Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Understanding the Role of Galectin-1 in Heart Failure: A Comprehensive Narrative Review

Author(s): Mohammad Javad Sotoudeheian, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Reza Azarbad, Soroush Nematollahi, Mehdi Taghizadeh and Hamidreza Pazoki-Toroudi*

Volume 20, Issue 1, 2024

Published on: 08 January, 2024

Article ID: e080124225321 Pages: 9

DOI: 10.2174/011573403X274886231227111902

Price: $65

Abstract

Heart failure (HF) is the fastest-growing cardiovascular condition worldwide. The immune system may play a role in the development of HF since this condition is associated with elevated pro-inflammatory cytokine levels. HF is a life-threatening disease, and there is an increasing demand for diagnostic biomarkers, prognostic factors, and therapeutic agents that can help treat it. Galectin-1 (Gal-1) is the prototype galectin of the lectin family. Multiple signal transduction pathways are regulated by Ras proteins, which act as a molecular switch in cells. Gal-1 regulates T and B cell activation, differentiation, and survival. Gal-1 has been linked to inflammation. Activated T cells produce Gal-1 through an autocrine apoptotic mechanism involving MEK1/ERK and p38 MAPK. In the cardiovascular system, atherosclerosis is facilitated by Gal-1. Heart disease, myocardial infarction, hypertension, and stroke can be caused by atherosclerotic plaque. HF and heart hypertrophy are caused by decreased cardiac L-type Ca2+ channel activity. Deregulation of Gal-1 and CaV1.2 in pathological cardiac hypertrophy suggests a possible target for anti-hypertrophic therapy. Rat hypertrophic cardiomyocytes express Gal-1 and CaV1.2 channels simultaneously. It has been reported that diastolic dysfunction (DD) is associated with elevated Gal-1 levels. The high Gal-1 level in subjects led to the lowest cumulative survival as a composite endpoint. Incidences of HF, DD, and serum Gal-1 levels correlated significantly. The ejection fraction was negatively correlated with Gal-1 and CRP concentrations. Based on two different approaches in mice and humans, Gal-1 was identified as a potential mediator of HF.

Graphical Abstract

[1]
Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol 2016; 13(6): 368-78.
[http://dx.doi.org/10.1038/nrcardio.2016.25] [PMID: 26935038]
[2]
Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail 2020; 22(8): 1342-56.
[http://dx.doi.org/10.1002/ejhf.1858] [PMID: 32483830]
[3]
Sotoudeheian M, Hoseini S, Mirahmadi S-M-S. Understanding the pathophysiology of heart failure with mid-range ejection fraction: A comprehensive narrative review. Preprints 2023.
[4]
Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol 2020; 17(5): 269-85.
[http://dx.doi.org/10.1038/s41569-019-0315-x] [PMID: 31969688]
[5]
Mansour AA, Krautter F, Zhi Z, Iqbal AJ, Recio C. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease. Cardiovasc Diabetol 2022; 21(1): 253.
[http://dx.doi.org/10.1186/s12933-022-01690-7] [PMID: 36403025]
[6]
Baek JH, Kim DH, Lee J, Kim SJ, Chun KH. Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis 2021; 12(1): 66.
[http://dx.doi.org/10.1038/s41419-020-03367-z] [PMID: 33431823]
[7]
Sethi A, Sanam S, Alvala R, Alvala M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016–present). Expert Opin Ther Pat 2021; 31(8): 709-21.
[8]
Yu X, Scott SA, Pritchard R, Houston TA, Ralph SJ, Blanchard H. Redox state influence on human galectin-1 function. Biochimie 2015; 116: 8-16.
[http://dx.doi.org/10.1016/j.biochi.2015.06.013] [PMID: 26116885]
[9]
Kuo CS, Chou RH, Lu YW, Tsai YL, Huang PH, Lin SJ. Increased circulating galectin-1 levels are associated with the progression of kidney function decline in patients undergoing coronary angiography. Sci Rep 2020; 10(1): 1435.
[http://dx.doi.org/10.1038/s41598-020-58132-1] [PMID: 31996694]
[10]
Düzlü M. İriz A, Cebeci S, Şemsi R, Şahin MM, Dincel AS. Decreased galectin-1 levels in obstructive sleep apnea: A novel biomarker. B-ENT 2021; 17(3): 169-73.
[http://dx.doi.org/10.5152/B-ENT.2021.21473]
[11]
O’Sullivan JM, Jenkins PV, Rawley O, et al. Galectin-1 and galectin-3 constitute novel-binding partners for Factor VIII. Arterioscler Thromb Vasc Biol 2016; 36(5): 855-63.
[http://dx.doi.org/10.1161/ATVBAHA.115.306915] [PMID: 27013611]
[12]
Alhabbab R, Blair P, Smyth LA, et al. Galectin-1 is required for the regulatory function of B cells. Sci Rep 2018; 8(1): 2725.
[http://dx.doi.org/10.1038/s41598-018-19965-z] [PMID: 29426942]
[13]
Ajami M, Eghtesadi S, Razaz JM, et al. Expression of Bcl-2 and Bax after hippocampal ischemia in DHA + EPA treated rats. Neurol Sci 2011; 32(5): 811-8.
[http://dx.doi.org/10.1007/s10072-011-0621-5] [PMID: 21617951]
[14]
Javedan G, Shidfar F, Davoodi SH, et al. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol Nutr Food Res 2016; 60(12): 2665-77.
[http://dx.doi.org/10.1002/mnfr.201600112] [PMID: 27466783]
[15]
Dhirapong A, Lleo A, Leung P, Gershwin ME, Liu FT. The immunological potential of galectin-1 and -3. Autoimmun Rev 2009; 8(5): 360-3.
[http://dx.doi.org/10.1016/j.autrev.2008.11.009] [PMID: 19064001]
[16]
Sanjurjo L, Broekhuizen EC, Koenen RR, Thijssen VLJL. Galectokines: The promiscuous relationship between galectins and cytokines. Biomolecules 2022; 12(9): 1286.
[http://dx.doi.org/10.3390/biom12091286] [PMID: 36139125]
[17]
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: A patent review. Expert Opin Ther Pat 2016; 26: 5-554.(537).
[http://dx.doi.org/10.1517/13543776.2016.1163338]
[18]
Jiang X, Xiao X, Li H, et al. Oxidized galectin-1 in SLE fails to bind the inhibitory receptor VSTM1 and increases reactive oxygen species levels in neutrophils. Cell Mol Immunol 2023; 20(11): 1339-51.
[http://dx.doi.org/10.1038/s41423-023-01084-z] [PMID: 37737309]
[19]
Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: A jack-of-all-trades in the resolution of acute and chronic inflammation. J Immunol 2017; 199(11): 3721-30.
[http://dx.doi.org/10.4049/jimmunol.1701172] [PMID: 29158348]
[20]
Garín MI, Chu CC, Golshayan D, Cernuda-Morollón E, Wait R, Lechler RI. Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells. Blood 2007; 109(5): 2058-65.
[http://dx.doi.org/10.1182/blood-2006-04-016451] [PMID: 17110462]
[21]
Ilarregui JM, Croci DO, Bianco GA, et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 2009; 10(9): 981-91.
[http://dx.doi.org/10.1038/ni.1772] [PMID: 19668220]
[22]
Tesone AJ, Rutkowski MR, Brencicova E, et al. Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells. Cell Rep 2016; 14(7): 1774-86.
[http://dx.doi.org/10.1016/j.celrep.2016.01.056] [PMID: 26876172]
[23]
Mundt F, Johansson HJ, Forshed J, et al. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma. Mol Cell Proteomics 2014; 13(3): 701-15.
[http://dx.doi.org/10.1074/mcp.M113.030775] [PMID: 24361865]
[24]
Cutine AM, Bach CA, Veigas F, et al. Tissue-specific control of galectin-1-driven circuits during inflammatory responses. Glycobiology 2021; 31(8): 891-907.
[http://dx.doi.org/10.1093/glycob/cwab007] [PMID: 33498084]
[25]
Yaseen H, Butenko S, Polishuk-Zotkin I, et al. Galectin-1 facilitates macrophage reprogramming and resolution of inflammation through IFN-β. Front Pharmacol 2020; 11: 901.
[http://dx.doi.org/10.3389/fphar.2020.00901] [PMID: 32625094]
[26]
Seropian IM, González GE, Maller SM, Berrocal DH, Abbate A, Rabinovich GA. Galectin-1 as an emerging mediator of cardiovascular inflammation: Mechanisms and therapeutic opportunities. Mediators Inflamm 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/8696543] [PMID: 30524200]
[27]
Engelbertsen D, Andersson L, Ljungcrantz I, et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler Thromb Vasc Biol 2013; 33(3): 637-44.
[http://dx.doi.org/10.1161/ATVBAHA.112.300871] [PMID: 23307873]
[28]
Dalotto-Moreno T, Croci DO, Cerliani JP, et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 2013; 73(3): 1107-17.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2418] [PMID: 23204230]
[29]
Wang Y, Xie Y, Ma H, et al. Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target. Int J Cardiol 2016; 203: 923-8.
[http://dx.doi.org/10.1016/j.ijcard.2015.11.078] [PMID: 26618254]
[30]
Sotoudeheian M, Hoseini S. Therapeutic properties of polyphenols affect AMPK molecular pathway in hyperlipidemia. Preprints 2023010528.2023;
[http://dx.doi.org/10.20944/preprints202301.0528.v1]
[31]
Sotoudeheian M, Hoseini S, Mirahmadi S-M-S, Farahmandian N, Pazoki-Toroudi H. Oleuropein as a therapeutic agent for non-alcoholic fatty liver disease during hepatitis C. Rev Bras Farmacogn 2023; 33: 688-95.
[32]
Pęczek P, Gajda M, Rutkowski K, Fudalej M, Deptała A, Badowska-Kozakiewicz AM. Cancer-associated inflammation: Pathophysiology and clinical significance. J Cancer Res Clin Oncol 2023; 149(6): 2657-72.
[http://dx.doi.org/10.1007/s00432-022-04399-y] [PMID: 36260158]
[33]
Fakhoury M. Role of immunity and inflammation in the pathophysiology of neurodegenerative diseases. Neurodegener Dis 2015; 15(2): 63-9.
[http://dx.doi.org/10.1159/000369933] [PMID: 25591815]
[34]
Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and heart failure: Searching for the enemy—reaching the entelechy. J Cardiovasc Dev Dis 2023; 10(1): 19.
[http://dx.doi.org/10.3390/jcdd10010019] [PMID: 36661914]
[35]
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: A novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20(3): 145-67.
[http://dx.doi.org/10.1038/s41569-022-00759-w] [PMID: 36109633]
[36]
Michou E, Wussler D, Belkin M, et al. Quantifying inflammation using interleukin‐6 for improved phenotyping and risk stratification in acute heart failure. Eur J Heart Fail 2023; 25(2): 174-84.
[http://dx.doi.org/10.1002/ejhf.2767] [PMID: 36597828]
[37]
Hermenean A, Oatis D, Herman H, Ciceu A, D’Amico G, Trotta MC. Galectin 1—A key player between tissue repair and fibrosis. Int J Mol Sci 2022; 23(10): 5548.
[http://dx.doi.org/10.3390/ijms23105548] [PMID: 35628357]
[38]
Masamune A, Satoh M, Hirabayashi J, Kasai K, Satoh K, Shimosegawa T. Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2006; 290(4): G729-36.
[http://dx.doi.org/10.1152/ajpgi.00511.2005] [PMID: 16373424]
[39]
Fryk E. The role of galectin-1 in type 2 diabetes. Clinical and experimental studies. Doctoral Theses; Doktorsavhandlingar Institutionen för medicine 2022.
[40]
Sundblad V, Garcia-Tornadu IA, Ornstein AM, et al. Galectin-1 impacts on glucose homeostasis by modulating pancreatic insulin release. Glycobiology 2021; 31(8): 908-15.
[http://dx.doi.org/10.1093/glycob/cwab040] [PMID: 33978732]
[41]
Drake I, Fryk E, Strindberg L, et al. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia 2022; 65(1): 128-39.
[http://dx.doi.org/10.1007/s00125-021-05594-1] [PMID: 34743218]
[42]
Fryk E, Silva VRR, Jansson PA. Galectin-1 in obesity and type 2 diabetes. Metabolites 2022; 12(10): 930.
[http://dx.doi.org/10.3390/metabo12100930] [PMID: 36295832]
[43]
He XW, Li WL, Li C, et al. Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke. Sci Rep 2017; 7(1): 40994.
[http://dx.doi.org/10.1038/srep40994] [PMID: 28112232]
[44]
Chou RH, Huang SS, Kuo CS, et al. Galectin-1 is associated with the severity of coronary artery disease and adverse cardiovascular events in patients undergoing coronary angiography. Sci Rep 2020; 10(1): 20683.
[http://dx.doi.org/10.1038/s41598-020-77804-6] [PMID: 33244142]
[45]
van der Hoeven NW, Hollander MR, Yıldırım C, et al. The emerging role of galectins in cardiovascular disease. Vascul Pharmacol 2016; 81: 31-41.
[http://dx.doi.org/10.1016/j.vph.2016.02.006] [PMID: 26945624]
[46]
Al-Salam S, Hashmi S. Galectin-1 in early acute myocardial infarction. PLoS One 2014; 9(1): e86994.
[http://dx.doi.org/10.1371/journal.pone.0086994] [PMID: 24498007]
[47]
Blois SM, Gueuvoghlanian-Silva BY, Tirado-González I, et al. Getting too sweet: Galectin-1 dysregulation in gestational diabetes mellitus. Mol Hum Reprod 2014; 20(7): 644-9.
[http://dx.doi.org/10.1093/molehr/gau021] [PMID: 24637109]
[48]
Triguero-Martínez A, Roy-Vallejo E, Montes N, et al. Genetic LGALS1 variants are associated with heterogeneity in galectin-1 serum levels in patients with early arthritis. Int J Mol Sci 2022; 23(13): 7181.
[http://dx.doi.org/10.3390/ijms23137181] [PMID: 35806182]
[49]
Seropian IM, Cerliani JP, Toldo S, et al. Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. Am J Pathol 2013; 182(1): 29-40.
[http://dx.doi.org/10.1016/j.ajpath.2012.09.022] [PMID: 23142379]
[50]
Cheng Y, Jiang Y, Qin C, et al. Galectin-1 contributes to vascular remodeling and blood flow recovery after cerebral ischemia in mice. Transl Stroke Res 2022; 13(1): 160-70.
[http://dx.doi.org/10.1007/s12975-021-00913-5] [PMID: 33973144]
[51]
Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 2018; 8(3): 593-609.
[http://dx.doi.org/10.7150/thno.22196] [PMID: 29344292]
[52]
Sotoudeheian M. LBPS 02-05 atrial fibrillation immunological determinants. J Hypertens 2016; 34(S1): e507.
[http://dx.doi.org/10.1097/01.hjh.0000501377.64703.67]
[53]
Hu Z. Alternative splicing and galectin-1 modulate l-type Cav1 2 calcium channel function: Implications in cardiovascular diseases. National University of Singapore (Singapore) 2017.
[54]
Goonasekera SA, Hammer K, Auger-Messier M, et al. Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 2012; 122(1): 280-90.
[http://dx.doi.org/10.1172/JCI58227] [PMID: 22133878]
[55]
Fan J, Fan W, Lei J, et al. Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol Basis Dis 2019; 1865(1): 218-29.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.016] [PMID: 30463690]
[56]
Chiang M-T, Chen I-M, Hsu F-F, et al. Gal-1 (Galectin-1) upregulation contributes to abdominal aortic aneurysm progression by enhancing vascular inflammation. Arterioscler Thromb Vasc Biol 2021; 41(1): 331-45.
[PMID: 33147994]
[57]
Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, et al. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. Sci Adv 2022; 8(11): eabm7322.
[http://dx.doi.org/10.1126/sciadv.abm7322] [PMID: 35294231]
[58]
Ou D, Ni D, Li R, Jiang X, Chen X, Li H. Galectin 1 alleviates myocardial ischemia reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes. Exp Ther Med 2021; 23(2): 143.
[http://dx.doi.org/10.3892/etm.2021.11066] [PMID: 35069824]
[59]
Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure: Contemporary update. JACC Heart Fail 2017; 5(8): 543-51.
[http://dx.doi.org/10.1016/j.jchf.2017.04.012] [PMID: 28711447]
[60]
Tran ED, DeLano FA, Schmid-Schönbein GW. Enhanced matrix metalloproteinase activity in the spontaneously hypertensive rat: VEGFR-2 cleavage, endothelial apoptosis, and capillary rarefaction. J Vasc Res 2010; 47(5): 423-31.
[http://dx.doi.org/10.1159/000281582] [PMID: 20145415]
[61]
Hashmi S. Hypoxic signals in the Ischemic Myocardium: Role of Galectin-1 and Galectin-3. 2014.
[62]
Bahit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC Heart Fail 2018; 6(3): 179-86.
[http://dx.doi.org/10.1016/j.jchf.2017.09.015] [PMID: 29496021]
[63]
Wassenaar JW, Smart CD, Fehrenbach DJ, et al. Abstract P025: Cite-seq and predixcan analyses identify galectin-1 as a potential novel mediator of heart failure with preserved ejection fraction in mice and humans. Hypertension 2022; 79(S1): AP025-5.
[http://dx.doi.org/10.1161/hyp.79.suppl_1.P025]
[64]
Wassenaar JW, Smart CD, Fehrenbach DJ, et al. Abstract 079: Multi-omics analyses identify galectin-1 as a potential novel mediator of heart failure with preserved ejection fraction in mice and humans. Hypertension 2023; 80(S1): A079-9.
[http://dx.doi.org/10.1161/hyp.80.suppl_1.079]
[65]
Tsai YL, Chou RH, Lu YW, et al. Associations between galectin-1, left ventricular diastolic dysfunction, and heart failure with preserved ejection fraction. J Cardiol 2022; 79(3): 371-5.
[http://dx.doi.org/10.1016/j.jjcc.2021.09.017] [PMID: 34774386]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy