]
Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci 2012; 15: 1096-101.
[http://dx.doi.org/10.1038/nn.3161]
[36]
Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease--a double-edged sword. Neuron 2002; 35(3): 419-32.
[http://dx.doi.org/10.1016/S0896-6273(02)00794-8] [PMID: 12165466]
[37]
Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 2015; 7(10): a020545.
[http://dx.doi.org/10.1101/cshperspect.a020545] [PMID: 26187728]
[38]
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 2016; 10: 566.
[http://dx.doi.org/10.3389/fnhum.2016.00566] [PMID: 27877121]
[39]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[40]
Tjalkens RB, Popichak KA, Kirkley KA. Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol 2017; 18: 159-81.
[http://dx.doi.org/10.1007/978-3-319-60189-2_8] [PMID: 28889267]
[41]
Correale J, Marrodan M, Ysrraelit MC. Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis. Biomed 2019; 7: 14.
[http://dx.doi.org/10.3390/biomedicines7010014]
[42]
Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci 2018; 12: 114.
[http://dx.doi.org/10.3389/fncel.2018.00114] [PMID: 29755324]
[43]
Sinha S, Patro N, Tiwari PK, Patro IK. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny. Neurochem Int 2020; 141: 104877.
[http://dx.doi.org/10.1016/j.neuint.2020.104877] [PMID: 33049335]
[44]
Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep 2019; 9(1): 10147.
[http://dx.doi.org/10.1038/s41598-019-46657-z] [PMID: 31300716]
[45]
Pentón-Rol G, Marín-Prida J, McCarty MF. C-phycocyanin-derived phycocyanobilin as a potential nutraceutical approach for major neurodegenerative disorders and COVID-19- induced damage to the nervous system. Curr Neuropharmacol 2021; 19(12): 2250-75.
[http://dx.doi.org/10.2174/1570159X19666210408123807] [PMID: 33829974]
[46]
Talever S, Talever S, Shivendra K, Sunam S, Akash G. Herbal medicines as promising inhibitors of NF-kB for the therapy of Alzheimer's Disease. YMER Digital 22(2): 277-90.
[47]
Ockleford C, Adriaanse P, Berny P, et al. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia. EFSA J 2017; 15(3): e04691.
[http://dx.doi.org/10.2903/j.efsa.2017.4691] [PMID: 32625422]
[48]
Romay C, González R, Ledón N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 2003; 4(3): 207-16.
[http://dx.doi.org/10.2174/1389203033487216] [PMID: 12769719]
[49]
Wang C, Zhao Y, Wang L, et al. C-phycocyanin mitigates cognitive impairment in doxorubicin-induced chemobrain: Impact on neuroinflammation, oxidative stress, and brain mitochondrial and synaptic alterations. Neurochem Res 2021; 46(2): 149-58.
[http://dx.doi.org/10.1007/s11064-020-03164-2] [PMID: 33237471]
[50]
Choi WY, Kang DH, Heo SJ, Lee HY. Enhancement of the neuroprotective effect of fermented spirulina maxima associated with antioxidant activities by ultrasonic extraction. Appl Sci 2018; 8: 2469.
[http://dx.doi.org/10.3390/app8122469]
[51]
Wu KLH, Chan SHH, Chan JYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 2012; 9(1): 212.
[http://dx.doi.org/10.1186/1742-2094-9-212] [PMID: 22958438]
[52]
Koh EJ, Kim KJ, Choi J, Kang DH, Lee BY. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ 1-42) induced neurotoxicity in PC12 cells. Neurosci Lett 2018; 673: 33-8.
[http://dx.doi.org/10.1016/j.neulet.2018.02.057] [PMID: 29499310]
[53]
Chattopadhyaya I, Gupta S, Mohammed A, Mushtaq N, Chauhan S, Ghosh S. Neuroprotective effect of spirulina fusiform and amantadine in the 6-OHDA induced parkinsonism in rats. BMC Complement Altern Med 2015; 15: 1-11.
[http://dx.doi.org/10.1186/S12906-015-0815-0/FIGURES/8]
[54]
Li Z, Gan L, Yan S, Yan Y, Huang W. Effect of C-phycocyanin on HDAC3 and miRNA-335 in Alzheimer’s disease. Transl Neurosci 2020; 11(1): 161-72.
[http://dx.doi.org/10.1515/tnsci-2020-0101] [PMID: 33312721]
[55]
Murillo LC, Sutachan JJ, Albarracín SL. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol Rep 2023; 10: 544-53.
[http://dx.doi.org/10.1016/j.toxrep.2023.04.015] [PMID: 37396847]
[56]
Koh EJ, Kim KJ, Song JH, et al. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1–42 in mice. Int J Mol Sci 2017; 18(11): 2401.
[http://dx.doi.org/10.3390/ijms18112401] [PMID: 29137190]
[57]
Zhang Y, Li L, Qin S, et al. C-phycocyanin alleviated cisplatin-induced oxidative stress and inflammation via gut microbiota—metabolites axis in mice. Front Nutr 2022; 9: 996614.
[http://dx.doi.org/10.3389/fnut.2022.996614] [PMID: 36225866]
[58]
Ghanbari A, Vafaei AA. Naghibi nasab FS, Attarmoghaddam M, Bandegi AR, Moradi- Kor N. Spirulina microalgae improves memory deficit induced by scopolamine in male pup rats: Role of oxidative stress. S Afr J Bot 2019; 127: 220-5.
[http://dx.doi.org/10.1016/j.sajb.2019.08.045]
[59]
Luo H, Xiang Y, Qu X, et al. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front Pharmacol 2019; 10: 395.
[http://dx.doi.org/10.3389/fphar.2019.00395] [PMID: 31040784]
[60]
Wang SM, Chuu JJ, Lee CK, Chang CY. Exploring the therapeutic efficacy of Chlorella pyrenoidosa peptides in ameliorating Alzheimer’s disease. Heliyon 2023; 9(5): e15406.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15406] [PMID: 37144207]
[61]
Piovan A, Filippini R, Argentini C, Moro S, Giusti P, Zusso M. The effect of c-phycocyanin on microglia activation is mediated by toll-like receptor 4. Int J Mol Sci 2022; 23: 1440.
[http://dx.doi.org/10.3390/ijms23031440]
[62]
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary protection against cognitive impairment, neuroinflammation and oxidative stress in Alzheimer’s Disease animal models of lipopolysaccharide-induced inflammation. Int J Mol Sci 2023; 24(6): 5921.
[http://dx.doi.org/10.3390/ijms24065921] [PMID: 36982996]
[63]
Mohd Sairazi NS, Sirajudeen KNS. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Alternat Med 2020; 2020: 1-30.
[http://dx.doi.org/10.1155/2020/6565396] [PMID: 32148547]
[64]
Gregory J, Vengalasetti YV, Bredesen DE, Rao RV. Neuroprotective herbs for the management of Alzheimer’s Disease. Biomol 2021; 11: 543.
[http://dx.doi.org/10.3390/biom11040543]
[65]
Chen X, Drew J, Berney W, Lei W. Neuroprotective natural products for alzheimer’s disease. Cells 2021; 10(6): 1309.
[http://dx.doi.org/10.3390/cells10061309] [PMID: 34070275]
[66]
Zhang C, Li C, Jia X, et al. In vitro and in vivo anti-inflammatory effects of polyphyllin VII through downregulating MAPK and NF-κB pathways. Molecules 2019; 24(5): 875.
[http://dx.doi.org/10.3390/molecules24050875] [PMID: 30832224]
[67]
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022; 11(2): 408.
[http://dx.doi.org/10.3390/antiox11020408] [PMID: 35204290]
[68]
Calissano P, Matrone C, Amadoro G. Apoptosis and in vitro Alzheimer’s disease neuronal models. Commun Integr Biol 2009; 2(2): 163-9.
[http://dx.doi.org/10.4161/cib.7704] [PMID: 19513272]
[69]
Winner B, Winkler J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 2015; 7(4): a021287.
[http://dx.doi.org/10.1101/cshperspect.a021287] [PMID: 25833845]
[70]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[71]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: Targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[72]
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136.
[http://dx.doi.org/10.3978/J.ISSN.2305-5839.2015.03.49] [PMID: 26207229]
[73]
Rong J, Yang C, Cheng Y, Zhao J. Releasing Nrf2 to promote neurite outgrowth. Neural Regen Res 2015; 10(12): 1934-5.
[http://dx.doi.org/10.4103/1673-5374.169618] [PMID: 26889175]
[74]
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 2012; 342(3): 619-30.
[http://dx.doi.org/10.1124/jpet.112.192138] [PMID: 22700435]
[75]
Dong X, Wang Y, Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[76]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[77]
Brunden KR, Trojanowski JQ, Lee VMY. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 2009; 8(10): 783-93.
[http://dx.doi.org/10.1038/nrd2959] [PMID: 19794442]
[78]
Zhao D, Gu MY, Xu JL, Zhang LJ, Ryu SY, Yang HO. Anti-neuroinflammatory effects of 12-dehydrogingerdione in LPS-activated microglia through inhibiting Akt/IKK/NF-κB pathway and activating Nrf-2/HO-1 pathway. Biomol Ther (Seoul) 2019; 27(1): 92-100.
[http://dx.doi.org/10.4062/biomolther.2018.104] [PMID: 30404129]
[79]
Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 2013; 12(7): 716-26.
[http://dx.doi.org/10.1016/S1474-4422(13)70123-6] [PMID: 23769598]
[80]
Blesa J, Przedborski S. Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Front Neuroanat 2014; 8: 155.
[http://dx.doi.org/10.3389/fnana.2014.00155] [PMID: 25565980]
[81]
Castelli V, Alfonsetti M, d’Angelo M. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2023; 18(6): 1220-8.
[http://dx.doi.org/10.4103/1673-5374.358619] [PMID: 36453397]
[82]
Mark LP, Prost RW, Ulmer JL, et al. Pictorial review of glutamate excitotoxicity: Fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 2001; 22(10): 1813-24.
[PMID: 11733308]
[83]
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal models of neurodegenerative disease: Recent advances in fly highlight innovative approaches to drug discovery. Front Mol Neurosci 2022; 15: 883358.
[http://dx.doi.org/10.3389/fnmol.2022.883358] [PMID: 35514431]
[84]
Lee H, Liu Z, Yoon CS, et al. Anti-neuroinflammatory and anti-inflammatory activities of phenylheptatriyne isolated from the flowers of coreopsis lanceolata L. via NF-κB inhibition and HO-1 expression in BV2 and RAW264.7 cells. Int J Mol Sci 2021; 22(14): 7482.
[http://dx.doi.org/10.3390/ijms22147482] [PMID: 34299102]
[85]
Hyun DH, Lee J. A new insight into an alternative therapeutic approach to restore redox homeostasis and functional mitochondria in neurodegenerative diseases. Antioxidants 2021; 11(1): 7.
[http://dx.doi.org/10.3390/antiox11010007] [PMID: 35052511]
[86]
Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Curr Med Chem 2008; 15(23): 2321-8.
[http://dx.doi.org/10.2174/092986708785909111] [PMID: 18855662]
[87]
Patil KR, Mahajan UB, Unger BS, et al. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 2019; 20(18): 4367.
[http://dx.doi.org/10.3390/ijms20184367] [PMID: 31491986]
[88]
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci 2022; 23(11): 5954.
[http://dx.doi.org/10.3390/ijms23115954] [PMID: 35682631]
[89]
Mittal P, Dhankhar S, Chauhan S, et al. A review on natural antioxidants for their role in the treatment of Parkinson’s Disease. Pharm 2023; 16: 908.
[http://dx.doi.org/10.3390/ph16070908]
[90]
Yang Z, Li P, Gan X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules 2018; 23(7): 1798.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[91]
Alexander GE. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 2004; 6(3): 259-80.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/galexander] [PMID: 22033559]
[92]
Jagadeesan AJ, Murugesan R, Vimala Devi S, et al. Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: A review. Acta Biomed 2017; 88(3): 249-62.
[http://dx.doi.org/10.23750/abm.v%vi%i.6063] [PMID: 29083328]
[93]
Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14(100): 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[94]
O’Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-synuclein: Distinct or synergistic players in Parkinson’s Disease? Front Neurosci 2020; 14: 577.
[http://dx.doi.org/10.3389/fnins.2020.00577] [PMID: 32625052]
[95]
Pajares M. I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s Disease: Mechanisms and therapeutic implications. Cells 2020; 9(7): 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[96]
Hou L, Bao X, Zang C, et al. Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway. Redox Biol 2018; 14: 600-8.
[http://dx.doi.org/10.1016/j.redox.2017.11.010] [PMID: 29154191]
[97]
Gutiérrez-Rebolledo GA, Galar-Martínez M, García-Rodríguez RV, Chamorro-Cevallos GA, Hernández-Reyes AG, Martínez-Galero E. Antioxidant effect of Spirulina (Arthrospira) maxima on Chronic inflammation induced by freund’s complete adjuvant in rats. J Med Food 2015; 18(8): 865-71.
[http://dx.doi.org/10.1089/jmf.2014.0117] [PMID: 25599112]
[98]
Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and parkinson’s disease—from neurodegeneration to therapeutic opportunities. Cells 2022; 11(18): 2908.
[http://dx.doi.org/10.3390/cells11182908] [PMID: 36139483]
[99]
Strömberg I, Gemma C, Vila J, Bickford PC. Blueberry- and spirulina-enriched diets enhance striatal dopamine recovery and induce a rapid, transient microglia activation after injury of the rat nigrostriatal dopamine system. Exp Neurol 2005; 196(2): 298-307.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.013] [PMID: 16176814]
[100]
Kumar A, Christian PK, Panchal K, Guruprasad BR, Tiwari AK. Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1βΔ93 flies, a Parkinson’s Disease model in Drosophila melanogaster. J Diet Suppl 2017; 14(5): 573-88.
[http://dx.doi.org/10.1080/19390211.2016.1275917] [PMID: 28166438]
[101]
Balakrishnan K, Murali V, Rathika C, et al. Hsp70 is an independent stress marker among frequent users of mobile phones. J Environ Pathol Toxicol Oncol 2014; 33(4): 339-47.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014011761] [PMID: 25404380]
[102]
DeTure MA, Dickson DW. The neuropathological diagnosis of alzheimer’s disease. Mol Neurodegener 2019; 141(14): 1-18.
[http://dx.doi.org/10.1186/s13024-019-0333-5]
[103]
Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol 2019; 167: 231-55.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[104]
Sharma A, Anand JS, Kumar Y. Immunotherapeutics for AD: A work in progress. CNS Neurol Disord Drug Targets 2022; 21(9): 752-65.
[http://dx.doi.org/10.2174/1871527320666210903101522] [PMID: 34477533]
[105]
What Are the Signs of Alzheimer's Disease? Available from: https://www.nia.nih.gov/health/what-are-signs-alzheimers-disease (Accessed on: 20 July 2023).
[106]
Knowles J. Donepezil in Alzheimer’s disease: An evidence-based review of its impact on clinical and economic outcomes. Core Evid 2006; 1(3): 195-219.
[PMID: 22500154]
[107]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[108]
Schmid S, Jungwirth B, Gehlert V, et al. Intracerebroventricular injection of beta-amyloid in mice is associated with long-term cognitive impairment in the modified hole-board test. Behav Brain Res 2017; 324: 15-20.
[http://dx.doi.org/10.1016/j.bbr.2017.02.007] [PMID: 28193522]
[109]
Nielsen H. Wennström. Cell adhesion molecules in Alzheimer’s disease. Degener Neurol Neuromuscul Dis 2012; 2: 65-77.
[http://dx.doi.org/10.2147/DNND.S19829] [PMID: 30890880]
[110]
Dhami M, Raj K, Singh S. Neuroprotective effect of fucoxanthin against intracerebroventricular streptozotocin (ICV-STZ) induced cognitive impairment in experimental rats. Curr Alzheimer Res 2021; 18(8): 623-37.
[http://dx.doi.org/10.2174/1567205018666211118144602] [PMID: 34792011]
[111]
Arcaro A, Guerreiro A. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications. Curr Genomics 2007; 8(5): 271-306.
[http://dx.doi.org/10.2174/138920207782446160] [PMID: 19384426]
[112]
The Multiple Sclerosis Process and Symptoms. Available from: https://mymsaa.org/ms-information/overview/process-symptoms/ (Accessed on: 20 July 2023).
[113]
Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J 2017; 19(1): 1-10.
[http://dx.doi.org/10.22074/CELLJ.2016.4867] [PMID: 28367411]
[114]
Rae-Grant A, Day GS, Marrie RA, et al. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology 2018; 90(17): 777-88.
[http://dx.doi.org/10.1212/WNL.0000000000005347] [PMID: 29686116]
[115]
Ömerhoca S, Yazici Akkas S, Kale Icen N. Multiple sclerosis: Diagnosis and differrential diagnosis. Noro Psikiyatri Arsivi 2018; 55(S1): S1-9.
[http://dx.doi.org/10.29399/npa.23418] [PMID: 30692847]
[116]
Dargahi N, Katsara M, Tselios T, et al. Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci 2017; 7(12): 78.
[http://dx.doi.org/10.3390/brainsci7070078] [PMID: 28686222]
[117]
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011; 164(4): 1079-106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[118]
Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and macrophages in the pathological central and peripheral nervous systems. Cells 2020; 9(9): 2132.
[http://dx.doi.org/10.3390/cells9092132] [PMID: 32967118]
[119]
Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS. Handb Clin Neurol 2014; 122: 173-89.
[http://dx.doi.org/10.1016/B978-0-444-52001-2.00008-X] [PMID: 24507518]
[120]
Carlson NG, Rojas MA, Redd JW, et al. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation 2010; 7(1): 25.
[http://dx.doi.org/10.1186/1742-2094-7-25] [PMID: 20388219]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy