Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Mairin from Huangqi Decoction Mitigates Liver Cirrhosis through Suppression of Pro-inflammatory Signaling Pathways: A Network Pharmacology and Experimental Study

Author(s): Di Meng* and Shuang Ren*

Volume 14, Issue 5, 2024

Published on: 09 January, 2024

Article ID: e090124225411 Pages: 14

DOI: 10.2174/0122103155273345231210170121

Price: $65

Abstract

Background: Liver cirrhosis is a consequence of various chronic liver conditions and may lead to liver failure and cancer. Huangqi Decoction (HQD) is a Traditional Chinese Medicine (TCM) effective for treating liver conditions, including cirrhosis. Therefore, both the active ingredients and the pharmacological actions of HQD deserve further exploration. The active components and pharmacological actions of HQD in preventing and treating liver cirrhosis were investigated using network pharmacology. The actions of the principal active ingredient, Mairin, were investigated empirically.

Methods: Using network pharmacology, the critical components of HQD were identified from multiple databases, and UPLC screening and targets were investigated using Swiss Target Prediction. Targets associated with liver cirrhosis were identified using the GeneCards database. GO and KEGG enrichment analysis of targets that overlapped between HQD and cirrhosis were analyzed in DAVID, and a “component-target-pathway” network for HQD was created in Cytoscape 3.7.2. The biological functions of the key active component, Mairin, were investigated using in silico docking, cell experiments, and evaluation in a carbon-tetrachloride (CCl4)-induced mouse model of liver cirrhosis. CCK-8 and F-actin assays were used to measure cell viability and hepatic stellate cell (HSC) activation, respectively; fibrosis was measured by histological and immunohistochemical evaluations, and the levels of the cirrhosis-related protein α-SMA and predicted essential target proteins in the PI3KAKT, NFκB-IκBα, and NLRP3-IL18 pathways were determined by western blotting.

Results: Fourteen active HQD components, 72 targets, and 10 pathways common to HQD and cirrhosis were identified. Network analysis indicated the association of Mairin with most targets and with inflammation through the PI3K/Akt, NF-κB, and NLRP3 pathways. Dose-dependent reductions in the activation and proliferation of LX-2 cells after Mairin treatment were observed. Mairin reversed the histopathological changes in the livers of cirrhosis model mice. Mairin also significantly reduced the α-SMA, NF-κB, IκBα, NLRP3, and IL-18 protein levels while increasing those of p- PI3K and p-Akt, suggesting that Mairin mitigates liver cirrhosis through modulation of the PI3KAKT, NFκB-IκBα, and NLRP3-IL18 pathways.

Conclusion: Using a comprehensive investigative process involving network pharmacology, bioinformatics, and experimental verification, it was found that Mairin, an active component of HQD, may be useful for developing specific treatments for preventing and treating liver cirrhosis.

Graphical Abstract

[1]
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875.
[http://dx.doi.org/10.3390/cells9040875] [PMID: 32260126]
[2]
Altamirano-Barrera, A.; Barranco-Fragoso, B.; Méndez-Sánchez, N. Management strategies for liver fibrosis. Ann. Hepatol., 2017, 16(1), 48-56.
[http://dx.doi.org/10.5604/16652681.1226814] [PMID: 28051792]
[3]
Cheng, Y.; Liu, P.; Hou, T.L.; Maimaitisidike, M.; Ababaikeli, R.; Abudureyimu, A. Mechanisms of huangqi decoction granules () on hepatitis B cirrhosis patients based on RNA-sequencing. Chin. J. Integr. Med., 2019, 25(7), 507-514.
[http://dx.doi.org/10.1007/s11655-018-3013-3] [PMID: 30155678]
[4]
Deng, K.; Dai, Z.; Yang, P.; Yang, D.; Zhou, Y. LPS ‐induced macrophage exosomes promote the activation of hepatic stellate cells and the intervention study of total astragalus saponins combined with glycyrrhizic acid. Anat. Rec., 2022, ar.25009.
[http://dx.doi.org/10.1002/ar.25009] [PMID: 35730909]
[5]
Liu, C.; Wang, G.; Chen, G.; Mu, Y.; Zhang, L.; Hu, X.; Sun, M.; Liu, C.; Liu, P. Huangqi decoction inhibits apoptosis and fibrosis, but promotes Kupffer cell activation in dimethylnitrosamine-induced rat liver fibrosis. BMC Complement. Altern. Med., 2012, 12(1), 51.
[http://dx.doi.org/10.1186/1472-6882-12-51] [PMID: 22531084]
[6]
Long, A.; Liu, P.; Li, F.H.; Mu, P.; Du, G.L.; Wang, L. Observation on the effect of different proportions of Huangqi Decoction on BDL induced liver cirrhosis in rats. Chin J Experi Tradit Med. Formulae, 2006, 7, 7.
[7]
Yongping, M.; Zhang, X.; Xuewei, L.; Fan, W.; Chen, J.; Zhang, H.; Chen, G.; Liu, C.; Liu, P. Astragaloside prevents BDL-induced liver fibrosis through inhibition of notch signaling activation. J. Ethnopharmacol., 2015, 169, 200-209.
[http://dx.doi.org/10.1016/j.jep.2015.04.015] [PMID: 25917841]
[8]
Song, Y.N.; Zhang, G.B.; Lu, Y.Y.; Chen, Q.L.; Yang, L.; Wang, Z.T.; Liu, P.; Su, S.B. Huangqi decoction alleviates dimethylnitrosamine-induced liver fibrosis: An analysis of bile acids metabolic mechanism. J. Ethnopharmacol., 2016, 189, 148-156.
[http://dx.doi.org/10.1016/j.jep.2016.05.040] [PMID: 27196295]
[9]
Zhang, H; Liu, P Based on the nourishing Qi effect of Huangqi Decoction to analyze the theory of "virtual impairment" in the compensatory period of hepatitis B cirrhosis. Shi jie ke xue ji shu., 2016, 18(11), 1833-1838.
[10]
Zhou, Y.; Tong, X.; Ren, S.; Wang, X.; Chen, J.; Mu, Y.; Sun, M.; Chen, G.; Zhang, H.; Liu, P. Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation. J. Ethnopharmacol., 2016, 190, 83-90.
[http://dx.doi.org/10.1016/j.jep.2016.06.011] [PMID: 27282665]
[11]
Bai, L.L.; Chen, H.; Zhou, P.; Yu, J. Identification of tumor necrosis factor-alpha (TNF-α) inhibitor in rheumatoid arthritis using network pharmacology and molecular docking. Front. Pharmacol., 2021, 12, 690118.
[http://dx.doi.org/10.3389/fphar.2021.690118] [PMID: 34093213]
[12]
Liu, Y.; Ju, Y.; Qin, X. Studies on the compatibility mechanism and material basis of Danggui Buxue Decoction against anemia mice using metabonomics and network pharmacology. J. Pharm. Pharmacol., 2021, 73(6), 767-777.
[http://dx.doi.org/10.1093/jpp/rgab016] [PMID: 33769518]
[13]
Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol., 2023, 309, 116306.
[http://dx.doi.org/10.1016/j.jep.2023.116306] [PMID: 36858276]
[14]
Seki, E.; Schwabe, R.F. Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology, 2015, 61(3), 1066-1079.
[http://dx.doi.org/10.1002/hep.27332] [PMID: 25066777]
[15]
Kang, H.H.; Kim, I.K.; Lee, H.; Joo, H.; Lim, J.U.; Lee, J.; Lee, S.H.; Moon, H.S. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways. Biochem. Biophys. Res. Commun., 2017, 490(2), 349-355.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.047] [PMID: 28623125]
[16]
Wree, A.; Eguchi, A.; McGeough, M.D.; Pena, C.A.; Johnson, C.D.; Canbay, A.; Hoffman, H.M.; Feldstein, A.E. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology, 2014, 59(3), 898-910.
[http://dx.doi.org/10.1002/hep.26592] [PMID: 23813842]
[17]
Wang, R.; Song, F.; Li, S.; Wu, B.; Gu, Y.; Yuan, Y. Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. Drug Des. Devel. Ther., 2019, 13, 1889-1900.
[http://dx.doi.org/10.2147/DDDT.S194787] [PMID: 31213776]
[18]
Rock, B.M.; Foti, R.S. Pharmacokinetic and drug metabolism properties of novel therapeutic modalities. Drug Metab. Dispos., 2019, 47(10), 1097-1099.
[http://dx.doi.org/10.1124/dmd.119.088708] [PMID: 31399505]
[19]
Missiuro, P.V.; Liu, K.; Zou, L.; Ross, B.C.; Zhao, G.; Liu, J.S.; Ge, H. Information flow analysis of interactome networks. PLOS Comput. Biol., 2009, 5(4), e1000350.
[http://dx.doi.org/10.1371/journal.pcbi.1000350] [PMID: 19503817]
[20]
Raman, K.; Damaraju, N.; Joshi, G.K. The organisational structure of protein networks: Revisiting the centrality–lethality hypothesis. Syst. Synth. Biol., 2014, 8(1), 73-81.
[http://dx.doi.org/10.1007/s11693-013-9123-5] [PMID: 24592293]
[21]
Ghallab, A.; Myllys, M.; Holland, C.H.; Zaza, A.; Murad, W.; Hassan, R.; Ahmed, Y.A.; Abbas, T.; Abdelrahim, E.A.; Schneider, K.M.; Matz-Soja, M.; Reinders, J.; Gebhardt, R.; Berres, M.L.; Hatting, M.; Drasdo, D.; Saez-Rodriguez, J.; Trautwein, C.; Hengstler, J.G. Influence of liver fibrosis on lobular zonation. Cells, 2019, 8(12), 1556.
[http://dx.doi.org/10.3390/cells8121556] [PMID: 31810365]
[22]
Li, W.K.; Wang, G.F.; Wang, T.M.; Li, Y.Y.; Li, Y.F.; Lu, X.Y.; Wang, Y.H.; Zhang, H.; Liu, P.; Wu, J.S.; Ma, Y.M. Protective effect of herbal medicine Huangqi decoction against chronic cholestatic liver injury by inhibiting bile acid-stimulated inflammation in DDC-induced mice. Phytomedicine, 2019, 62, 152948.
[http://dx.doi.org/10.1016/j.phymed.2019.152948] [PMID: 31129431]
[23]
Ai, W.; Dong, L.; Wang, J.; Li, Z.; Wang, X.; Gao, J.; Wu, Y.; An, W. Deficiency in augmenter of liver regeneration accelerates liver fibrosis by promoting migration of hepatic stellate cell. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(11), 3780-3791.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.011] [PMID: 30251695]
[24]
Chen, H.; Zhou, X.; Zhao, Y.; Gong, X.J.; He, Y.; Ma, F.W.; Zhou, M.; Zhao, C.; Niu, Y.; Deng, J. HPLC-DAD-ELSD combined pharmacodynamics and serum medicinal chemistry for quality assessment of huangqi granule. PLoS One, 2015, 10(4), e0123176.
[http://dx.doi.org/10.1371/journal.pone.0123176] [PMID: 25915040]
[25]
Yin, L.; Guan, E.; Zhang, Y.; Shu, Z.; Wang, B.; Wu, X.; Chen, J.; Liu, J.; Fu, X.; Sun, W.; Liu, M. Chemical profile and anti-inflammatory activity of total flavonoids from glycyrrhiza uralensis fisch. Iran. J. Pharm. Res., 2018, 17(2), 726-734.
[PMID: 29881429]
[26]
Zhang, Y.; Wang, M.; Yang, J.; Li, X. The effects of the honey-roasting process on the pharmacokinetics of the six active compounds of licorice. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5731276] [PMID: 30034498]
[27]
Feng, S.H.; Zhao, B.; Zhan, X.; Motanyane, R.; Wang, S.M.; Li, A. Danggui buxue decoction in the treatment of metastatic colon cancer: Network pharmacology analysis and experimental validation. Drug Des. Devel. Ther., 2021, 15, 705-720.
[http://dx.doi.org/10.2147/DDDT.S293046] [PMID: 33658761]
[28]
Chen, S.; Zou, L.; Li, L.; Wu, T. The protective effect of glycyrrhetinic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. PLoS One, 2013, 8(1), e53662.
[http://dx.doi.org/10.1371/journal.pone.0053662] [PMID: 23341968]
[29]
Huang, S.; Wang, Y.; Xie, S.; Lai, Y.; Mo, C.; Zeng, T.; Kuang, S.; Zhou, C.; Zeng, Z.; Chen, Y.; Huang, S.; Gao, L.; Lv, Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 2022, 101, 154117.
[http://dx.doi.org/10.1016/j.phymed.2022.154117] [PMID: 35489326]
[30]
Huo, X.; Meng, X.; Zhang, J.; Zhao, Y. Hepatoprotective effect of different combinations of 18α-and 18β-Glycyrrhizic acid against CCl4-induced liver injury in rats. Biomed. Pharmacother., 2020, 122, 109354.
[http://dx.doi.org/10.1016/j.biopha.2019.109354] [PMID: 31918260]
[31]
Zhang, L.; Liu, C.; Meng, X.; Huang, C.; Xu, F.; Li, J. Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol. Cell. Biochem., 2015, 400(1-2), 17-28.
[http://dx.doi.org/10.1007/s11010-014-2258-1] [PMID: 25351340]
[32]
Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet, 2021, 398(10308), 1359-1376.
[http://dx.doi.org/10.1016/S0140-6736(21)01374-X] [PMID: 34543610]
[33]
Tapper, E.B.; Parikh, N.D. Diagnosis and management of cirrhosis and its complications. JAMA, 2023, 329(18), 1589-1602.
[http://dx.doi.org/10.1001/jama.2023.5997] [PMID: 37159031]
[34]
Pei, Q.; Yi, Q.; Tang, L. Liver fibrosis resolution: From molecular mechanisms to therapeutic opportunities. Int. J. Mol. Sci., 2023, 24(11), 9671.
[http://dx.doi.org/10.3390/ijms24119671] [PMID: 37298621]
[35]
Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166.
[http://dx.doi.org/10.1038/s41575-020-00372-7] [PMID: 33128017]
[36]
Wei, C.; Qiu, J.; Wu, Y.; Chen, Z.; Yu, Z.; Huang, Z.; Yang, K.; Hu, H.; Liu, F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). J. Ethnopharmacol., 2022, 297, 115550.
[http://dx.doi.org/10.1016/j.jep.2022.115550] [PMID: 35863612]
[37]
Li, H. Advances in anti hepatic fibrotic therapy with Traditional Chinese Medicine herbal formula. J. Ethnopharmacol., 2020, 251, 112442.
[http://dx.doi.org/10.1016/j.jep.2019.112442] [PMID: 31891799]
[38]
Chinese Society of Gastroenterology, Chinese Medical Association. Chinese consensus on clinical diagnosis and therapy of liver cirrhosis. J Clin Hepatol, 2023, 39(9), 2057-2073.
[39]
Xu, X.Y.; Ding, H.G.; Li, W.G.; Xu, J.H.; Han, Y.; Jia, J.D.; Wei, L.; Duan, Z.P.; Ling-Hu, E.Q.; Zhuang, H. Chinese guidelines on the management of liver cirrhosis (abbreviated version). World J. Gastroenterol., 2020, 26(45), 7088-7103.
[http://dx.doi.org/10.3748/wjg.v26.i45.7088] [PMID: 33362370]
[40]
Chen, J.; Hu, Y.; Chen, L.; Liu, W.; Mu, Y.; Liu, P. The effect and mechanisms of Fuzheng Huayu formula against chronic liver diseases. Biomed. Pharmacother., 2019, 114, 108846.
[http://dx.doi.org/10.1016/j.biopha.2019.108846] [PMID: 30965233]
[41]
Rong, G.; Chen, Y.; Yu, Z.; Li, Q.; Bi, J.; Tan, L.; Xiang, D.; Shang, Q.; Lei, C.; Chen, L.; Hu, X.; Wang, J.; Liu, H.; Lu, W.; Chen, Y.; Dong, Z.; Bai, W.; Yoshida, E.M.; Mendez-Sanchez, N.; Hu, K.Q.; Qi, X.; Yang, Y. Synergistic effect of Biejia-Ruangan on fibrosis regression in patients with chronic hepatitis B treated with entecavir: A multicenter, randomized, double-blind, placebo-controlled trial. J. Infect. Dis., 2022, 225(6), 1091-1099.
[http://dx.doi.org/10.1093/infdis/jiaa266] [PMID: 32437567]
[42]
Xiao, H.M.; Shi, M.J.; Jiang, J.M.; Cai, G.S.; Xie, Y.B.; Tian, G.J.; Xue, J.D.; Mao, D.W.; Li, Q.; Yang, H.Z.; Guo, H.; Lei, C.L.; Lu, W.; Chen, L.; Liu, H.B.; Wang, J.; Gao, Y.Q.; Chen, J.Z.; Wu, S.D.; Chen, H.J.; Zhao, P.T.; Zhang, C.Z.; Ou-Yang, W.W.; Wen, Z.H.; Chi, X.L. Efficacy and safety of AnluoHuaxian pills on chronic hepatitis B with normal or minimally elevated alanine transaminase and early liver fibrosis: A randomized controlled trial. J. Ethnopharmacol., 2022, 293, 115210.
[http://dx.doi.org/10.1016/j.jep.2022.115210] [PMID: 35398501]
[43]
Maimaitisidike, M.; Hou, T.L.; Ababaikeli, R.; Abudureyimu, A.; Cheng, Y. Efficacy of Huangqi Decoction on patients with esophageal varices post hepatitis B cirrhosis: A double-blind placebo-controlled randomized clinical study. Chin J Integr Tradit West Med Digest, 2016, 2, 262-266.
[44]
Mack, M. Inflammation and fibrosis. Matrix Biol., 2018, 68-69, 106-121.
[http://dx.doi.org/10.1016/j.matbio.2017.11.010] [PMID: 29196207]
[45]
Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol., 2023, 20(10), 633-646.
[http://dx.doi.org/10.1038/s41575-023-00807-x] [PMID: 37400694]
[46]
Tang, R.; Luo, J.; Zhu, X.; Miao, P.; Tang, H.; Jian, Y.; Ruan, S.; Ling, F.; Tang, M. Recent progress in the effect of ferroptosis of HSCs on the development of liver fibrosis. Front. Mol. Biosci., 2023, 10, 1258870.
[http://dx.doi.org/10.3389/fmolb.2023.1258870] [PMID: 37860583]
[47]
Wang, J.; Brymora, J.; George, J. Roles of adipokines in liver injury and fibrosis. Expert Rev. Gastroenterol. Hepatol., 2008, 2(1), 47-57.
[http://dx.doi.org/10.1586/17474124.2.1.47] [PMID: 19072370]
[48]
Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[49]
Ramos-Tovar, E.; Muriel, P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem. Pharmacol., 2023, 217, 115861.
[50]
Gaul, S.; Leszczynska, A.; Alegre, F.; Kaufmann, B.; Johnson, C.D.; Adams, L.A.; Wree, A.; Damm, G.; Seehofer, D.; Calvente, C.J.; Povero, D.; Kisseleva, T.; Eguchi, A.; McGeough, M.D.; Hoffman, H.M.; Pelegrin, P.; Laufs, U.; Feldstein, A.E. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol., 2021, 74(1), 156-167.
[http://dx.doi.org/10.1016/j.jhep.2020.07.041] [PMID: 32763266]
[51]
Wang, H.; Liu, Y.; Wang, D.; Xu, Y.; Dong, R.; Yang, Y.; Lv, Q.; Chen, X.; Zhang, Z. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells, 2019, 8(12), 1597.
[http://dx.doi.org/10.3390/cells8121597] [PMID: 31835352]
[52]
Biasizzo, M.; Kopitar-Jerala, N. Interplay between NLRP3 inflammasome and autophagy. Front. Immunol., 2020, 11, 591803.
[http://dx.doi.org/10.3389/fimmu.2020.591803] [PMID: 33163006]
[53]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem., 2021, 60, 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004] [PMID: 34147204]
[54]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[55]
Faccioli, L.A.P.; Dias, M.L.; Paranhos, B.A.; dos Santos, G.R.C. Liver cirrhosis: An overview of experimental models in rodents. Life Sci., 2022, 301, 120615.
[http://dx.doi.org/10.1016/j.lfs.2022.120615] [PMID: 35526595]
[56]
Ren, L.L.; Li, X.J.; Duan, T.T.; Li, Z.H.; Yang, J.Z.; Zhang, Y.M.; Zou, L.; Miao, H.; Zhao, Y.Y. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities. Chem. Biol. Interact., 2023, 369, 110289.
[http://dx.doi.org/10.1016/j.cbi.2022.110289] [PMID: 36455676]
[57]
Kapadia, P.; Newell, A.S.; Cunningham, J.; Roberts, M.R.; Hardy, J.G. Extraction of high-value chemicals from plants for technical and medical applications. Int. J. Mol. Sci., 2022, 23(18), 10334.
[http://dx.doi.org/10.3390/ijms231810334] [PMID: 36142238]
[58]
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(1), 1-10.
[PMID: 22238476]
[59]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[60]
Yang, H.R. XuY, Yang YS. Anti-hepatic fibrosis effect and mechanism of natural products. Chin J Exp Med Formul, 2018, 24(14), 214-221.
[61]
Xu, F.; Liu, C.; Zhou, D.; Zhang, L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem., 2016, 64(3), 157-167.
[http://dx.doi.org/10.1369/0022155415627681] [PMID: 26747705]
[62]
Ni, M.; Xu, T.; Wang, Y.; He, Y.; Zhou, Q.; Huang, C.; Meng, X.; Li, J. Inhibition of IRF3 expression reduces TGF-β1-induced proliferation of hepatic stellate cells. J. Physiol. Biochem., 2016, 72(1), 9-23.
[http://dx.doi.org/10.1007/s13105-015-0452-6] [PMID: 26611114]
[63]
Wang, J.; Li, L.; Li, L.; Yan, Q.; Li, J.; Xu, T. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene, 2018, 674, 57-69.
[http://dx.doi.org/10.1016/j.gene.2018.06.053] [PMID: 29944952]
[64]
Zhan, L.; Huang, C.; Meng, X.M.; Song, Y.; Wu, X.Q.; Yang, Y.; Li, J. Hypoxia-inducible factor-1alpha in hepatic fibrosis: A promising therapeutic target. Biochimie, 2015, 108, 1-7.
[http://dx.doi.org/10.1016/j.biochi.2014.10.013] [PMID: 25447141]
[65]
Peng, J.; Li, X.; Feng, Q.; Chen, L.; Xu, L.; Hu, Y. Anti-fibrotic effect of Cordyceps sinensis polysaccharide: Inhibiting HSC activation, TGF-β1/Smad signalling, MMPs and TIMPs. Exp. Biol. Med., 2013, 238(6), 668-677.
[http://dx.doi.org/10.1177/1535370213480741] [PMID: 23918878]
[66]
Zhang, L.Z.; Zhang, D.Q.; Xu, Y. Cultured mycelia of Cordyceps sinensis exerts a protective effect on amouse model of liver fibrosis by inhibiting the Toll -like receptor 4 /nuclear transcription factor - κB signaling pathway and angiopoietin -like protein 4J. J Clin Hepatol, 2022, 38(7), 1540-1547. [Article in Chinese].
[67]
Wang, X.B.; Liu, P.; Tang, Z.P. Acting mechanism of Cordyceps mycelia extract for antagonizing hepatic sinusoidal capillarization in rats with dimethylnitrosamine induced liver cirrhosis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2009, 29(9), 810-815.
[PMID: 19960979]
[68]
Tang, Z.P.; Liu, P.; Wang, X.B. Effect of Cordyceps mycelia extract on hepatic sinusoidal endothelial cells permeabilityin dimethylnitrosamine-induced liver fibrosis in rats. ChinJ New Drugs Clin Remed, 2006, 25(9), 713-717.
[69]
Xu, L; Liu, P; Liu, C Pathological and immunohistochemical study of Peach kernel extract combined with cordyceps sinensis mycelium in the treatment of post hepatitis cirrhosis. J. Tradit. Chin. Med., 1994, 1994(12), 737-739+708.
[70]
Xu, L.; Zhu, J.L.; Liu, C. Observation on the reversal effect of peach kernel extract combined with cordyceps mycelium on liver sinusoidal capillarization in posthepatitic cirrhosis. Chin J Integr Med Trad. Western Med., 1994, (06), 362-363.
[71]
Cheng, L.; Ping, L.; Xu, L. Observation of peach kernel extract combined with cordyceps mycelium in the treatment of post hepatitis cirrhosis. J. Tradit. Chin. Med., 1991, (07), 20-23.
[72]
Chen, H.J.; Huang, J.Y.; Ko, C.Y. Peach kernel extracts inhibit lipopolysaccharide-induced activation of HSC-T6 hepatic stellate cells. Int. J. Clin. Pract., 2022, 2022, 1-6.
[http://dx.doi.org/10.1155/2022/4869973] [PMID: 36105786]
[73]
Dan, L.; Hao, Y.; Song, H. Efficacy and potential mechanisms of the main active ingredients of astragalus mongholicus in animal models of liver fibrosis: A systematic review and meta-analysis. J. Ethnopharmacol., 2023, 319(Pt 1), 117198.
[74]
Cao, T.; Lu, Y.; Zhu, M.; Cheng, J.; Ye, B.; Fang, N.; Cui, Y.; Xue, B.; Lari Najafi, M.; Kazemi, E. Effects of Salvia miltiorrhiza and Radix astragali on the TGF-Î2/Smad/Wnt pathway and the pathological process of liver fibrosis in rats. Cell. Mol. Biol., 2020, 66(6), 46-51.
[http://dx.doi.org/10.14715/cmb/2020.66.6.9] [PMID: 33040784]
[75]
Yang, Y.; Yang, S.; Chen, M.; Zhang, X.; Zou, Y.; Zhang, X. Compound Astragalus and Salvia miltiorrhiza Extract exerts anti-fibrosis by mediating TGF-β/Smad signaling in myofibroblasts. J. Ethnopharmacol., 2008, 118(2), 264-270.
[http://dx.doi.org/10.1016/j.jep.2008.04.012] [PMID: 18502066]
[76]
Liu, Y.; Lv, W. Research progress in astragalus membranaceus and its active components on immune responses in liver fibrosis. Chin. J. Integr. Med., 2020, 26(10), 794-800.
[http://dx.doi.org/10.1007/s11655-019-3039-1] [PMID: 31502184]
[77]
Wen, X.D.; Zhang, Y.L.; Yang, L.; Ye, Z.; Fu, G.C.; Hu, Y.H.; Pan, T.; Ye, Q.B. Angelica sinensis polysaccharide and astragalus membranaceus polysaccharide accelerate liver regeneration by enhanced glycolysis via activation of JAK2/STAT3/HK2 pathway. Molecules, 2022, 27(22), 7890.
[http://dx.doi.org/10.3390/molecules27227890] [PMID: 36431990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy