Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Wide-ranging Study on Synthesis and Biological Evaluation of 1, 2, 3-triazole

Author(s): Anshu Dudhe*, Rupesh Dudhe, Renuka Mahajan, Neha Pathak, Vaibhav Uplanchiwar and Mohammad Hashim Mansoori

Volume 20, Issue 7, 2024

Published on: 05 January, 2024

Article ID: e050124225297 Pages: 16

DOI: 10.2174/0115734072275678231214051003

Price: $65

Abstract

1, 2, 3-traizole is five-membered heterocyclic compounds having three nitrogen at 1, 2 and 3 positions. 1, 2, 3-triazoles are important five-membered heterocyclic scaffolds due to their widespread biological activities. 1, 2, 3-triazole derivative can be readily obtained in good to excellent yields through click chemistry, 1, 3-dipolar cycloaddition, Metal Catalysed azide-alyne cycloaddition method. 1, 2, 3-triazoles showed various biological activities, such as antiinflammatory, anticonvulsant, antineoplastic, antimicrobial, analgesic, antimalarial, antiviral, antiproliferative, and anticancer activities. The objective of this review is to synthesize pharmacological activity of 1,2,3-triazole derivatives documented in recent literature.

Graphical Abstract

[1]
Jinlian, D. Synthesis methods of 1,2,3/1,2,4-triazoles: A review. Front Chem., 2022, 68-87.
[2]
Ali, A.A. 1,2,3-Triazoles: Synthesis and biological application. Azoles, 2020, 13, 52-59.
[3]
Kundu, M.; Bhaumik, I.; Misra, A.K. Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives. Glycoconj. J., 2019, 36(5), 439-450.
[http://dx.doi.org/10.1007/s10719-019-09883-1] [PMID: 31278614]
[4]
Castillo, J.C.; Bravo, N.F.; Tamayo, L.V.; Mestizo, P.D.; Hurtado, J.; Macías, M.; Portilla, J. Water-compatible synthesis of 1,2,3-Triazoles under ultrasonic conditions by a Cu(I) complex-mediated click reaction. ACS Omega, 2020, 5(46), 30148-30159.
[http://dx.doi.org/10.1021/acsomega.0c04592] [PMID: 33251449]
[5]
Bakherad, M.; Keivanloo, A.; Amin, A.H.; Farkhondeh, A. Synthesis of 1,2,3 triazole-linked benzimidazole through a copper-catalyzed click reaction. Heterocycl. Commun., 2019, 25(1), 122-129.
[http://dx.doi.org/10.1515/hc-2019-0016]
[6]
Perez, P.J.; Haldón, E.; Nicasio, M.C. Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Org. Biomol. Chem., 2015, 37, 9519-9710.
[7]
Sergey, N; Semenov, L.B.; Brian J, C.; Maral P, S.M. Autocatalytic cycles in a copper-catalyzed azide-alkyne cycloaddition reaction. J. Am. Chem. Soc., 2018, 140(32), 10221-10232.
[8]
Arefi, E.; Khojastehnezhad, A.; Shiri, A. A magnetic copper organic framework material as an efficient and recyclable catalyst for the synthesis of 1,2,3-triazole derivatives. Sci. Rep., 2021, 11(1), 20514.
[http://dx.doi.org/10.1038/s41598-021-00012-3] [PMID: 34654831]
[9]
Rammah, M.; Gati, W.; Mtiraoui, H.; Rammah, M.; Ciamala, K.; Knorr, M.; Rousselin, Y.; Kubicki, M. Synthesis of Isoxazole and 1,2,3-Triazole isoindole derivatives via silver- and copper-catalyzed 1,3-dipolar cycloaddition reaction. Molecules, 2016, 21(3), 307.
[http://dx.doi.org/10.3390/molecules21030307] [PMID: 26959000]
[10]
Kumar, A.; Ahamad, S.; Kant, R.; Mohanan, K. Silver-catalyzed three-component route to trifluoromethylated 1,2,3-triazolines using aldehydes, amines, and trifluorodiazoethane. Org. Lett., 2019, 21(8), 2962-2965.
[http://dx.doi.org/10.1021/acs.orglett.9b01159] [PMID: 30973234]
[11]
El Mahmoudi, A.; El Masaoudi, H.; Tachallait, H.; Talha, A.; Arshad, S.; Benhida, R.; Jaber, B.; Benaissa, M.; Bougrin, K. Selective silver (I)-catalyzed four-component gram-scale synthesis of novel 1,4-disubstituted 1,2,3-triazole-sulfonamides under heterogeneous catalysis and microwave irradiation in water. Results in Chemistry, 2022, 4, 100552.
[http://dx.doi.org/10.1016/j.rechem.2022.100552]
[12]
Jia, F.; Zhang, B. Mechanistic insight into the silver-catalyzed cycloaddition synthesis of 1,4-disubstituted-1,2,3-triazoles: the key role of silver. New J. Chem., 2019, 43(22), 8634-8643.
[http://dx.doi.org/10.1039/C9NJ01700C]
[13]
Banerji, B.; Chandrasekhar, K.; Killi, SK.; Pramanik, SK.; Uttam, P.; Sen, S.; Maiti, NC. Silver-catalysed azide–alkyne cycloaddition (AgAAC): Assessing the mechanism by density functional theory calculations. R. Soc. Open Sci., 2016, 3(9), 160090.
[14]
Chouaïb, K.; Romdhane, A.; Delemasure, S.; Dutartre, P.; Elie, N.; Touboul, D.; Ben Jannet, H. Regiospecific synthesis by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. Arab. J. Chem., 2019, 12(8), 3732-3742.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.013]
[15]
Kundu, M.; Bhaumik, I.; Misra, A.K. Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives. Macromolecules, 2021, 54(23), 10903-10913.
[16]
Cui, M.; Su, C.; Wang, R.; Yang, Q.; Kuang, C. Synthesis of vinyl-1,2,3-triazole derivatives under transition metal-free conditions. RSC Advances, 2021, 11(61), 38933-38937.
[http://dx.doi.org/10.1039/D1RA08322H] [PMID: 35493263]
[17]
Xie, Y.Y.; Wang, Y.C.; He, Y.; Hu, D.C.; Wang, H-S.; Pan, Y-M. Catalyst-free synthesis of fused 1,2,3-triazole and isoindoline derivatives via an intramolecular azide–alkene cascade reaction. Green Chem., 2017, 19(3), 656-659.
[http://dx.doi.org/10.1039/C6GC01553K]
[18]
Almalki, A.S.A.; Nazreen, S.; Malebari, A.M.; Ali, N.M.; Elhenawy, A.A.; Alghamdi, A.A.A.; Ahmad, A.; Alfaifi, S.Y.M.; Alsharif, M.A.; Alam, M.M. Synthesis and biological evaluation of 1,2,3-triazole tethered thymol-1,3,4-Oxadiazole derivatives as anticancer and antimicrobial agents. Pharmaceuticals, 2021, 14(9), 866.
[http://dx.doi.org/10.3390/ph14090866] [PMID: 34577567]
[19]
Pokhodylo, Nazariy; Shyyka, Olga Matiychuk, Vasyl Synthesis of 1,2,3-triazole derivatives and evaluation of their anticancer activity. Sci. Pharm., 2013, 81(3), 663-673.
[20]
El Bourakadi, K.; Mekhzoum, M.E.M.; Saby, C.; Morjani, H.; Chakchak, H.; Merghoub, N.; Qaiss, A.; Bouhfid, R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1,2,3-triazole derivatives. New J. Chem., 2020, 44(28), 12099-12106.
[http://dx.doi.org/10.1039/C9NJ05685H]
[21]
