Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances

In Press, (this is not the final "Version of Record"). Available online 01 January, 2024
Author(s): Hafez R. Madkor, Mostafa K. Abd El-Aziz, Mostafa S. Abd El-Maksoud, Islam M. Ibrahim and Fares E.M. Ali*
Published on: 01 January, 2024

Article ID: e010124225101

DOI: 10.2174/0115733998275428231210055650

Price: $95

Abstract

Background: The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications.

Methodology: In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin-producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations.

Conclusion: This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications

[1]
Atlas DJIDA. International Diabetes Federation, International diabetes federation. (7th edn..), Brussels, Belgium 2015.
[2]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[3]
Classification and diagnosis of diabetes. Diabetes Care 2015; 38 (Suppl. 1): S8-S16.
[http://dx.doi.org/10.2337/dc15-S005] [PMID: 25537714]
[4]
Susman JL, Helseth LD. Reducing the complications of type II diabetes: A patient-centered approach. Am Fam Physician 1997; 56(2): 471-80.
[PMID: 9262528]
[5]
Chawla R, Chawla A, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab 2016; 20(4): 546-51.
[http://dx.doi.org/10.4103/2230-8210.183480] [PMID: 27366724]
[6]
Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24(2): 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]
[7]
Denham M, Conley B, Olsson F, Cole TJ, Mollard R. Stem cells: an overview. Current protocols in cell biology. 2005; Chapter 23. Unit 23.21
[8]
Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet 2005; 366(9485): 592-602.
[http://dx.doi.org/10.1016/S0140-6736(05)66879-1] [PMID: 16099296]
[9]
Salinno C, Cota P, Bastidas-Ponce A, Tarquis-Medina M, Lickert H, Bakhti M. β-cell maturation and identity in health and disease. Int J Mol Sci 2019; 20(21): 5417.
[http://dx.doi.org/10.3390/ijms20215417] [PMID: 31671683]
[10]
Atlas D. International diabetes federation IDF Diabetes Atlas. (7th ed.), Brussels, Belgium: International Diabetes Federation 2015.
[11]
Ramachandran A. Know the signs and symptoms of diabetes. Indian J Med Res 2014; 140(5): 579-81.
[PMID: 25579136]
[12]
American Diabetes, A., Diagnosis and classification of diabetes mellitus. Diabetes care 2013; 36(1): 567-74.
[13]
Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 2017; 66(2): 241-55.
[http://dx.doi.org/10.2337/db16-0806] [PMID: 27980006]
[14]
Long AE, George G, Williams CL. Persistence of islet autoantibodies after diagnosis in type 1 diabetes. Diabet Med 2021; 38(12): e14712.
[http://dx.doi.org/10.1111/dme.14712] [PMID: 34614253]
[15]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[16]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[17]
Klein BEK, Klein R, Moss SE, Cruickshanks KJ. Parental history of diabetes in a population-based study. Diabetes Care 1996; 19(8): 827-30.
[http://dx.doi.org/10.2337/diacare.19.8.827] [PMID: 8842599]
[18]
Dameshek W. Bone marrow transplantation: A present-day challenge. Blood 1957; 12(4): 321-3.
[http://dx.doi.org/10.1182/blood.V12.4.321.321] [PMID: 13412760]
[19]
de la Morena MT, Gatti RA. A history of bone marrow transplantation. Immunol Allergy Clin North Am 2010; 30(1): 1-15.
[http://dx.doi.org/10.1016/j.iac.2009.11.005] [PMID: 20113883]
[20]
Le Blanc K, Ringdén O. Mesenchymal stem cells: Properties and role in clinical bone marrow transplantation. Curr Opin Immunol 2006; 18(5): 586-91.
[http://dx.doi.org/10.1016/j.coi.2006.07.004] [PMID: 16879957]
[21]
McCormick JB, Huso HA. Stem cells and ethics: Current issues. J Cardiovasc Transl Res 2010; 3(2): 122-7.
[http://dx.doi.org/10.1007/s12265-009-9155-0] [PMID: 20560025]
[22]
Magga J, Savchenko E, Malm T, et al. Production of monocytic cells from bone marrow stem cells: Therapeutic usage in Alzheimer’s disease. J Cell Mol Med 2012; 16(5): 1060-73.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01390.x] [PMID: 21777378]
[23]
Smith A. A glossary for stem-cell biology. Nature 2006; 441(7097): 1060-0.
[http://dx.doi.org/10.1038/nature04954]
[24]
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell 2014; 159(2): 428-39.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[25]
Voltarelli JC, Couri CEB, Oliveira MC, et al. Stem cell therapy for diabetes mellitus. Kidney Int Suppl 2011; 1(3): 94-8.
[http://dx.doi.org/10.1038/kisup.2011.22] [PMID: 25018908]
[26]
Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 1993; 42(12): 1715-20.
[http://dx.doi.org/10.2337/diab.42.12.1715] [PMID: 8243817]
[27]
Wang RN, Klöppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 1995; 38(12): 1405-11.
[http://dx.doi.org/10.1007/BF00400600] [PMID: 8786013]
[28]
Xu X, D’Hoker J, Stangé G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132(2): 197-207.
[http://dx.doi.org/10.1016/j.cell.2007.12.015] [PMID: 18243096]
[29]
Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 2008; 105(50): 19915-9.
[http://dx.doi.org/10.1073/pnas.0805803105] [PMID: 19052237]
[30]
Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A. Beta-cell growth and regeneration: Replication is only part of the story. Diabetes 2010; 59(10): 2340-8.
[http://dx.doi.org/10.2337/db10-0084] [PMID: 20876724]
[31]
Smukler SR, Arntfield ME, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 2011; 8(3): 281-93.
[http://dx.doi.org/10.1016/j.stem.2011.01.015] [PMID: 21362568]
[32]
Zhu S, Russ HA, Wang X, et al. Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 2016; 7(1): 10080.
[http://dx.doi.org/10.1038/ncomms10080] [PMID: 26733021]
[33]
Cheng CW, Villani V, Buono R, et al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 2017; 168(5): 775-788.e12.
[http://dx.doi.org/10.1016/j.cell.2017.01.040] [PMID: 28235195]
[34]
Wang Y, Dorrell C, Naugler WE, et al. Long-term correction of diabetes in mice by in vivo reprogramming of pancreatic ducts. J Am Soc Gene Ther 2018; 26(5): 1327-42.
[35]
Xiao X, Guo P, Shiota C, et al. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell 2018; 22(1): 78-90.e4.
[http://dx.doi.org/10.1016/j.stem.2017.11.020] [PMID: 29304344]
[36]
Furuyama K, Chera S, van Gurp L, et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 2019; 567(7746): 43-8.
[http://dx.doi.org/10.1038/s41586-019-0942-8] [PMID: 30760930]
[37]
Hirano M, So Y, Tsunekawa S, et al. MYCL-mediated reprogramming expands pancreatic insulin-producing cells. Nat Metab 2022; 4(2): 254-68.
[http://dx.doi.org/10.1038/s42255-022-00530-y] [PMID: 35145326]
[38]
Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science 2008; 322(5907): 1490-4.
[http://dx.doi.org/10.1126/science.1161431] [PMID: 19056973]
[39]
Ber I, Shternhall K, Perl S, et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 2003; 278(34): 31950-7.
[http://dx.doi.org/10.1074/jbc.M303127200] [PMID: 12775714]
[40]
Yechoor V, Liu V, Espiritu C, et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 2009; 16(3): 358-73.
[http://dx.doi.org/10.1016/j.devcel.2009.01.012] [PMID: 19289082]
[41]
Yang LJ. Liver stem cell-derived β-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev 2006; 5(6): 409-13.
[http://dx.doi.org/10.1016/j.autrev.2005.10.009] [PMID: 16890895]
[42]
Liu X, Wang Y, Li Y, Pei X. Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci China Life Sci 2013; 56(4): 306-12.
[http://dx.doi.org/10.1007/s11427-013-4469-1] [PMID: 23564185]
[43]
Pollinger J, Merk D. Therapeutic applications of the versatile fatty acid mimetic WY14643. Expert Opin Ther Pat 2017; 27(4): 517-25.
[http://dx.doi.org/10.1080/13543776.2017.1272578] [PMID: 27967266]
[44]
Banga A, Greder LV, Dutton JR, Slack JMW. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist. Gene Ther 2014; 21(1): 19-27.
[http://dx.doi.org/10.1038/gt.2013.50] [PMID: 24089243]
[45]
Hill CM, Banga A, Abrahante JE, et al. Establishing a large-animal model for in vivo reprogramming of bile duct cells into insulin-secreting cells to treat diabetes. Hum Gene Ther Clin Dev 2017; 28(2): 87-95.
[http://dx.doi.org/10.1089/humc.2017.011] [PMID: 28363269]
[46]
Yang XF, Ren LW, Yang L, Deng CY, Li FR. In vivo direct reprogramming of liver cells to insulin producing cells by virus-free overexpression of defined factors. Endocr J 2017; 64(3): 291-302.
[http://dx.doi.org/10.1507/endocrj.EJ16-0463] [PMID: 28100871]
[47]
Cardinale V, Wang Y, Carpino G, et al. The biliary tree—a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 2012; 9(4): 231-40.
[http://dx.doi.org/10.1038/nrgastro.2012.23] [PMID: 22371217]
[48]
Chen F, Li T, Sun Y, et al. Generation of insulin-secreting cells from mouse gallbladder stem cells by small molecules in vitro. Stem Cell Res Ther 2019; 10(1): 289.
[http://dx.doi.org/10.1186/s13287-019-1407-6] [PMID: 31547878]
[49]
Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010; 120(1): 51-9.
[http://dx.doi.org/10.1172/JCI40553] [PMID: 20051636]
[50]
Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat Biotechnol 2000; 18(4): 399-404.
[http://dx.doi.org/10.1038/74447] [PMID: 10748519]
[51]
Limbert C, Päth G, Jakob F, Seufert J. Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Res Clin Pract 2008; 79(3): 389-99.
[http://dx.doi.org/10.1016/j.diabres.2007.06.016] [PMID: 17854943]
[52]
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26(4): 443-52.
[http://dx.doi.org/10.1038/nbt1393] [PMID: 18288110]
[53]
Agulnick AD, Ambruzs DM, Moorman MA, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 2015; 4(10): 1214-22.
[http://dx.doi.org/10.5966/sctm.2015-0079] [PMID: 26304037]
[54]
Sui L, Danzl N, Campbell SR, et al. β-cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 2018; 67(1): 26-35.
[http://dx.doi.org/10.2337/db17-0120] [PMID: 28931519]
[55]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[56]
Agrawal A, Narayan G, Gogoi R, Thummer RP. Recent advances in the generation of β-cells from induced pluripotent stem cells as a potential cure for diabetes mellitus. Adv Exp Med Biol 2021; 1347: 1-27.
[http://dx.doi.org/10.1007/5584_2021_653] [PMID: 34426962]
[57]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[58]
Haridhasapavalan KK, Borgohain MP, Dey C, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2019; 686: 146-59.
[http://dx.doi.org/10.1016/j.gene.2018.11.069] [PMID: 30472380]
[59]
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Rev 2019; 15(2): 286-313.
[http://dx.doi.org/10.1007/s12015-018-9861-6] [PMID: 30417242]
[60]
Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009; 106(37): 15768-73.
[http://dx.doi.org/10.1073/pnas.0906894106] [PMID: 19720998]
[61]
Alipio Z, Liao W, Roemer EJ, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc Natl Acad Sci USA 2010; 107(30): 13426-31.
[http://dx.doi.org/10.1073/pnas.1007884107] [PMID: 20616080]
[62]
Zhu Y, Tonne JM, Liu Q, et al. Targeted derivation of organotypic glucose- and GLP-1-responsive β cells prior to transplantation into diabetic recipients. Stem Cell Reports 2019; 13(2): 307-21.
[http://dx.doi.org/10.1016/j.stemcr.2019.07.006] [PMID: 31378674]
[63]
Kong CM, Arjunan S, Gan SU, Biswas A, Bongso A, Fong CY. Tissues derived from reprogrammed Wharton’s jelly stem cells of the umbilical cord as a platform to study gestational diabetes mellitus. Stem Cell Res 2020; 47: 101880.
[http://dx.doi.org/10.1016/j.scr.2020.101880] [PMID: 32622342]
[64]
Pileggi A. Mesenchymal stem cells for the treatment of diabetes. Diabetes 2012; 61(6): 1355-6.
[http://dx.doi.org/10.2337/db12-0355] [PMID: 22618774]
[65]
Urbán VS, Kiss J, Kovács J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 2008; 26(1): 244-53.
[http://dx.doi.org/10.1634/stemcells.2007-0267] [PMID: 17932424]
[66]
Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 2009; 58(8): 1797-806.
[http://dx.doi.org/10.2337/db09-0317] [PMID: 19509016]
[67]
Zhao M, Amiel SA, Ajami S, et al. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One 2008; 3(7): e2666.
[http://dx.doi.org/10.1371/journal.pone.0002666] [PMID: 18628974]
[68]
Kim SY, Kim YR, Park WJ, et al. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells. In: Differentiation; research in biological diversity. 2015; 90: pp. (1-3)27-39.
[69]
Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng 2012; 113(6): 771-7.
[http://dx.doi.org/10.1016/j.jbiosc.2012.02.007] [PMID: 22425523]
[70]
Ho JH, Tseng TC, Ma WH, et al. Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and β-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant 2012; 21(5): 997-1009.
[http://dx.doi.org/10.3727/096368911X603611] [PMID: 22004871]
[71]
Dang LT-T, Phan NK, Truong KDJBR. Therapy, mesenchymal stem cells for diabetes mellitus treatment: New advances. Biomed Res Ther 2017; 4(1): 1062-81.
[72]
Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: From hype to hope. Stem Cells Transl Med 2013; 2(5): 328-36.
[http://dx.doi.org/10.5966/sctm.2012-0116] [PMID: 23572052]
[73]
Talebi S, Aleyasin A, Soleimani M, Massumi M. Derivation of islet‐like cells from mesenchymal stem cells using PDX1‐transducing lentiviruses. Biotechnol Appl Biochem 2012; 59(3): 205-12.
[http://dx.doi.org/10.1002/bab.1013] [PMID: 23586830]
[74]
Karaoz E, Okcu A, Ünal ZS, Subasi C, Saglam O, Duruksu G. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Cytotherapy 2013; 15(5): 557-70.
[http://dx.doi.org/10.1016/j.jcyt.2013.01.005] [PMID: 23388582]
[75]
Carlsson PO, Espes D, Sisay S, Davies LC, Smith CIE, Svahn MG. Umbilical cord-derived mesenchymal stromal cells preserve endogenous insulin production in type 1 diabetes: A Phase I/II randomised double-blind placebo-controlled trial. Diabetologia 2023; 66(8): 1431-41.
[http://dx.doi.org/10.1007/s00125-023-05934-3] [PMID: 37221247]
[76]
Boonkaew B, Suwanpitak S, Pattanapanyasat K, Sermsathanasawadi N, Wattanapanitch M. Efficient generation of endothelial cells from induced pluripotent stem cells derived from a patient with peripheral arterial disease. Cell Tissue Res 2022; 388(1): 89-104.
[http://dx.doi.org/10.1007/s00441-022-03576-2] [PMID: 35072793]
[77]
Yanai G, Hayashi T, Zhi Q, et al. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: A rat model. PLoS One 2013; 8(5): e64499.
[http://dx.doi.org/10.1371/journal.pone.0064499] [PMID: 23724055]
[78]
Toma JG, Akhavan M, Fernandes KJL, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3(9): 778-84.
[http://dx.doi.org/10.1038/ncb0901-778] [PMID: 11533656]
[79]
Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 2005; 23(6): 727-37.
[http://dx.doi.org/10.1634/stemcells.2004-0134] [PMID: 15917469]
[80]
Joannides A, Gaughwin P, Schwiening C, et al. Efficient generation of neural precursors from adult human skin: Astrocytes promote neurogenesis from skin-derived stem cells. Lancet 2004; 364(9429): 172-8.
[http://dx.doi.org/10.1016/S0140-6736(04)16630-0] [PMID: 15246730]
[81]
Mehrabi M, Mansouri K, Hosseinkhani S, et al. Differentiation of human skin-derived precursor cells into functional islet-like insulin-producing cell clusters. In vitro Cell Dev Biol Anim 2015; 51(6): 595-603.
[http://dx.doi.org/10.1007/s11626-015-9866-2] [PMID: 25630536]
[82]
Yang JH, Lee SH, Heo YT, Uhm SJ, Lee HT. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochem Biophys Res Commun 2010; 397(4): 679-84.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.158] [PMID: 20594970]
[83]
Pereyra-Bonnet F, Gimeno ML, Argumedo NR, et al. Skin fibroblasts from patients with type 1 diabetes (T1D) can be chemically transdifferentiated into insulin-expressing clusters: a transgene-free approach. PLoS One 2014; 9(6): e100369.
[http://dx.doi.org/10.1371/journal.pone.0100369] [PMID: 24963634]
[84]
Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TAL, Gandolfi F. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev 2014; 10(1): 31-43.
[http://dx.doi.org/10.1007/s12015-013-9477-9] [PMID: 24072393]
[85]
Chandravanshi B, Bhonde R. Reprogramming mouse embryo fibroblasts to functional islets without genetic manipulation. J Cell Physiol 2018; 233(2): 1627-37.
[http://dx.doi.org/10.1002/jcp.26068] [PMID: 28657136]
[86]
Yen BL, Huang HI, Chien CC, et al. Isolation of multipotent cells from human term placenta. Stem Cells 2005; 23(1): 3-9.
[http://dx.doi.org/10.1634/stemcells.2004-0098] [PMID: 15625118]
[87]
Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5(6): 485-9.
[http://dx.doi.org/10.1080/14653240310003611] [PMID: 14660044]
[88]
Chien CC, Yen BL, Lee FK, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 2006; 24(7): 1759-68.
[http://dx.doi.org/10.1634/stemcells.2005-0521] [PMID: 16822884]
[89]
Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194(3): 664-73.
[http://dx.doi.org/10.1016/j.ajog.2006.01.101] [PMID: 16522395]
[90]
Chiou SH, Chen SJ, Chang YL, et al. MafA promotes the reprogramming of placenta-derived multipotent stem cells into pancreatic islets-like and insulin+ cells. J Cell Mol Med 2011; 15(3): 612-24.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01034.x] [PMID: 20158571]
[91]
Lee SH, Rhee M, Kim JW, Yoon KH. Generation of insulin-expressing cells in mouse small intestine by Pdx1, MafA, and BETA2/NeuroD. Diabetes Metab J 2017; 41(5): 405-16.
[http://dx.doi.org/10.4093/dmj.2017.41.5.405] [PMID: 29086539]
[92]
Chen YJ, Finkbeiner SR, Weinblatt D, et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep 2014; 6(6): 1046-58.
[http://dx.doi.org/10.1016/j.celrep.2014.02.013] [PMID: 24613355]
[93]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[94]
Yamazaki D, Hitomi H, Nishiyama A. Hypertension with diabetes mellitus complications. Hypertens Res 2018; 41(3): 147-56.
[95]
Bernardi S, Severini GM, Zauli G, Secchiero P. Cell-based therapies for diabetic complications. Exp Diabetes Res 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/872504] [PMID: 21822425]
[96]
Khamaisi M, Balanson SE. Stem cells for diabetes complications: A future potential cure. Rambam Maimonides Med J 2017; 8(1): e0008.
[http://dx.doi.org/10.5041/RMMJ.10283] [PMID: 28178432]
[97]
Lim A. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis 2014; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[98]
Gilbertson DT, Liu J, Xue JL, et al. Projecting the number of patients with end-stage renal disease in the United States to the year 2015. J Am Soc Nephrol 2005; 16(12): 3736-41.
[http://dx.doi.org/10.1681/ASN.2005010112] [PMID: 16267160]
[99]
Varghese RT, Jialal I. In StatPearls; StatPearls Publishing Copyright © 2022. Treasure Island, FL: StatPearls Publishing LLC 2022.
[100]
Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983; 32 (Suppl. 2): 64-78.
[http://dx.doi.org/10.2337/diab.32.2.S64] [PMID: 6400670]
[101]
Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: Prospective, observational study. BMJ 1997; 314(7083): 783-8.
[http://dx.doi.org/10.1136/bmj.314.7083.783] [PMID: 9080995]
[102]
Groop PH, Thomas MC, Moran JL, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 2009; 58(7): 1651-8.
[http://dx.doi.org/10.2337/db08-1543] [PMID: 19401416]
[103]
Park JH, Hwang I, Hwang SH, Han H, Ha H. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract 2012; 98(3): 465-73.
[http://dx.doi.org/10.1016/j.diabres.2012.09.034] [PMID: 23026513]
[104]
Narayanan K, Schumacher KM, Tasnim F, et al. Human embryonic stem cells differentiate into functional renal proximal tubular–like cells. Kidney Int 2013; 83(4): 593-603.
[http://dx.doi.org/10.1038/ki.2012.442] [PMID: 23389418]
[105]
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 2016; 6(1): 34842.
[http://dx.doi.org/10.1038/srep34842] [PMID: 27721418]
[106]
Hamza AH, Al-Bishri WM, Damiati LA, Ahmed HH. Mesenchymal stem cells: A future experimental exploration for recession of diabetic nephropathy. Ren Fail 2017; 39(1): 67-76.
[http://dx.doi.org/10.1080/0886022X.2016.1244080] [PMID: 27774826]
[107]
Grange C, Tritta S, Tapparo M, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 2019; 9(1): 4468.
[http://dx.doi.org/10.1038/s41598-019-41100-9] [PMID: 30872726]
[108]
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med 2012; 366(13): 1227-39.
[http://dx.doi.org/10.1056/NEJMra1005073] [PMID: 22455417]
[109]
Eisma JH, Dulle JE, Fort PE. Current knowledge on diabetic retinopathy from human donor tissues. World J Diabetes 2015; 6(2): 312-20.
[http://dx.doi.org/10.4239/wjd.v6.i2.312] [PMID: 25789112]
[110]
Shukla UV, Tripathy K. In StatPearls; StatPearls Publishing Copyright © 2022. Treasure Island, FL: StatPearls Publishing LLC 2022.
[111]
Inoue Y, Iriyama A, Ueno S, et al. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 2007; 85(2): 234-41.
[http://dx.doi.org/10.1016/j.exer.2007.04.007] [PMID: 17570362]
[112]
Wang S, Lu B, Girman S, et al. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 2010; 5(2): e9200.
[http://dx.doi.org/10.1371/journal.pone.0009200] [PMID: 20169166]
[113]
Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol 2010; 248(10): 1415-22.
[http://dx.doi.org/10.1007/s00417-010-1384-z] [PMID: 20437245]
[114]
Scalinci SZ, Scalinci SZ, Scorolli L, et al. Potential role of intravitreal human placental stem cell implants in inhibiting progression of diabetic retinopathy in type 2 diabetes: Neuroprotective growth factors in the vitreous. Clin Ophthalmol 2011; 5: 691-6.
[http://dx.doi.org/10.2147/OPTH.S21161] [PMID: 21629576]
[115]
Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 2006; 116(12): 3266-76.
[http://dx.doi.org/10.1172/JCI29683] [PMID: 17111048]
[116]
Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J 2006; 82(964): 95-100.
[http://dx.doi.org/10.1136/pgmj.2005.036137] [PMID: 16461471]
[117]
Iqbal Z, Azmi S, Yadav R, et al. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clin Ther 2018; 40(6): 828-49.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.001] [PMID: 29709457]
[118]
Martin CL, Albers JW, Pop-Busui R. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014; 37(1): 31-8.
[http://dx.doi.org/10.2337/dc13-2114] [PMID: 24356595]
[119]
Ghotaslou R, Memar MY, Alizadeh N. Classification, microbiology and treatment of diabetic foot infections. J Wound Care 2018; 27(7): 434-41.
[http://dx.doi.org/10.12968/jowc.2018.27.7.434] [PMID: 30016139]
[120]
Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM. Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Stem Cells Transl Med 2012; 1(7): 557-65.
[http://dx.doi.org/10.5966/sctm.2012-0025] [PMID: 23197860]
[121]
Kim BJ, Jin HK, Bae J. Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Lab Anim Res 2011; 27(2): 171-6.
[http://dx.doi.org/10.5625/lar.2011.27.2.171] [PMID: 21826178]
[122]
Han JW, Choi D, Lee MY, Huh YH, Yoon YS. Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplant 2016; 25(2): 313-26.
[http://dx.doi.org/10.3727/096368915X688209] [PMID: 25975801]
[123]
Hsieh JY, Wang HW, Chang SJ, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 2013; 8(8): e72604.
[http://dx.doi.org/10.1371/journal.pone.0072604] [PMID: 23991127]
[124]
Okawa T, Kamiya H, Himeno T, et al. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant 2013; 22(10): 1767-83.
[http://dx.doi.org/10.3727/096368912X657710] [PMID: 23051637]
[125]
Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 2008; 57(11): 3099-107.
[http://dx.doi.org/10.2337/db08-0031] [PMID: 18728233]
[126]
Naruse K, Hamada Y, Nakashima E, et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 2005; 54(6): 1823-8.
[http://dx.doi.org/10.2337/diabetes.54.6.1823] [PMID: 15919805]
[127]
Jeong JO, Kim MO, Kim H, et al. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 2009; 119(5): 699-708.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.789297] [PMID: 19171856]
[128]
Kim H, Park J, Choi YJ, et al. Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells 2009; 27(7): 1686-96.
[http://dx.doi.org/10.1002/stem.87] [PMID: 19544451]
[129]
Hasegawa T, Kosaki A, Shimizu K, et al. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats. Exp Neurol 2006; 199(2): 274-80.
[http://dx.doi.org/10.1016/j.expneurol.2005.11.001] [PMID: 16337192]
[130]
Matheus ASM, Tannus LRM, Cobas RA, Palma CCS, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: An update. Int J Hypertens 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/653789] [PMID: 23533715]
[131]
Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1·9 million people. Lancet Diabetes Endocrinol 2015; 3(2): 105-13.
[http://dx.doi.org/10.1016/S2213-8587(14)70219-0] [PMID: 25466521]
[132]
Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J, Abi Khalil C. Macrovascular complications in patients with diabetes and prediabetes. BioMed Res Int 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/7839101] [PMID: 29238721]
[133]
Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction. Circ Res 2017; 120(7): 1139-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309819] [PMID: 28031416]
[134]
Karantalis V, DiFede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ Res 2014; 114(8): 1302-10.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303180] [PMID: 24565698]
[135]
Zwetsloot PP, Végh AMD, Jansen of Lorkeers SJ, et al. Cardiac stem cell treatment in myocardial infarction. Circ Res 2016; 118(8): 1223-32.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307676] [PMID: 26888636]
[136]
Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ Res 2012; 111(3): 344-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.227512] [PMID: 22821908]
[137]
Menasché P, Vanneaux V, Hagège A, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report: Figure 1. Eur Heart J 2015; 36(30): 2011-7.
[http://dx.doi.org/10.1093/eurheartj/ehv189] [PMID: 25990469]
[138]
Citro L, Naidu S, Hassan F, et al. Comparison of human induced pluripotent stem-cell derived cardiomyocytes with human mesenchymal stem cells following acute myocardial infarction. PLoS One 2014; 9(12): e116281.
[http://dx.doi.org/10.1371/journal.pone.0116281] [PMID: 25551230]
[139]
Ye L, Chang YH, Xiong Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 2014; 15(6): 750-61.
[http://dx.doi.org/10.1016/j.stem.2014.11.009] [PMID: 25479750]
[140]
Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Experimental and clinical endocrinology & diabetes: Official journal, German Society of Endocrinology. Germ Diab Assoc 2008; 116(2): 104-11.
[141]
Li JH, Zhang N, Wang JA. Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 2008; 31(2): 103-10.
[http://dx.doi.org/10.1007/BF03345575] [PMID: 18362500]
[142]
Chen W, Hou CH, Chen YL, et al. Safety and efficacy of intracoronary artery administration of human bone marrow-derived mesenchymal stem cells in STEMI of Lee-Sung pigs—A preclinical study for supporting the feasibility of the OmniMSC-AMI phase I clinical trial. Front Cardiovasc Med 2023; 10: 1153428.
[http://dx.doi.org/10.3389/fcvm.2023.1153428] [PMID: 37063964]
[143]
Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104(9): 1046-52.
[http://dx.doi.org/10.1161/hc3501.093817] [PMID: 11524400]
[144]
Ransohoff JD, Wu JC. Imaging stem cell therapy for the treatment of peripheral arterial disease. Curr Vasc Pharmacol 2012; 10(3): 361-73.
[http://dx.doi.org/10.2174/157016112799959404] [PMID: 22239638]
[145]
Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plast Surg 2003; 30(1): 37-45.
[http://dx.doi.org/10.1016/S0094-1298(02)00066-4] [PMID: 12636214]
[146]
Jarajapu YPR, Grant MB. The promise of cell-based therapies for diabetic complications: Challenges and solutions. Circ Res 2010; 106(5): 854-69.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.213140] [PMID: 20299675]
[147]
McFarlin K, Gao X, Liu YB, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 2006; 14(4): 471-8.
[148]
Amin AH, Abd Elmageed ZY, Nair D, et al. Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice. Lab Invest 2010; 90(7): 985-96.
[http://dx.doi.org/10.1038/labinvest.2010.86] [PMID: 20440273]
[149]
Kwon DS, Gao X, Liu YB, et al. Treatment with bone marrow‐derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 2008; 5(3): 453-63.
[http://dx.doi.org/10.1111/j.1742-481X.2007.00408.x] [PMID: 18593394]
[150]
Maharlooei MK, Bagheri M, Solhjou Z, et al. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract 2011; 93(2): 228-34.
[http://dx.doi.org/10.1016/j.diabres.2011.04.018] [PMID: 21632142]
[151]
Kaushik K, Das A. TWIST1 -reprogrammed endothelial cell transplantation potentiates neovascularization-mediated diabetic wound tissue regeneration. Diabetes 2020; 69(6): 1232-47.
[http://dx.doi.org/10.2337/db20-0138] [PMID: 32234721]
[152]
Gerami-Naini B, Smith A, Maione AG, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative sendai virus. Cell Reprogram 2016; 18(4): 214-23.
[http://dx.doi.org/10.1089/cell.2015.0087] [PMID: 27328415]
[153]
Kashpur O, Smith A, Gerami-Naini B, et al. Differentiation of diabetic foot ulcer–derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB J 2019; 33(1): 1262-77.
[http://dx.doi.org/10.1096/fj.201801059] [PMID: 30088952]
[154]
Pastar I, Marjanovic J, Liang L, et al. Cellular reprogramming of diabetic foot ulcer fibroblasts triggers pro‐healing miRNA‐mediated epigenetic signature. Exp Dermatol 2021; 30(8): 1065-72.
[http://dx.doi.org/10.1111/exd.14405] [PMID: 34114688]
[155]
Zhang J, Zhao B, Wei W, et al. Prospective, randomized, and controlled study of a human umbilical cord mesenchymal stem cell injection for treating diabetic foot ulcers. J Vis Exp 2023; 193
[156]
León-Quinto T, Jones J, Skoudy A, Burcin M, Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 2004; 47(8): 1442-51.
[http://dx.doi.org/10.1007/s00125-004-1458-8] [PMID: 15309294]
[157]
Koh S, Piedrahita JA. Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts. Methods Mol Biol 2015; 1330: 69-78.
[http://dx.doi.org/10.1007/978-1-4939-2848-4_7] [PMID: 26621590]
[158]
Tolar J, Nauta AJ, Osborn MJ, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007; 25(2): 371-9.
[http://dx.doi.org/10.1634/stemcells.2005-0620] [PMID: 17038675]
[159]
Le Blanc K, Pittenger MF. Mesenchymal stem cells: Progress toward promise. Cytotherapy 2005; 7(1): 36-45.
[http://dx.doi.org/10.1016/S1465-3249(05)70787-8] [PMID: 16040382]
[160]
Atsma DE, Fibbe WE, Rabelink TJ. Opportunities and challenges for mesenchymal stem cell-mediated heart repair. Curr Opin Lipidol 2007; 18(6): 645-9.
[http://dx.doi.org/10.1097/MOL.0b013e3282f0dd1f] [PMID: 17993810]
[161]
Liu M, Han ZC. Mesenchymal stem cells: Biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 2008; 12(4): 1155-68.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00288.x] [PMID: 18298656]
[162]
Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: A potential therapeutic strategy for type 1 diabetes. Diabetes 2008; 57(7): 1759-67.
[http://dx.doi.org/10.2337/db08-0180] [PMID: 18586907]
[163]
Teng C, Guo Y, Zhang H, Zhang H, Ding M, Deng H. Identification and characterization of label-retaining cells in mouse pancreas. In: Differentiation; research in biological diversity. 2007; 75: pp. (8)702-12.
[164]
Tang DQ, Lu S, Sun YP, et al. Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Lab Invest 2006; 86(1): 83-93.
[http://dx.doi.org/10.1038/labinvest.3700368] [PMID: 16294197]
[165]
Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW. In vivo reprogramming of Sox9 + cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci USA 2012; 109(38): 15336-41.
[http://dx.doi.org/10.1073/pnas.1201701109] [PMID: 22949652]
[166]
Dadheech N, Srivastava A, Vakani M, Shrimali P, Bhonde R, Gupta S. Direct lineage tracing reveals Activin-a potential for improved pancreatic homing of bone marrow mesenchymal stem cells and efficient ß-cell regeneration in vivo. Stem Cell Res Ther 2020; 11(1): 327.
[http://dx.doi.org/10.1186/s13287-020-01843-z] [PMID: 32731883]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy