Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Discovery of the Aminated Quinoxalines as Potential Active Molecules

Author(s): Sedef Bener, Nilüfer Bayrak, Emel Mataracı-Kara, Mahmut Yıldız, Belgin Sever, Halilibrahim Çiftçi and Amaç Fatih Tuyun*

Volume 21, Issue 15, 2024

Published on: 09 January, 2024

Page: [3285 - 3297] Pages: 13

DOI: 10.2174/0115701808281517231215113741

Price: $65

Abstract

Background: In recent years, as the biological activity of the quinoxaline skeleton has been revealed in numerous studies, interest in synthesizing new prototype molecules for the treatment of many chronic diseases, especially cancer, has increased.

Methods: The desired alkoxy substituted aminoquinoxalines (AQNX1-9) were synthesized by the reaction of QNX and alkoxy substituted aryl amines such as 2-methoxyaniline, 4-methoxyaniline, 2- ethoxyaniline, 3-ethoxyaniline, 4-ethoxyaniline, 4-butoxyaniline, 2,4-dimethoxyaniline, 3,4- dimethoxyaniline, and 3,5-dimethoxyaniline according to the previously published procedure. QNX was aminated in DMSO at 130°C. We synthesized various alkoxy-substituted aminoquinoxaline compounds (AQNX1-9) and evaluated their anticancer and antimicrobial activities in order to expand the search to related structures. In particular, two aminoquinoxaline (AQNX5 and AQNX6) compounds, coded as NSC D-835971/1 and NSC D-835972/1 by the National Cancer Institute in the USA, were screened for anticancer screening at a dose of 10-5 M on a full panel of 60 human cell lines obtained from nine human cancer cell types (leukemia, melanoma, non-small cell lung, colon, central (nervous system, ovarian, kidney, prostate, and breast cancer).

Results: Further in silico studies were also conducted for the compound AQNX5 (NSC D- 835971/1), which was found to be the most active antiproliferative agent, especially against leukemia cell lines. Molecular docking studies showed that AQNX5 interacted with Glu286 and Lys271 through hydrogen bonding and π-stacking interaction in the ATP binding region of Abl kinase, which is indicated as a potential target of leukemia. Besides, AQNX5 occupied the minor groove of the double helix of DNA via π-stacking interaction with DG-6.

Conclusion: According to in silico pharmacokinetic determination, AQNX5 was endowed with drug-like properties as a potential anticancer drug candidate for future experiments. In the light of these findings, more research will focus on aminated quinoxalines' ability to precisely target leukemia cancer cell lines.

[1]
Neri, J.M.; Cavalcanti, L.N.; Araújo, R.M.; Menezes, F.G. 2,3-Dichloroquinoxaline as a versatile building block for heteroaromatic nucleophilic substitution: A review of the last decade. Arab. J. Chem., 2020, 13(1), 721-739.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.012]
[2]
Kaushal, T.; Srivastava, G.; Sharma, A.; Singh Negi, A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg. Med. Chem., 2019, 27(1), 16-35.
[http://dx.doi.org/10.1016/j.bmc.2018.11.021] [PMID: 30502116]
[3]
González, M.; Cerecetto, H. Quinoxaline derivatives: A patent review (2006 – present). Expert Opin. Ther. Pat., 2012, 22(11), 1289-1302.
[http://dx.doi.org/10.1517/13543776.2012.724677] [PMID: 22971178]
[4]
Parhi, A.K.; Zhang, Y.; Saionz, K.W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg. Med. Chem. Lett., 2013, 23(17), 4968-4974.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.048] [PMID: 23891185]
[5]
Lee, S.H.; Kim, N.; Kim, S.J.; Song, J.; Gong, Y.D.; Kim, S.Y. Anti-cancer effect of a quinoxaline derivative GK13 as a transglutaminase 2 inhibitor. J. Cancer Res. Clin. Oncol., 2013, 139(8), 1279-1294.
[http://dx.doi.org/10.1007/s00432-013-1433-1] [PMID: 23604466]
[6]
Zhang, M.; Dai, Z.C.; Qian, S.S.; Liu, J.Y.; Xiao, Y.; Lu, A.M.; Zhu, H.L.; Wang, J.X.; Ye, Y.H. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives. J. Agric. Food Chem., 2014, 62(40), 9637-9643.
[http://dx.doi.org/10.1021/jf504359p] [PMID: 25229541]
[7]
Chandra Shekhar, A.; Shanthan Rao, P.; Narsaiah, B.; Allanki, A.D.; Sijwali, P.S. Emergence of pyrido quinoxalines as new family of antimalarial agents. Eur. J. Med. Chem., 2014, 77, 280-287.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.010] [PMID: 24650715]
[8]
Elhelby, A.; Ayyad, R.; Zayed, M. Synthesis and biological evaluation of some novel quinoxaline derivatives as anticonvulsant agents. Arzneimittelforschung, 2011, 61(7), 379-381.
[http://dx.doi.org/10.1055/s-0031-1296214] [PMID: 21899204]
[9]
Ramalingam, P.; Ganapaty, S.; Rao, C.B. In vitro antitubercular and antimicrobial activities of 1-substituted quinoxaline-2,3(1H,4H)-diones. Bioorg. Med. Chem. Lett., 2010, 20(1), 406-408.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.026] [PMID: 19962890]
[10]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem. Biol. Drug Des., 2011, 77, 255-267.
[11]
Varrica, M.G.; Zagni, C.; Mineo, P.G.; Floresta, G.; Monciino, G.; Pistarà, V.; Abbadessa, A.; Nicosia, A.; Castilho, R.M.; Amata, E.; Rescifina, A. DNA intercalators based on (1,10-phenanthrolin-2-yl)isoxazolidin-5-yl core with better growth inhibition and selectivity than cisplatin upon head and neck squamous cells carcinoma. Eur. J. Med. Chem., 2018, 143, 583-590.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.067] [PMID: 29207341]
[12]
Ajani, O.O. Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine. Eur. J. Med. Chem., 2014, 85, 688-715.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.034] [PMID: 25128670]
[13]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[14]
Eissa, I.H.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Ayyad, R.R.; El-Adl, K.; Mahdy, H.A.; Taghour, M.S.; El-Gamal, K.M.A.; El-Sawah, M.E.; Elmetwally, S.A.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Arch. Pharm., 2019, 352(11), 1900123.
[http://dx.doi.org/10.1002/ardp.201900123] [PMID: 31463953]
[15]
Tariq, S.; Somakala, K.; Amir, M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem., 2018, 143, 542-557.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.064] [PMID: 29207337]
[16]
Aparicio, D.; Attanasi, O.A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de los Santos, J.M. Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. J. Org. Chem., 2006, 71(16), 5897-5905.
[http://dx.doi.org/10.1021/jo060450v] [PMID: 16872170]
[17]
Brown, D.J. Chemistry of heterocyclic compounds; Wiley-Interscience, 1950.
[18]
Antoniotti, S.; Duñach, E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines. Tetrahedron Lett., 2002, 43(22), 3971-3973.
[http://dx.doi.org/10.1016/S0040-4039(02)00715-3]
[19]
Shi, D.Q.; Dou, G.L.; Ni, S.N.; Shi, J.W.; Li, X.Y. An efficient synthesis of quinoxaline derivatives mediated by stannous chloride. J. Heterocycl. Chem., 2008, 45(6), 1797-1801.
[http://dx.doi.org/10.1002/jhet.5570450637]
[20]
Thakuria, H.; Das, G. One-pot efficient green synthesis of 1,4-dihydro-quinoxaline-2,3-dione derivatives. J. Chem. Sci., 2006, 118(5), 425-428.
[http://dx.doi.org/10.1007/BF02711453]
[21]
Gris, J.; Glisoni, R.; Fabian, L.; Fernández, B.; Moglioni, A.G. Synthesis of potential chemotherapic quinoxalinone derivatives by biocatalysis or microwave-assisted Hinsberg reaction. Tetrahedron Lett., 2008, 49(6), 1053-1056.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.204]
[22]
Cai, J.J.; Zou, J.P.; Pan, X.Q.; Zhang, W. Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives. Tetrahedron Lett., 2008, 49(52), 7386-7390.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.058]
[23]
Nageswar, Y.V.D.; Reddy, K.H.V.; Ramesh, K.; Murthy, S.N. Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches. Org. Prep. Proced. Int., 2013, 45(1), 1-27.
[http://dx.doi.org/10.1080/00304948.2013.743419]
[24]
Kher, S.S.; Penzo, M.; Fulle, S.; Ebejer, J.P.; Finn, P.W.; Blackman, M.J.; Jirgensons, A. Quinoxaline-based inhibitors of malarial protease PfSUB1. Chem. Heterocycl. Compd., 2015, 50(10), 1457-1463.
[http://dx.doi.org/10.1007/s10593-014-1610-4]
[25]
El-Atawy, M.A.; Hamed, E.A.; Alhadi, M.; Omar, A.Z. Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines Molecules, 2019, 24, 4198.
[26]
Beckert, R.; Waisser, K.; Kapplinger, C.; Lindauer, D.; Walther, R. A novel, efficient synthesis of 2,3-diamino-substituted quinoxalines. Pharmazie, 1997, 52, 638-639.
[27]
Clinical and laboratory standards institute (CLSI), Performance standards for antimicrobial susceptibility testing In: Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500; Wayne: Pennsylvania 19087, USA, 2020.
[28]
Clinical and laboratory standards institute (CLSI), Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard–second edition; Wayne, PA, USA, 1997.
[29]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[30]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[31]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The national cancer institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19(6), 622-638.
[PMID: 1462164]
[32]
Nagar, B.; Bornmann, W.G.; Pellicena, P.; Schindler, T.; Veach, D.R.; Miller, W.T.; Clarkson, B.; Kuriyan, J. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res., 2002, 62(15), 4236-4243.
[PMID: 12154025]
[33]
Hopcroft, N.H.; Brogden, A.L.; Searcey, M.; Cardin, C.J. X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9-aminoacridine-4-carboxamide) derivative. Nucleic Acids Res., 2006, 34(22), 6663-6672.
[http://dx.doi.org/10.1093/nar/gkl930] [PMID: 17145714]
[34]
Schrödinger Release 2016-2; Schrödinger, LLC: New York, NY, USA, 2016.
[35]
Bayrak, N.; Ciftci, H.I.; Yıldız, M.; Yıldırım, H.; Sever, B.; Tateishi, H.; Otsuka, M.; Fujita, M.; Tuyun, A.F. Structure based design, synthesis, and evaluation of anti-CML activity of the quinolinequinones as LY83583 analogs. Chem. Biol. Interact., 2021, 345, 109555.
[http://dx.doi.org/10.1016/j.cbi.2021.109555] [PMID: 34146539]
[36]
Ciftci, H.I.; Radwan, M.O.; Sever, B.; Hamdy, A.K.; Emirdağ, S.; Ulusoy, N.G.; Sozer, E.; Can, M.; Yayli, N.; Araki, N.; Tateishi, H.; Otsuka, M.; Fujita, M.; Altintop, M.D. EGFR-targeted pentacyclic triterpene analogues for glioma therapy. Int. J. Mol. Sci., 2021, 22(20), 10945.
[http://dx.doi.org/10.3390/ijms222010945] [PMID: 34681605]
[37]
Ciftci, H.; Sever, B.; Ayan, E.; Can, M.; DeMirci, H.; Otsuka, M.; TuYuN, A.F.; Tateishi, H.; Fujita, M. Identification of new Lheptanoylphosphatidyl inositol pentakisphosphate derivatives targeting the interaction with HIV-1 gag by molecular modelling studies Pharmaceuticals-Base, 2022, 15.
[38]
Ali, T.F.S.; Ciftci, H.I.; Radwan, M.O.; Roshdy, E.; Shawky, A.M.; Abourehab, M.A.S.; Tateishi, H.; Otsuka, M.; Fujita, M. Discovery of Azaindolin-2-One as a dual inhibitor of GSK3β and tau aggregation with potential neuroprotective activity. Pharmaceuticals, 2022, 15(4), 426.
[http://dx.doi.org/10.3390/ph15040426] [PMID: 35455423]
[39]
Ciftci, H.; Sever, B.; Bayrak, N.; Tateishi, H.; Otsuka, M.; Fujita, M.; TuYuN, A.F.; Yildiz, M.; Yddirim, H. In vitro cytotoxicity evaluation of plastoquinone analogues against colorectal and breast cancers along with in silico insights Pharmaceuticals-Base, 2022, 15
[40]
Ciftci, H.; Sever, B.; Kaya, N.; Bayrak, N.; Yildiz, M.; Yildirim, H.; Tateishi, H.; Otsuka, M.; Fujita, M.; TuYuN, A.F. Studies on 1,4-Quinone derivatives exhibiting anti-leukemic activity along with anti-colorectal and anti-breast cancer effects. Molecules, 2023, 28.
[41]
Ciftci, H.I.; Bayrak, N.; Yıldız, M.; Yıldırım, H.; Sever, B.; Tateishi, H.; Otsuka, M.; Fujita, M.; Tuyun, A.F. Design, synthesis and investigation of the mechanism of action underlying anti-leukemic effects of the quinolinequinones as LY83583 analogs. Bioorg. Chem., 2021, 114, 105160.
[http://dx.doi.org/10.1016/j.bioorg.2021.105160] [PMID: 34328861]
[42]
Release, S. 2016-2: QikProp; Schrödinger, LLC: New York, NY, USA, 2016.
[43]
SwissADME, 2023. Available online: http://www.swissadme.ch (30 August 2023).
[44]
Díaz, F.R.; del Valle, M.A.; Núñez, C.; Godoy, A.; Mondaca, J.L.; Toro-Labbé, A.; Bernède, J.C. Synthesis, characterization, electropolymerization, and theoretical study of 2,3-di-(2-thienyl)quinoxaline. Polym. Bull., 2006, 56(2-3), 155-162.
[http://dx.doi.org/10.1007/s00289-005-0484-0]
[45]
Taylor, E.C.; Maryanoff, C.A.; Skotnicki, J.S. Heterocyclization with cyano and sulfonyl epoxides. Preparation of quinoxalines and tetrahydroquinoxalines. J. Org. Chem., 1980, 45(12), 2512-2515.
[http://dx.doi.org/10.1021/jo01300a053]
[46]
Raw, S.A.; Wilfred, C.D.; Taylor, R.J.K. Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. Chem. Commun., 2003, 3(18), 2286-2287.
[http://dx.doi.org/10.1039/b307177b] [PMID: 14518877]
[47]
Wang, W.; Shen, Y.; Meng, X.; Zhao, M.; Chen, Y.; Chen, B. Copper-catalyzed synthesis of quinoxalines with o-phenylenediamine and terminal alkyne in the presence of bases. Org. Lett., 2011, 13(17), 4514-4517.
[http://dx.doi.org/10.1021/ol201664x] [PMID: 21805970]
[48]
Chen, Y.; Li, K.; Zhao, M.; Li, Y.; Chen, B. Cu(II)-catalyzed synthesis of quinoxalines from o-phenylenediamines and nitroolefins. Tetrahedron Lett., 2013, 54(13), 1627-1630.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.127]
[49]
Zanforlin, E.; Zagotto, G.; Ribaudo, G. A chemical approach to overcome tyrosine kinase inhibitors resistance: Learning from chronic myeloid leukemia. Curr. Med. Chem., 2019, 26(33), 6033-6052.
[http://dx.doi.org/10.2174/0929867325666180607092451] [PMID: 29874990]
[50]
Li, S. Src kinase signaling in leukaemia. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1483-1488.
[http://dx.doi.org/10.1016/j.biocel.2007.01.027] [PMID: 17350876]
[51]
Loscocco, F.; Visani, G.; Galimberti, S.; Curti, A.; Isidori, A. BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia. Front. Oncol., 2019, 9, 939.
[http://dx.doi.org/10.3389/fonc.2019.00939] [PMID: 31612105]
[52]
Ulusoy, N.G.; Emirdağ, S.; Sözer, E.; Radwan, M.O.; Çiftçi, H.; Aksel, M.; Bölükbaşı, S.Ş.; Özmen, A.; Yaylı, N.; Karayıldırım, T.; Alankuş, Ö.; Tateishi, H.; Otsuka, M.; Fujita, M.; Sever, B. Design, semi-synthesis and examination of new gypsogenin derivatives against leukemia via Abl tyrosine kinase inhibition and apoptosis induction. Int. J. Biol. Macromol., 2022, 222(Pt A), 1487-1499.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.257] [PMID: 36195231]
[53]
Mahata, T.; Kanungo, A.; Ganguly, S.; Modugula, E.K.; Choudhury, S.; Pal, S.K.; Basu, G.; Dutta, S. The benzyl moiety in a quinoxaline-based scaffold acts as a DNA intercalation switch. Angew. Chem. Int. Ed. Engl., 2016, 55, 7733-7736.
[54]
Gade, P.; Erlandson, A.; Ullah, A.; Chen, X.; Mathews, I.I.; Mera, P.E.; Kim, C.Y. Structural and functional analyses of the echinomycin resistance conferring protein Ecm16 from Streptomyces lasalocidi. Sci. Rep., 2023, 13(1), 7980.
[http://dx.doi.org/10.1038/s41598-023-34437-9] [PMID: 37198233]
[55]
Ekins, S.; Rose, J. In silico ADME/Tox: The state of the art. J. Mol. Graph. Model., 2002, 20(4), 305-309.
[http://dx.doi.org/10.1016/S1093-3263(01)00127-9] [PMID: 11858639]
[56]
Yamashita, F.; Hashida, M. In silico approaches for predicting ADME properties of drugs. Drug Metab. Pharmacokinet., 2004, 19(5), 327-338.
[http://dx.doi.org/10.2133/dmpk.19.327] [PMID: 15548844]
[57]
Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS Omega, 2020, 5(26), 16076-16084.
[http://dx.doi.org/10.1021/acsomega.0c01581] [PMID: 32656429]
[58]
Han, Y.; Zhang, J.; Hu, C.Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol., 2019, 10, 434.
[http://dx.doi.org/10.3389/fphar.2019.00434] [PMID: 31068821]
[59]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

© 2024 Bentham Science Publishers | Privacy Policy