Şahin, İ.; Özgeriş, F.B.; Köse, M.; Bakan, E.; Tümer, F. Synthesis, characterization, and antioxidant and anticancer activity of 1,4-disubstituted 1,2,3-triazoles. J. Mol. Struct., 2021, 1232, 130042.
[http://dx.doi.org/10.1016/j.molstruc.2021.130042]
[22]
Lakkakula, R.; Roy, A.; Mukkanti, K.; Sridhar, G. Synthesis and anticancer activity of 1,2,3-triazole fused n-arylpyrazole derivatives. Russ. J. Gen. Chem., 2019, 89(4), 831-835.
[http://dx.doi.org/10.1134/S1070363219040315]
[23]
Le, T.T.; Le, P.T.K.; Dam, H.T.T.; Vo, D.D.; Le, T.T. Anticancer activity of new 1,2,3-triazole-amino acid conjugates. Molbank, 2021, 2021(2), M1204.
[http://dx.doi.org/10.3390/M1204]
[24]
El Malah, T.; Nour, H.F.; Satti, A.A.E.; Hemdan, B.A.; El-Sayed, W.A.; Design, S. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules, 2020, 25(4), 790.
[http://dx.doi.org/10.3390/molecules25040790] [PMID: 32059480]
[25]
Ellouz, M.; Sebbar, N.K.; Fichtali, I.; Ouzidan, Y.; Mennane, Z.; Charof, R.; Mague, J.T.; Urrutigoïty, M.; Essassi, E.M. Synthesis and antibacterial activity of new 1,2,3-triazolylmethyl-2H-1,4-benzothiazin-3(4H)-one derivatives. Chem. Cent. J., 2018, 12(1), 123.
[http://dx.doi.org/10.1186/s13065-018-0494-2] [PMID: 30499014]
[26]
Sumangala, V.; Poojary, B.; Chidananda, N.; Fernandes, J.; Kumari, N.S. Synthesis and antimicrobial activity of 1,2,3-triazoles containing quinoline moiety. Arch. Pharm. Res., 2010, 33(12), 1911-1918.
[http://dx.doi.org/10.1007/s12272-010-1204-3] [PMID: 21191754]
[27]
Gondru, R.; Kanugala, S.; Raj, S.; Ganesh Kumar, C.; Pasupuleti, M.; Banothu, J.; Bavantula, R. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett., 2021, 33, 127746.
[http://dx.doi.org/10.1016/j.bmcl.2020.127746] [PMID: 33333162]
[28]
Zhao, X.; Lu, B.W.; Lu, J.R.; Xin, C.W.; Li, J.F.; Liu, Y. Design, synthesis and antimicrobial activities of 1,2,3-triazole derivatives. Chin. Chem. Lett., 2012, 23(8), 933-935.
[http://dx.doi.org/10.1016/j.cclet.2012.06.014]
[29]
Sunitha, V.; Kumar, A.K.; Jalapathi, P.; Lincoln, C.A. Synthesis and antimicrobial activity of bis-1,2,3-triazole based chalcones. Russ. J. Gen. Chem., 2020, 90(1), 154-159.
[http://dx.doi.org/10.1134/S1070363220010247]
[30]
Shalom, P.D.O.A.; Moara, T.D.S.; Ronaldo, N.D.O.; Vera, L.D.M.L. Synthesis and anti-inflammatory activity of new alkyl-substituted phthalimide 1H-1,2,3-triazole derivatives. Sci. World. J., 2012, 925925.
[31]
Sambasiva Rao, P.; Malla Reddy, G.; Kurumurthy, C.; Veeraswamy, B.; Santhosh, K. An efficient protocol for the synthesis of novel 1,2,3-triazole substituted 4h-chromene derivatives. journal of Heterocyclic Chemistry, 2014, 51.
[32]
Cheng, C.Y.; Haque, A.; Hsieh, M.F.; Imran, H.S.; Faizi, M.S.H.; Dege, N.; Khan, M.S. 1,4-disubstituted 1H-1,2,3-triazoles for renal diseases: Studies of viability, anti-inflammatory, and antioxidant activities. Int. J. Mol. Sci., 2020, 21(11), 3823.
[http://dx.doi.org/10.3390/ijms21113823] [PMID: 32481556]
[33]
Oramas-R.S.; López-R.P.; Amesty, Á.; Gutiérrez, D.; Flores, Ninoska Synthesis and antiplasmodial activity of 1,2,3-triazole-naphthoquinone conjugates. Molecules, 2019, 24(21), 3917.
[34]
Deswal, L.; Verma, V.; Kumar, D.; Kaushik, C.P.; Kumar, A.; Deswal, Y.; Punia, S. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles. Arch. Pharm., 2020, 353(9), 2000090.
[http://dx.doi.org/10.1002/ardp.202000090] [PMID: 32567729]
[35]
Avula, S.K.; Khan, A.; Halim, S.A.; Al-Abri, Z.; Anwar, M.U.; Al-Rawahi, A.; Csuk, R.; Al-Harrasi, A. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors. Bioorg. Chem., 2019, 91, 103182.
[http://dx.doi.org/10.1016/j.bioorg.2019.103182] [PMID: 31404793]
[36]
Dhameja, M.; Kumar, H.; Kurella, S.; Uma, A.; Gupta, P. Flavone-1,2,3-triazole derivatives as potential α-glucosidase inhibitors: Synthesis, enzyme inhibition, kinetic analysis and molecular docking study. Bioorg. Chem., 2022, 127, 106028.
[http://dx.doi.org/10.1016/j.bioorg.2022.106028] [PMID: 35868105]
[37]
Asemanipoor, N.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Vahidi, M.; Asadi, M.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 95, 103482.
[http://dx.doi.org/10.1016/j.bioorg.2019.103482] [PMID: 31838286]
[38]
Glanzmann, N.; Antinarelli, L.M.R.; da Costa Nunes, I.K.; Pereira, H.M.G.; Coelho, E.A.F.; Coimbra, E.S.; da Silva, A.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed. Pharmacother., 2021, 141, 111857.
[http://dx.doi.org/10.1016/j.biopha.2021.111857] [PMID: 34323702]
[39]
Chinchilli, K.K.; Angeli, A. Design, synthesis, and biological evaluation of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide conjugates as potent carbonic anhydrase I, II, IX, and XIII inhibitors. Metabolites, 2020, 10(5), 200.
[40]
Chen, Y.; Liu, X.; Sun, X.; Zhang, J.; Mi, Y.; Li, Q.; Guo, Z. Synthesis and antioxidant activity of cationic 1,2,3-triazole functionalized starch derivatives. Polymers, 2020, 12(1), 112.
[http://dx.doi.org/10.3390/polym12010112] [PMID: 31948022]
[41]
Kumari, G.S.; Siva, B.; Reddy, S.D.; Nayak, V.L.; Tiwari, A.K.; Rao, B.G.; Babu, K.S. Synthesis and biological evaluation of 1,2,3-triazole hybrids of 4-methoxy ethyl cinnamate isolated from Hedychium spicatum (Sm) rhizomes: identification of antiproliferative lead actives against prostate cancer. Nat. Prod. Res., 2023, 37(2), 289-295.
[http://dx.doi.org/10.1080/14786419.2021.1969928] [PMID: 34579616]
[42]
Nerella, S.; Kankala, S.; Gavaji, B. Synthesis of podophyllotoxin-glycosyl triazoles via click protocol mediated by silver (I)- N -heterocyclic carbenes and their anticancer evaluation as topoisomerase-II inhibitors. Nat. Prod. Res., 2021, 35(1), 9-16.
[http://dx.doi.org/10.1080/14786419.2019.1610958] [PMID: 31210060]
[43]
Elattar, E.M.; Shaban, M.; Saad, H.E.A.; Badria, F.A.; Galala, A.A. Evaluation of antimicrobial, antiquorum sensing, and cytotoxic activities of new vanillin 1,2,3-triazole derivatives. Nat. Prod. Res., 2023, 37(16), 2662-2671.
[http://dx.doi.org/10.1080/14786419.2022.2130299] [PMID: 36194212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy