Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Association of the Immunity Genes with Type 1 Diabetes Mellitus

In Press, (this is not the final "Version of Record"). Available online 08 January, 2024
Author(s): Youssef Khaiz*, Najib Al Idrissi, Mohammed Bakkali* and Samir Ahid
Published on: 08 January, 2024

Article ID: e080124225347

DOI: 10.2174/0115733998275617231218101116

Price: $95

Abstract

Type 1 diabetes mellitus (T1D) is a complicated illness marked by the death of insulin- producing pancreatic beta cells, which ultimately leads to insulin insufficiency and hyperglycemia. T lymphocytes are considered to destroy pancreatic beta cells in the etiology of T1D as a result of hereditary and environmental factors. Although the latter factors are very important causes of T1D development, this disease is very genetically predisposed, so there is a significant genetic component to T1D susceptibility. Among the T1D-associated gene mutations, those that affect genes that encode the traditional Human Leukocyte Antigens (HLA) entail the highest risk of T1D development. Accordingly, the results of decades of genetic linkage and association studies clearly demonstrate that mutations in the HLA genes are the most associated mutations with T1D. They can, therefore, be used as biomarkers for prediction strategies and may even prove to be of value for personalized treatments. Other immunity-associated genetic loci are also associated with higher T1D risk. Indeed, T1D is considered an autoimmune disease. Its prevalence is rising globally, especially among children and young people. Given the global rise of, and thus interest in, autoimmune diseases, here we present a short overview of the link between immunity, especially HLA, genes and T1D.

[1]
International diabetes federation - home. Available from: https://idf.org/ (Accessed on 26 oct 2022).
[2]
Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39(3): 481-97.
[http://dx.doi.org/10.1016/j.ecl.2010.05.011] [PMID: 20723815]
[3]
Derraik JGB, Reed PW, Jefferies C, Cutfield SW, Hofman PL, Cutfield WS. Increasing incidence and age at diagnosis among children with type 1 diabetes mellitus over a 20-year period in Auckland (New Zealand). PLoS One 2012; 7(2): e32640.
[http://dx.doi.org/10.1371/journal.pone.0032640] [PMID: 22389717]
[4]
Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: A multicentre prospective registration study. Lancet 2009; 373(9680): 2027-33.
[http://dx.doi.org/10.1016/S0140-6736(09)60568-7] [PMID: 19481249]
[5]
Snouffer E. An inexplicable upsurge: The rise in type 1 diabetes. Diabetes Res Clin Pract 2018; 137: 242-4.
[http://dx.doi.org/10.1016/j.diabres.2018.02.022] [PMID: 29625722]
[6]
Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med 2008; 359(26): 2849-50.
[http://dx.doi.org/10.1056/NEJMc0805398] [PMID: 19109586]
[7]
Bangarusamy DK, Lakshmanan AP, Al-Zaidan S, Alabduljabbar S, Terranegra A. Nutri-epigenetics: The effect of maternal diet and early nutrition on the pathogenesis of autoimmune diseases. Minerva Pediatr 2021; 73(2): 98-110.
[http://dx.doi.org/10.23736/S2724-5276.20.06166-6] [PMID: 33880901]
[8]
Rešić Lindehammer S, Honkanen H, Nix WA, et al. Seroconversion to islet autoantibodies after enterovirus infection in early pregnancy. Viral Immunol 2012; 25(4): 254-61.
[http://dx.doi.org/10.1089/vim.2012.0022] [PMID: 22746839]
[9]
Sales-Peres SH de C, Guedes MF, Sá LM, Negrato CA, Lauris JR. Lifestyle of patients with diabetes mellitus type 1: A systematic review. Cien Saude Colet 2016; 21(4): 1197-206.
[http://dx.doi.org/10.1590/1413-81232015214.20242015] [PMID: 27076018]
[10]
Alessi SM, Foster NC, Rash CJ, et al. Alcohol use and clinical outcomes in adults in the type 1 diabetes exchange. Can J Diabetes 2020; 44(6): 501-6.
[http://dx.doi.org/10.1016/j.jcjd.2020.06.005] [PMID: 32792103]
[11]
Alarcón-Gómez J, Chulvi-Medrano I, Martin-Rivera F, Calatayud J. Effect of high-intensity interval training on quality of life, sleep quality, exercise motivation and enjoyment in sedentary people with type 1 diabetes mellitus. Int J Environ Res Public Health 2021; 18(23): 12612.
[http://dx.doi.org/10.3390/ijerph182312612] [PMID: 34886337]
[12]
Sharif K, Watad A, Coplan L, Amital H, Shoenfeld Y, Afek A. Psychological stress and type 1 diabetes mellitus: What is the link? Expert Rev Clin Immunol 2018; 14(12): 1081-8.
[http://dx.doi.org/10.1080/1744666X.2018.1538787] [PMID: 30336709]
[13]
Altobelli E, Petrocelli R, Verrotti A, Chiarelli F, Marziliano C. Genetic and environmental factors affect the onset of type 1 diabetes mellitus. Pediatr Diabetes 2016; 17(8): 559-66.
[http://dx.doi.org/10.1111/pedi.12345] [PMID: 26697762]
[14]
Handy DE, Castro R, Loscalzo J. Epigenetic modifications. Circulation 2011; 123(19): 2145-56.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[15]
Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 2014; 50: 33-7.
[http://dx.doi.org/10.1016/j.jaut.2013.10.001] [PMID: 24210274]
[16]
Virolainen SJ, VonHandorf A, Viel KCMF, Weirauch MT, Kottyan LC. Gene–environment interactions and their impact on human health. Genes Immun 2022; 24(1): 1-11.
[http://dx.doi.org/10.1038/s41435-022-00192-6] [PMID: 36585519]
[17]
Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17(3): 150-61.
[http://dx.doi.org/10.1038/s41574-020-00443-4] [PMID: 33293704]
[18]
Krogvold L, Skog O, Sundström G, et al. Function of isolated pancreatic islets from patients at onset of type 1 diabetes: insulin secretion can be restored after some days in a nondiabetogenic environment in vitro. Diabetes 2015; 64(7): 2506-12.
[http://dx.doi.org/10.2337/db14-1911] [PMID: 25677915]
[19]
Klinke DJ II. Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS One 2008; 3(1): e1374.
[http://dx.doi.org/10.1371/journal.pone.0001374] [PMID: 18167535]
[20]
Maddaloni E, Bolli GB, Frier BM, et al. C‐peptide determination in the diagnosis of type of diabetes and its management: A clinical perspective. Diabetes Obes Metab 2022; 24(10): 1912-26.
[http://dx.doi.org/10.1111/dom.14785] [PMID: 35676794]
[21]
Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965; 14(10): 619-33.
[http://dx.doi.org/10.2337/diab.14.10.619] [PMID: 5318831]
[22]
Wenzlau JM, Hutton JC. Novel diabetes autoantibodies and prediction of type 1 diabetes. Curr Diab Rep 2013; 13(5): 608-15.
[http://dx.doi.org/10.1007/s11892-013-0405-9] [PMID: 23900975]
[23]
Leite NC, Pelayo GC, Melton DA. Genetic manipulation of stress pathways can protect stem-cell-derived islets from apoptosis in vitro. Stem Cell Reports 2022; 17(4): 766-74.
[http://dx.doi.org/10.1016/j.stemcr.2022.01.018] [PMID: 35245439]
[24]
Usmani-Brown S, Perdigoto AL, Lavoie N, et al. β cell responses to inflammation. Mol Metab 2019; 27 (Suppl.): S104-13.
[http://dx.doi.org/10.1016/j.molmet.2019.06.013] [PMID: 31500821]
[25]
Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, Åkerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes 2005; 54 (Suppl. 2): S125-36.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S125] [PMID: 16306330]
[26]
Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 2012; 209(1): 51-60.
[http://dx.doi.org/10.1084/jem.20111187] [PMID: 22213807]
[27]
Itoh N, Hanafusa T, Miyazaki A, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993; 92(5): 2313-22.
[http://dx.doi.org/10.1172/JCI116835] [PMID: 8227346]
[28]
Mishra R, Chesi A, Cousminer DL, et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med 2017; 15(1): 88.
[http://dx.doi.org/10.1186/s12916-017-0846-0] [PMID: 28438156]
[29]
Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 1993; 42(2): 359-62.
[http://dx.doi.org/10.2337/diab.42.2.359] [PMID: 8425674]
[30]
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293-300.
[http://dx.doi.org/10.1038/nature08933] [PMID: 20432533]
[31]
Redondo MJ, Yu L, Hawa M, et al. Heterogeneity of Type I diabetes: Analysis of monozygotic twins in Great Britain and the United States. Diabetologia 2001; 44(3): 354-62.
[http://dx.doi.org/10.1007/s001250051626] [PMID: 11317668]
[32]
Giwa AM, Ahmed R, Omidian Z, et al. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J Diabetes 2020; 11(1): 13-25.
[http://dx.doi.org/10.4239/wjd.v11.i1.13] [PMID: 31938470]
[33]
Génotypage HLA dans le Consortium international sur la génétique du diabète de type 1 - Josyf C Mychaleckyj, Janelle A Noble, Priscilla V Moonsamy, Joyce A Carlson, Michael D Varney, Jeff Post, Wolfgang Helmberg, June J Pierce, Persia Bonella, Anna Lisa Fear, Eva Lavant , Anthony Louey, Sean Boyle, Julie A Lane, Paul Sali, Samuel Kim, Rebecca Rappner, Dustin T Williams, Letitia H Perdue, David M Reboussin, Brian D Tait, Beena Akolkar, Joan E Hilner, Michael W Steffes, Henry A Erlich , , T1DGC, T1DGC. 2010. Available from: https://journals.sagepub.com/doi/10.1177/1740774510373494 (Accessed on 26 oct 2022).
[34]
Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: An update. Genes 2013; 4(3): 499-521.
[http://dx.doi.org/10.3390/genes4030499] [PMID: 24705215]
[35]
Ounissi-Benkalha H, Polychronakos C. The molecular genetics of type 1 diabetes: New genes and emerging mechanisms. Trends Mol Med 2008; 14(6): 268-75.
[http://dx.doi.org/10.1016/j.molmed.2008.04.002] [PMID: 18482868]
[36]
Ram R, Mehta M, Nguyen QT, et al. Systematic evaluation of genes and genetic variants associated with type 1 diabetes susceptibility. J Immunol 2016; 196(7): 3043-53.
[http://dx.doi.org/10.4049/jimmunol.1502056] [PMID: 26912320]
[37]
Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973; 22(6): 429-32.
[http://dx.doi.org/10.2337/diab.22.6.429] [PMID: 4541338]
[38]
Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 2011; 11(6): 533-42.
[http://dx.doi.org/10.1007/s11892-011-0223-x] [PMID: 21912932]
[39]
Fernando MMA, Stevens CR, Walsh EC, et al. Defining the role of the MHC in autoimmunity: A review and pooled analysis. PLoS Genet 2008; 4(4): e1000024.
[http://dx.doi.org/10.1371/journal.pgen.1000024] [PMID: 18437207]
[40]
Pool JE, Hellmann I, Jensen JD, Nielsen R. Population genetic inference from genomic sequence variation. Genome Res 2010; 20(3): 291-300.
[http://dx.doi.org/10.1101/gr.079509.108] [PMID: 20067940]
[41]
Charles A, Janeway J, Travers P, Walport M, Shlomchik MJ. The major histocompatibility complex and its functions. In: Immunobiology: The Immune System in Health and Disease 5th edition. Garland Science 2001.
[42]
Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990; 59(1): 253-88.
[http://dx.doi.org/10.1146/annurev.bi.59.070190.001345] [PMID: 2115762]
[43]
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) Class I and MHC Class II Proteins: Conformational plasticity in antigen presentation. frontiers in immunology. In: Disponible sur. 2017; 8. https://www.frontiersin.org/articles/10.3389/fimmu.2017.00292
[44]
Porter RR. The polymorphism of the complement genes in HLA. Ann Inst Pasteur Immunol 1985; 136(1): 91-101.
[http://dx.doi.org/10.1016/S0769-2625(85)80042-8]
[45]
Choo SY. The HLA system: Genetics, immunology, clinical testing, and clinical implications. Yonsei Med J 2007; 48(1): 11-23.
[http://dx.doi.org/10.3349/ymj.2007.48.1.11] [PMID: 17326240]
[46]
Wyatt RC, Lanzoni G, Russell MA, Gerling I, Richardson SJ. What the HLA-I!—Classical and Non-classical HLA Class I and their potential roles in type 1 diabetes. Curr Diab Rep 2019; 19(12): 159.
[http://dx.doi.org/10.1007/s11892-019-1245-z] [PMID: 31820163]
[47]
Cruz-Tapias P, Castiblanco J, Anaya JM. Major histocompatibility complex: Antigen processing and presentation. In: Autoimmunity: From Bench to Bedside. El Rosario University Press 2013.https://www.ncbi.nlm.nih.gov/books/NBK459467/
[48]
Holling TM, Schooten E, van Den Elsen PJ. Function and regulation of MHC class II molecules in T-lymphocytes: Of mice and men. Hum Immunol 2004; 65(4): 282-90.
[http://dx.doi.org/10.1016/j.humimm.2004.01.005] [PMID: 15120183]
[49]
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, et al. Chemical and genetic control of IFN γ‐induced MHCII expression. EMBO Rep 2018; 19(9): e45553.
[http://dx.doi.org/10.15252/embr.201745553] [PMID: 30021835]
[50]
Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5(12): 889-99.
[http://dx.doi.org/10.1038/nrg1489] [PMID: 15573121]
[51]
Haris B, Ahmed I, Syed N, et al. Clinical features, epidemiology, autoantibody status, HLA haplotypes and genetic mechanisms of type 1 diabetes mellitus among children in Qatar. Sci Rep 2021; 11(1): 18887.
[http://dx.doi.org/10.1038/s41598-021-98460-4] [PMID: 34556755]
[52]
Santos DC, Porto LC, Oliveira RV, et al. HLA class II genotyping of admixed Brazilian patients with type 1 diabetes according to self-reported color/race in a nationwide study. Sci Rep 2020; 10(1): 6628.
[http://dx.doi.org/10.1038/s41598-020-63322-y] [PMID: 32313169]
[53]
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47(3): 193-9.
[http://dx.doi.org/10.1007/s00592-009-0109-4] [PMID: 19333547]
[54]
GWAS central - studies. Disponible sur Available from: https://www.gwascentral.org/studies
[55]
Bradfield JP, Qu HQ, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 2011; 7(9): e1002293.
[http://dx.doi.org/10.1371/journal.pgen.1002293] [PMID: 21980299]
[56]
Cooper JD, Howson JMM, Smyth D, et al. Confirmation of novel type 1 diabetes risk loci in families. Diabetologia 2012; 55(4): 996-1000.
[http://dx.doi.org/10.1007/s00125-012-2450-3] [PMID: 22278338]
[57]
Qu H-Q, Polychronakos C. The effect of the MHC locus on autoantibodies in type 1 diabetes. J Med Genet 2009; 46(7): 469-71.
[http://dx.doi.org/10.1136/jmg.2009.066647] [PMID: 19429597]
[58]
Zhong H, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet 2010; 86(4): 581-91.
[http://dx.doi.org/10.1016/j.ajhg.2010.02.020] [PMID: 20346437]
[59]
Bergholdt R, Brorsson C, Palleja A, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes 2012; 61(4): 954-62.
[http://dx.doi.org/10.2337/db11-1263] [PMID: 22344559]
[60]
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: From polygenic to omnigenic. Cell 2017; 169(7): 1177-86.
[http://dx.doi.org/10.1016/j.cell.2017.05.038] [PMID: 28622505]
[61]
Chen J, Tian W. Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Res 2016; 44(18): 8641-54.
[http://dx.doi.org/10.1093/nar/gkw519] [PMID: 27280978]
[62]
Fadason T, Ekblad C, Ingram JR, Schierding WS, O’Sullivan JM. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated snps. In: Frontiers in Genetics. 2017; 8.
[63]
Farh KKH, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518(7539): 337-43.
[http://dx.doi.org/10.1038/nature13835] [PMID: 25363779]
[64]
Ram R, Morahan G. Effects of Type 1 diabetes risk alleles on immune cell gene expression. Genes 2017; 8(6): 167.
[http://dx.doi.org/10.3390/genes8060167] [PMID: 28635624]
[65]
Javierre BM, Burren OS, Wilder SP, et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 2016; 167(5): 1369-1384.e19.
[http://dx.doi.org/10.1016/j.cell.2016.09.037] [PMID: 27863249]
[66]
Boateng D, Ayellah BB, Adjei DN, Agyemang C. Contribution of diabetes to amputations in sub-Sahara Africa: A systematic review and meta-analysis. Prim Care Diabetes 2022; 16(3): 341-9.
[http://dx.doi.org/10.1016/j.pcd.2022.01.011] [PMID: 35305899]
[67]
Lorenzo-Almorós A, Cepeda-Rodrigo JM, Lorenzo Ó. Diabetic cardiomyopathy. Rev Clin Esp 2022; 222(2): 100-11.
[http://dx.doi.org/10.1016/j.rceng.2019.10.012] [PMID: 35115137]
[68]
Kim DS, Scherer PE. Obesity, diabetes, and increased cancer progression. Diabetes Metab J 2021; 45(6): 799-812.
[http://dx.doi.org/10.4093/dmj.2021.0077] [PMID: 34847640]
[69]
Hughes JW, Riddlesworth TD, DiMeglio LA, Miller KM, Rickels MR, McGill JB. Autoimmune diseases in children and adults with type 1 diabetes from the T1D exchange clinic registry. J Clin Endocrinol Metab 2016; 101(12): 4931-7.
[http://dx.doi.org/10.1210/jc.2016-2478] [PMID: 27676394]
[70]
Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009; 360(16): 1646-54.
[http://dx.doi.org/10.1056/NEJMra0808284] [PMID: 19369670]
[71]
Brooks-Worrell B, Narla R, Palmer JP. Biomarkers and immune-modulating therapies for Type 2 diabetes. Trends Immunol 2012; 33(11): 546-53.
[http://dx.doi.org/10.1016/j.it.2012.07.002] [PMID: 22897868]
[72]
Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers 2017; 3(1): 17016.
[http://dx.doi.org/10.1038/nrdp.2017.16] [PMID: 28358037]
[73]
MacDonald PE, Rorsman P. Oscillations, intercellular coupling, and insulin secretion in pancreatic β cells. PLoS Biol 2006; 4(2): e49.
[http://dx.doi.org/10.1371/journal.pbio.0040049] [PMID: 16464129]
[74]
Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41(6): 703-7.
[http://dx.doi.org/10.1038/ng.381] [PMID: 19430480]
[75]
Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2(1): a007732.
[http://dx.doi.org/10.1101/cshperspect.a007732] [PMID: 22315720]
[76]
Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007; 39(7): 857-64.
[http://dx.doi.org/10.1038/ng2068] [PMID: 17554260]
[77]
Evidence of association with type 1 diabetes in the SLC11A1 gene region | BMC medical genetics | full text. Available from: https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-12-59
[78]
Smyth DJ, Plagnol V, Walker NM, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 2008; 359(26): 2767-77.
[http://dx.doi.org/10.1056/NEJMoa0807917] [PMID: 19073967]
[79]
Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47(4): 381-6.
[http://dx.doi.org/10.1038/ng.3245] [PMID: 25751624]
[80]
Baschal EE, Sarkar SA, Boyle TA, et al. Replication and further characterization of a Type 1 diabetes-associated locus at the telomeric end of the major histocompatibility complex. J Diabetes 2011; 3(3): 238-47.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00131.x] [PMID: 21631897]
[81]
Forbes JM, Söderlund J, Yap FYT, et al. Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia 2011; 54(5): 1032-42.
[http://dx.doi.org/10.1007/s00125-011-2058-z] [PMID: 21298413]
[82]
Swafford ADE, Howson JMM, Davison LJ, et al. An allele of IKZF1 (Ikaros) conferring susceptibility to childhood acute lymphoblastic leukemia protects against type 1 diabetes. Diabetes 2011; 60(3): 1041-4.
[http://dx.doi.org/10.2337/db10-0446] [PMID: 21270240]
[83]
Huang J, Ellinghaus D, Franke A, Howie B, Li Y. 1000 Genomes-based imputation identifies novel and refined associations for the wellcome trust case control consortium phase 1 data. Eur J Hum Genet 2012; 20(7): 801-5.
[http://dx.doi.org/10.1038/ejhg.2012.3] [PMID: 22293688]
[84]
Smyth DJ, Cooper JD, Howson JMM, et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 2011; 60(11): 3081-4.
[http://dx.doi.org/10.2337/db11-0638] [PMID: 22025780]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy