Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Mini-Review Article

Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders

Author(s): Suraj Mandal*, Prabhakar Vishvakarma and Km. Bhumika

Volume 16, Issue 3, 2024

Published on: 29 December, 2023

Page: [251 - 267] Pages: 17

DOI: 10.2174/0125899775266634231213044704

Price: $65

Abstract

According to the current information, using nano gels in the eyes have therapeutic benefits. Industry growth in the pharmaceutical and healthcare sectors has been filled by nanotechnology. Traditional ocular preparations have a short retention duration and restricted drug bioavailability because of the eye's architectural and physiological barriers, a big issue for physicians, patients, and chemists. In contrast, nano gels can encapsulate drugs within threedimensional cross-linked polymeric networks. Because of their distinctive structural designs and preparation methods, they can deliver loaded medications in a controlled and sustained manner, enhancing patient compliance and therapeutic efficacy. Due to their excellent drugloading capacity and biocompatibility, nano-gels outperform other nano-carriers. This study focuses on using nano gels to treat eye diseases and provides a brief overview of their creation and response to stimuli. Our understanding of topical drug administration will be advanced using nano gel developments to treat common ocular diseases such as glaucoma, cataracts, dry eye syndrome, bacterial keratitis, and linked medication-loaded contact lenses and natural active ingredients.

Graphical Abstract

[1]
Bourne R, Steinmetz JD, Flaxman S, et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9(2): e130-43.
[http://dx.doi.org/10.1016/S2214-109X(20)30425-3] [PMID: 33275950]
[2]
Awwad S, Mohamed Ahmed AHA, Sharma G, et al. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174(23): 4205-23.
[http://dx.doi.org/10.1111/bph.14024] [PMID: 28865239]
[3]
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 2020; 321: 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.057] [PMID: 32027938]
[4]
Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N -isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif Cells Nanomed Biotechnol 2018; 46(6): 1282-7.
[http://dx.doi.org/10.1080/21691401.2017.1368024] [PMID: 28826241]
[5]
Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery. Eur J Pharm Biopharm 2017; 110: 70-5.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.009] [PMID: 27789358]
[6]
Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: Overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(2): e1473.
[http://dx.doi.org/10.1002/wnan.1473] [PMID: 28425224]
[7]
kour J, Kumari N, Sapra B. Ocular prodrugs: Attributes and challenges. Asian J Pharma Sci 2021; 16(2): 175-91.
[http://dx.doi.org/10.1016/j.ajps.2020.08.002] [PMID: 33995612]
[8]
Müller L, Jensen BP, Bachmann LM, Wong D, Wells AP. New technique to reduce systemic side effects of timolol eye drops: The tissue press method—Cross‐over clinical trial. Clin Exp Ophthalmol 2020; 48(1): 24-30.
[http://dx.doi.org/10.1111/ceo.13642] [PMID: 31525271]
[9]
Akhter MH, Ahmad I, Alshahrani MY, et al. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022; 8(2): 82.
[http://dx.doi.org/10.3390/gels8020082] [PMID: 35200463]
[10]
Ahmed S, Amin MM, Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023; 24(2): 66.
[http://dx.doi.org/10.1208/s12249-023-02516-9] [PMID: 36788150]
[11]
Li Q, Li Z, Zeng W, et al. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur J Pharm Sci 2014; 62: 115-23.
[http://dx.doi.org/10.1016/j.ejps.2014.05.020] [PMID: 24905830]
[12]
Yang Y, Lockwood A. Topical ocular drug delivery systems: Innovations for an unmet need. Exp Eye Res 2022; 218109006.
[http://dx.doi.org/10.1016/j.exer.2022.109006] [PMID: 35248559]
[13]
Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354: 465-88.
[http://dx.doi.org/10.1016/j.jconrel.2023.01.018] [PMID: 36642250]
[14]
Mauri E, Giannitelli SM, Trombetta M, Rainer A. Synthesis of nanogels: Current trends and future outlook. Gels 2021; 7(2): 36.
[http://dx.doi.org/10.3390/gels7020036] [PMID: 33805279]
[15]
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240: 109-26.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[16]
Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 2020; 12(3): 290.
[http://dx.doi.org/10.3390/pharmaceutics12030290] [PMID: 32210184]
[17]
Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017; 24(1): 539-57.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[18]
Narayanan K, Bhaskar R, Han S. Recent advances in the biomedical applications of functionalized nanogels. Pharmaceutics 2022; 14(12): 2832.
[http://dx.doi.org/10.3390/pharmaceutics14122832] [PMID: 36559325]
[19]
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226: 535-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.076] [PMID: 36521697]
[20]
Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008; 33(4): 448-77. [CrossRef].
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[21]
Laha B, Das S, Maiti S, Sen KK. Novel propyl karaya gum nanogels for bosentan: In vitro and in vivo drug delivery performance. Colloids Surf B Biointerfaces 2019; 180: 263-72.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.064] [PMID: 31059984]
[22]
Liu Y, Han Y, Zhu T, et al. Targeting delivery and minimizing epidermal diffusion of tranexamic acid by hyaluronic acid-coated liposome nanogels for topical hyperpigmentation treatment. Drug Deliv 2021; 28(1): 2100-7.
[http://dx.doi.org/10.1080/10717544.2021.1983081] [PMID: 34596008]
[23]
Rosso AP, Martinelli M. Nanogels and dendritic molecules combined to form a smart nanomaterial. Eur Polym J 2022; 162110874. [CrossRef].
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110874]
[24]
Wen Y, Jia H, Mo Z, et al. Cross-linked thermosensitive nanohydrogels for ocular drug delivery with a prolonged residence time and enhanced bioavailability. Mater Sci Eng C 2021; 119111445.
[http://dx.doi.org/10.1016/j.msec.2020.111445] [PMID: 33321585]
[25]
Alshaikh RA, Waeber C, Ryan KB. Polymer based sustained drug delivery to the ocular posterior segment: barriers and future opportunities for the treatment of neovascular pathologies. Adv Drug Deliv Rev 2022; 187114342.
[http://dx.doi.org/10.1016/j.addr.2022.114342] [PMID: 35569559]
[26]
Alami-Milani M, Zakeri-Milani P, Valizadeh H, et al. Novel pentablock copolymers as thermosensitive self-assembling micelles for ocular drug delivery. Adv Pharm Bull 2017; 7(1): 11-20.
[http://dx.doi.org/10.15171/apb.2017.003] [PMID: 28507933]
[27]
DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg 2011; 37(3): 588-98.
[http://dx.doi.org/10.1016/j.jcrs.2010.12.037] [PMID: 21333881]
[28]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[29]
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 2018; 126: 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[30]
Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: Assessment of barrier contributions. J Pharm Sci 1983; 72(11): 1272-9.
[http://dx.doi.org/10.1002/jps.2600721108] [PMID: 6139472]
[31]
Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther 2013; 29(2): 106-23.
[http://dx.doi.org/10.1089/jop.2012.0200] [PMID: 23215539]
[32]
Nelson JD, Craig JP, Akpek EK, et al. TFOS DEWS II introduction. Ocul Surf 2017; 15(3): 269-75.
[http://dx.doi.org/10.1016/j.jtos.2017.05.005] [PMID: 28736334]
[33]
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[34]
Watsky MA, Jablonski MM, Edelhauser HF. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr Eye Res 1988; 7(5): 483-6.
[http://dx.doi.org/10.3109/02713688809031801] [PMID: 3409715]
[35]
Lawrence MS, Miller JW. Ocular tissue permeabilities. Int Ophthalmol Clin 2004; 44(3): 53-61.
[http://dx.doi.org/10.1097/00004397-200404430-00008] [PMID: 15211177]
[36]
Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm 2013; 39(11): 1599-617.
[http://dx.doi.org/10.3109/03639045.2012.736515] [PMID: 23153114]
[37]
Alamouti B, Funk J. Retinal thickness decreases with age: An OCT study. Br J Ophthalmol 2003; 87(7): 899-901.
[http://dx.doi.org/10.1136/bjo.87.7.899] [PMID: 12812895]
[38]
Wang L, Zhang H. Ocular barriers as a double-edged sword: Preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13(2): 547-67.
[http://dx.doi.org/10.1007/s13346-022-01231-5] [PMID: 36129668]
[39]
Liu Z, Huang S, Zheng Y, et al. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92101112.
[http://dx.doi.org/10.1016/j.preteyeres.2022.101112] [PMID: 36055924]
[40]
Cui W, Li J, Decher G. Self‐assembled smart nanocarriers for targeted drug delivery. Adv Mater 2016; 28(6): 1302-11.
[http://dx.doi.org/10.1002/adma.201502479] [PMID: 26436442]
[41]
Zhang J, Jiao J, Niu M, et al. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective. Int J Nanomedicine 2021; 16: 6497-530.
[http://dx.doi.org/10.2147/IJN.S329831] [PMID: 34588777]
[42]
Rezaei A, Fathi M, Jafari SM. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll 2019; 88: 146-62. [CrossRef].
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.003]
[43]
Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020; 10(17): 7921-4.
[http://dx.doi.org/10.7150/thno.49577] [PMID: 32685029]
[44]
Gowd V, Ahmad A, Tarique M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol 2022; 86(Pt 2): 624-44.
[http://dx.doi.org/10.1016/j.semcancer.2022.03.026] [PMID: 35378274]
[45]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[46]
Vinogradov S, Batrakova E, Kabanov A. Poly(ethylene glycol)–polyethyleneimine NanoGel™ particles: Novel drug delivery systems for antisense oligonucleotides. Colloids Surf B Biointerfaces 1999; 16(1-4): 291-304. [CrossRef].
[http://dx.doi.org/10.1016/S0927-7765(99)00080-6]
[47]
Suhail M, Rosenholm JM, Minhas MU, et al. Nanogels as drug-delivery systems: A comprehensive overview. Ther Deliv 2019; 10(11): 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[48]
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev 2015; 115(16): 8564-608.
[http://dx.doi.org/10.1021/cr500131f] [PMID: 26259712]
[49]
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7(1): 231.
[http://dx.doi.org/10.1038/s41392-022-01082-z] [PMID: 35817770]
[50]
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1638-49.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[51]
Destruel PL, Zeng N, Maury M, Mignet N, Boudy V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond. Drug Discov Today 2017; 22(4): 638-51.
[http://dx.doi.org/10.1016/j.drudis.2016.12.008] [PMID: 28017837]
[52]
Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev 2018; 126: 113-26.
[http://dx.doi.org/10.1016/j.addr.2017.12.017] [PMID: 29288733]
[53]
Makhathini SS, Mdanda S, Kondiah PJ, et al. Biomedicine innovations and its nanohydrogel classifications. Pharmaceutics 2022; 14(12): 2839.
[http://dx.doi.org/10.3390/pharmaceutics14122839] [PMID: 36559335]
[54]
Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: The application of nanogel in drug delivery. Mater Sci Eng C 2016; 60: 560-8.
[http://dx.doi.org/10.1016/j.msec.2015.11.041] [PMID: 26706564]
[55]
Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications. Chem Rec 2010; 10(6): 366-76.
[http://dx.doi.org/10.1002/tcr.201000008] [PMID: 20836092]
[56]
Hajebi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92: 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018] [PMID: 31096042]
[57]
Li C, Obireddy SR, Lai WF. Preparation and use of nanogels as carriers of drugs. Drug Deliv 2021; 28(1): 1594-602.
[http://dx.doi.org/10.1080/10717544.2021.1955042] [PMID: 34308729]
[58]
Bonetti L, De Nardo L, Farè S. Thermo-responsive methylcellulose hydrogels: From design to applications as smart biomaterials. Tissue Eng Part B Rev 2021; 27(5): 486-513.
[http://dx.doi.org/10.1089/ten.teb.2020.0202] [PMID: 33115329]
[59]
Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 2013; 9(7): 7081-92.
[http://dx.doi.org/10.1016/j.actbio.2013.03.005] [PMID: 23507088]
[60]
Yao Y, Xia M, Wang H, et al. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci 2016; 91: 144-53.
[http://dx.doi.org/10.1016/j.ejps.2016.06.014] [PMID: 27328876]
[61]
Silva D, Pinto LFV, Bozukova D, Santos LF, Serro AP, Saramago B. Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B Biointerfaces 2016; 147: 81-9.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.047] [PMID: 27494772]
[62]
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in ocular drug delivery. Pharmaceutics 2019; 12(1): 22.
[http://dx.doi.org/10.3390/pharmaceutics12010022] [PMID: 31878298]
[63]
Song HQ, Fan Y, Hu Y, Cheng G, Xu FJ. Polysaccharide–peptide conjugates: A versatile material platform for biomedical applications. Adv Funct Mater 2021; 31(6): 2005978. [CrossRef].
[http://dx.doi.org/10.1002/adfm.202005978]
[64]
Luckanagul JA, Pitakchatwong C, Ratnatilaka Na Bhuket P, et al. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym 2018; 181: 1119-27.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.027] [PMID: 29253940]
[65]
Fathi M, Entezami AA, Arami S, Rashidi MR. Preparation of N -Isopropylacrylamide/Itaconic acid magnetic nanohydrogels by modified starch as a crosslinker for anticancer drug carriers. Int J Polym Mater 2015; 64(10): 541-9. [CrossRef].
[http://dx.doi.org/10.1080/00914037.2014.996703]
[66]
Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. Int J Pharm 2020; 584119435.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119435] [PMID: 32439585]
[67]
Shen Y, An C, Jiang J, et al. Temperature-dependent nanogel for pesticide smart delivery with improved foliar dispersion and bioactivity for efficient control of multiple pests. ACS Nano 2022; 16(12): 20622-32.
[http://dx.doi.org/10.1021/acsnano.2c07517] [PMID: 36469037]
[68]
Soriano Pérez ML, Funes JA, Flores Bracamonte C, et al. Development and biological evaluation of pNIPAM-based nanogels as vaccine carriers. Int J Pharm 2023; 630122435.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122435] [PMID: 36442723]
[69]
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157: 121-53.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.009] [PMID: 33091554]
[70]
Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019; 138: 167-92.
[http://dx.doi.org/10.1016/j.addr.2018.10.005] [PMID: 30315832]
[71]
Cook MT, Haddow P, Kirton SB, McAuley WJ. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv Funct Mater 2021; 31(8): 2008123. [CrossRef].
[http://dx.doi.org/10.1002/adfm.202008123]
[72]
Chaudhari P, Shetty D, Lewis SA. Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022; 71103327. [CrossRef].
[http://dx.doi.org/10.1016/j.jddst.2022.103327]
[73]
Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release 2009; 136(2): 88-98.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.013] [PMID: 19250955]
[74]
Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery. Soft Matter 2011; 7(13): 5908-16. [CrossRef].
[http://dx.doi.org/10.1039/c0sm01307b]
[75]
Hartmann V, Keipert S. Physico-chemical, in vitro and in vivo characterisation of polymers for ocular use. Pharmazie 2000; 55(6): 440-3. [PubMed]
[PMID: 10907252]
[76]
Kim YK, Kim EJ, Lim JH, et al. Dual stimuli-triggered nanogels in response to temperature and ph changes for controlled drug release. Nanoscale Res Lett 2019; 14(1): 77.
[http://dx.doi.org/10.1186/s11671-019-2909-y] [PMID: 30830486]
[77]
Ilka R, Mohseni M, Kianirad M, Naseripour M, Ashtari K, Mehravi B. Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int J Biol Macromol 2018; 109: 955-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.090] [PMID: 29154878]
[78]
Cuggino JC, Tártara LI, Gugliotta LM, Palma SD, Alvarez Igarzabal CI. Mucoadhesive and responsive nanogels as carriers for sustainable delivery of timolol for glaucoma therapy. Mater Sci Eng C 2021; 118111383.
[http://dx.doi.org/10.1016/j.msec.2020.111383] [PMID: 33254990]
[79]
Abd El-Rehim HA, Swilem AE, Klingner A, Hegazy ESA, Hamed AA. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by γ radiation. Biomacromolecules 2013; 14(3): 688-98.
[http://dx.doi.org/10.1021/bm301742m] [PMID: 23414209]
[80]
Abdel-Rashid RS, Helal DA, Omar MM, El Sisi AM. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomedicine 2019; 14: 2973-83.
[http://dx.doi.org/10.2147/IJN.S201891] [PMID: 31118616]
[81]
Nibourg LM, Gelens E, de Jong MR, Kuijer R, van Kooten TG, Koopmans SA. Nanofiber-based hydrogels with extracellular matrix-based synthetic peptides for the prevention of capsular opacification. Exp Eye Res 2016; 143: 60-7.
[http://dx.doi.org/10.1016/j.exer.2015.10.001] [PMID: 26474493]
[82]
Gautam D, Pedler MG, Nair DP, Petrash JM. Nanogel-facilitated in-situ delivery of a cataract inhibitor. Biomolecules 2021; 11(8): 1150.
[http://dx.doi.org/10.3390/biom11081150] [PMID: 34439816]
[83]
Swilem AE, Elshazly AHM, Hamed AA, Hegazy ESA, Abd El-Rehim HA. Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater Sci Eng C 2020; 110110726.
[http://dx.doi.org/10.1016/j.msec.2020.110726] [PMID: 32204037]
[84]
Lin PH, Jian HJ, Li YJ, et al. Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomater 2022; 141: 140-50.
[http://dx.doi.org/10.1016/j.actbio.2022.01.044] [PMID: 35081433]
[85]
Davaran S, Lotfipour F, Sedghipour N, Sedghipour MR, Alimohammadi S, Salehi R. Preparation and in vivo evaluation of in situ gel system as dual thermo-/pH-responsive nanocarriers for sustained ocular drug delivery. J Microencapsul 2015; 32(5): 511-9.
[PMID: 26190215]
[86]
Obuobi S, Mayandi V, Nor NAM, Lee BJ, Lakshminarayanan R, Ee PLR. Nucleic acid peptide nanogels for the treatment of bacterial keratitis. Nanoscale 2020; 12(33): 17411-25.
[http://dx.doi.org/10.1039/D0NR03095C] [PMID: 32794541]
[87]
Lin HY, Wang SW, Mao JY, et al. Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chem Eng J 2021; 411128469. [CrossRef].
[http://dx.doi.org/10.1016/j.cej.2021.128469]
[88]
Kim HJ, Zhang K, Moore L, Ho D. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 2014; 8(3): 2998-3005.
[http://dx.doi.org/10.1021/nn5002968] [PMID: 24506583]
[89]
Lee SH, Kim HJ, Kim DH, et al. Thermo‐sensitive nanogel‐laden bicontinuous microemulsion drug‐eluting contact lenses. J Biomed Mater Res B Appl Biomater 2019; 107(4): 1159-69.
[http://dx.doi.org/10.1002/jbm.b.34209] [PMID: 30536908]
[90]
Wang Z, Li X, Zhang X, et al. Novel contact lenses embedded with drug-loaded zwitterionic nanogels for extended ophthalmic drug delivery. Nanomaterials 2021; 11(9): 2328.
[http://dx.doi.org/10.3390/nano11092328] [PMID: 34578644]
[91]
Jamard M, Hoare T, Sheardown H. Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Deliv Transl Res 2016; 6(6): 648-59.
[http://dx.doi.org/10.1007/s13346-016-0337-4] [PMID: 27807769]
[92]
Zoratto N, Forcina L, Matassa R, et al. Hyaluronan-cholesterol nanogels for the enhancement of the ocular delivery of therapeutics. Pharmaceutics 2021; 13(11): 1781.
[http://dx.doi.org/10.3390/pharmaceutics13111781] [PMID: 34834195]
[93]
Liu R, Sun L, Fang S, et al. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharm Dev Technol 2016; 21(5): 576-82.
[http://dx.doi.org/10.3109/10837450.2015.1026607] [PMID: 26024239]
[94]
Buosi FS, Alaimo A, Di Santo MC, et al. Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. Int J Biol Macromol 2020; 165(Pt A): 804-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.234] [PMID: 33011262]
[95]
Grimaudo MA, Amato G, Carbone C, et al. Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm 2020; 576118986.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118986] [PMID: 31870956]
[96]
Gooch N, Molokhia SA, Condie R, et al. Ocular drug delivery for glaucoma management. Pharmaceutics 2012; 4(1): 197-211.
[http://dx.doi.org/10.3390/pharmaceutics4010197] [PMID: 24300188]
[97]
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014; 121(11): 2081-90.
[http://dx.doi.org/10.1016/j.ophtha.2014.05.013] [PMID: 24974815]
[98]
Fea AM, Novarese C, Caselgrandi P, Boscia G. Glaucoma treatment and hydrogel: Current insights and state of the art. Gels 2022; 8(8): 510.
[http://dx.doi.org/10.3390/gels8080510] [PMID: 36005112]
[99]
Quigley HA. 21st century glaucoma care. Eye 2019; 33(2): 254-60.
[http://dx.doi.org/10.1038/s41433-018-0227-8] [PMID: 30305707]
[100]
Yellepeddi VK, Palakurthi S. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther 2016; 32(2): 67-82.
[http://dx.doi.org/10.1089/jop.2015.0047] [PMID: 26666398]
[101]
Dickmann L. Ocular therapeutics: Drug delivery and pharmacology. Mol Pharm 2016; 13(9): 2875-6.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00703] [PMID: 27596048]
[102]
Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R, Bravo-Osuna I. Gelatin nanoparticles-HPMC hybrid system for effective ocular topical administration of antihypertensive agents. Pharmaceutics 2020; 12(4): 306.
[http://dx.doi.org/10.3390/pharmaceutics12040306] [PMID: 32231033]
[103]
bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res 2023; 13(4): 1035-47.
[http://dx.doi.org/10.1007/s13346-022-01266-8] [PMID: 36477776]
[104]
Huang J, Peng T, Li Y, et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 2017; 18(8): 2919-26.
[http://dx.doi.org/10.1208/s12249-017-0763-8] [PMID: 28429294]
[105]
Abd El Wahab LM, Essa EA, El Maghraby GM, Arafa MF. The development and evaluation of phase transition microemulsion for ocular delivery of acetazolamide for glaucoma treatment. AAPS PharmSciTech 2022; 24(1): 1.
[http://dx.doi.org/10.1208/s12249-022-02459-7] [PMID: 36417044]
[106]
Lee CM, Afshari NA. The global state of cataract blindness. Curr Opin Ophthalmol 2017; 28(1): 98-103.
[http://dx.doi.org/10.1097/ICU.0000000000000340] [PMID: 27820750]
[107]
Konopińska J, Młynarczyk M, Dmuchowska DA, Obuchowska I. Posterior capsule opacification: A review of experimental studies. J Clin Med 2021; 10(13): 2847. [CrossRef].
[http://dx.doi.org/10.3390/jcm10132847]
[108]
Thrimawithana TR, Rupenthal ID, Räsch SS, Lim JC, Morton JD, Bunt CR. Drug delivery to the lens for the management of cataracts. Adv Drug Deliv Rev 2018; 126: 185-94.
[http://dx.doi.org/10.1016/j.addr.2018.03.009] [PMID: 29604375]
[109]
Zhang Y, Zhang C, Chen S, Hu J, Shen L, Yu Y. Research progress concerning a novel intraocular lens for the prevention of posterior capsular opacification. Pharmaceutics 2022; 14(7): 1343.
[http://dx.doi.org/10.3390/pharmaceutics14071343] [PMID: 35890240]
[110]
Topete A, Saramago B, Serro AP. Intraocular lenses as drug delivery devices. Int J Pharm 2021; 602120613.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120613] [PMID: 33865952]
[111]
Lee S. Selective pharmacologic therapies for dry eye disease treatment: Efficacy, tolerability, and safetydata reviewfrompreclinical studies and pivotal trials. Ophthalmol Ther 2022; 11: 1333-69.
[http://dx.doi.org/10.1007/s40123-022-00516-9] [PMID: 35608780]
[112]
Pucker AD, Ng SM, Nichols JJ. Over the counter (OTC) artificial tear drops for dry eye syndrome. Cochrane Libr 2016; 2016(2): CD009729.
[http://dx.doi.org/10.1002/14651858.CD009729.pub2] [PMID: 26905373]
[113]
Michaelov E, McKenna C, Ibrahim P, Nayeni M, Dang A, Mather R. Sjögren’s syndrome associated dry eye: Impact on daily living and adherence to therapy. J Clin Med 2022; 11(10): 2809.
[http://dx.doi.org/10.3390/jcm11102809] [PMID: 35628934]
[114]
Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol 2018; 96(4): e412-20.
[http://dx.doi.org/10.1111/aos.13526] [PMID: 28834388]
[115]
Dogru M, Kojima T, Simsek C, Tsubota K. Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Invest Ophthalmol Vis Sci 2018; 59(14): DES163-8.
[http://dx.doi.org/10.1167/iovs.17-23402] [PMID: 30481822]
[116]
Li YJ, Luo LJ, Harroun SG, et al. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019; 11(12): 5580-94.
[http://dx.doi.org/10.1039/C9NR00376B] [PMID: 30860532]
[117]
Christensen IL, Sun YP, Juzenas P. Carbon dots as antioxidants and prooxidants. J Biomed Nanotechnol 2011; 7(5): 667-76.
[http://dx.doi.org/10.1166/jbn.2011.1334] [PMID: 22195484]
[118]
Tuft S, Somerville TF, Li JPO, et al. Bacterial keratitis: Identifying the areas of clinical uncertainty. Prog Retin Eye Res 2022; 89101031.
[http://dx.doi.org/10.1016/j.preteyeres.2021.101031] [PMID: 34915112]
[119]
Asbell P, Stenson S. Ulcerative keratitis. Arch Ophthalmol 1982; 100(1): 77-80.
[http://dx.doi.org/10.1001/archopht.1982.01030030079005] [PMID: 6173033]
[120]
Wu Y, Liu Y, Li X, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharma Sci 2019; 14(1): 1-15.
[http://dx.doi.org/10.1016/j.ajps.2018.04.008] [PMID: 32104434]
[121]
Khan N, Aqil M, Imam SS, Ali A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex vivo characterization. Pharm Dev Technol 2015; 20(6): 662-9.
[http://dx.doi.org/10.3109/10837450.2014.910807] [PMID: 24754411]
[122]
Lichtinger A, Yeung SN, Kim P, et al. Shifting trends in bacterial keratitis in Toronto: an 11-year review. Ophthalmology 2012; 119(9): 1785-90.
[http://dx.doi.org/10.1016/j.ophtha.2012.03.031] [PMID: 22627118]
[123]
Ni N, Nam EM, Hammersmith KM, et al. Seasonal, geographic, and antimicrobial resistance patterns in microbial keratitis: 4-year experience in eastern Pennsylvania. Cornea 2015; 34(3): 296-302.
[http://dx.doi.org/10.1097/ICO.0000000000000352] [PMID: 25603231]
[124]
Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26: 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[125]
Khara JS, Obuobi S, Wang Y, et al. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomater 2017; 57: 103-14.
[http://dx.doi.org/10.1016/j.actbio.2017.04.032] [PMID: 28457962]
[126]
Obuobi S, Tay HKL, Tram NDT, et al. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J Control Release 2019; 313: 120-30.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.013] [PMID: 31629042]
[127]
Wang S, Yao J, Zhou B, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot 2018; 81(1): 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[128]
Creech JL, Chauhan A, Radke CJ. Dispersive mixing in the posterior tear film under a soft contact lens. ind. eng. Chem Res 2001; 40: 3015-26. [CrossRef].
[129]
Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release 2013; 165(1): 82-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.010] [PMID: 23123188]
[130]
Fan X, Torres-Luna C, Azadi M, et al. Evaluation of commercial soft contact lenses for ocular drug delivery: A review. Acta Biomater 2020; 115: 60-74.
[http://dx.doi.org/10.1016/j.actbio.2020.08.025] [PMID: 32853799]
[131]
Wong A, Fallon M, Celiksoy V, et al. A composite system based upon hydroxypropyl cyclodextrins and soft hydrogel contact lenses for the delivery of therapeutic doses of econazole to the cornea, in vitro. Pharmaceutics 2022; 14(8): 1631.
[http://dx.doi.org/10.3390/pharmaceutics14081631] [PMID: 36015257]
[132]
Li CC, Abrahamson M, Kapoor Y, Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J Colloid Interface Sci 2007; 315(1): 297-306.
[http://dx.doi.org/10.1016/j.jcis.2007.06.054] [PMID: 17673246]
[133]
Lu C, Yoganathan RB, Kociolek M, Allen C. Hydrogel containing silica shell cross-linked micelles for ocular drug delivery. J Pharm Sci 2013; 102(2): 627-37.
[http://dx.doi.org/10.1002/jps.23390] [PMID: 23203974]
[134]
Gulsen D, Li CC, Chauhan A. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 2005; 30(12): 1071-80.
[http://dx.doi.org/10.1080/02713680500346633] [PMID: 16354620]
[135]
Dixon P, Fentzke RC, Bhattacharya A, Konar A, Hazra S, Chauhan A. In vitro drug release and in vivo safety of vitamin E and cysteamine loaded contact lenses. Int J Pharm 2018; 544(2): 380-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.059] [PMID: 29217475]
[136]
Chu Z, Xue C, Shao K, et al. Photonic crystal-embedded molecularly imprinted contact lenses for controlled drug release. ACS Appl Bio Mater 2022; 5(1): 243-51.
[http://dx.doi.org/10.1021/acsabm.1c01045] [PMID: 35014810]
[137]
Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv 2016; 23(8): 3017-26.
[http://dx.doi.org/10.3109/10717544.2016.1138342] [PMID: 26821766]
[138]
Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv 2020; 17(8): 1133-49.
[http://dx.doi.org/10.1080/17425247.2020.1787983] [PMID: 32602822]
[139]
Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials 2012; 33(7): 2289-300.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.076] [PMID: 22182750]
[140]
Lee SH, Shin KS, Kim JW, Kang JY, Kim JK. Stimulus-responsive contact lens for IOP measurement or temperature-triggered drug release. Transl Vis Sci Technol 2020; 9(4): 1.
[http://dx.doi.org/10.1167/tvst.9.4.1] [PMID: 32818089]
[141]
Men Y, Peng S, Yang P, et al. Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery. ACS Appl Mater Interfaces 2018; 10(28): 23509-21.
[http://dx.doi.org/10.1021/acsami.8b03943] [PMID: 29947223]
[142]
Lei M, Zhang W, Yi C, Yan L, Tian Y. Zwitterionic nanogels with temperature sensitivity and redox-degradability for controlled drug release. Colloids Surf B Biointerfaces 2021; 206111959.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111959] [PMID: 34218014]
[143]
Bayer IS. Hyaluronic acid and controlled release: A review. Molecules 2020; 25(11): 2649.
[http://dx.doi.org/10.3390/molecules25112649] [PMID: 32517278]
[144]
Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G. Hyaluronic acid‐based micelles as ocular platform to modulate the loading, release, and corneal permeation of corticosteroids. Macromol Biosci 2017; 17(12): 1700261.
[http://dx.doi.org/10.1002/mabi.201700261] [PMID: 29144603]
[145]
Kao YW, Hsu SK, Chen JYF, et al. Curcumin metabolite tetrahydrocurcumin in the treatment of eye diseases. Int J Mol Sci 2020; 22(1): 212.
[http://dx.doi.org/10.3390/ijms22010212] [PMID: 33379248]
[146]
Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New highlights of resveratrol: A review of properties against ocular diseases. Int J Mol Sci 2021; 22(3): 1295.
[http://dx.doi.org/10.3390/ijms22031295] [PMID: 33525499]
[147]
Romeo A, Musumeci T, Carbone C, et al. Ferulic acid-loaded polymeric nanoparticles for potential ocular delivery. Pharmaceutics 2021; 13(5): 687.
[http://dx.doi.org/10.3390/pharmaceutics13050687] [PMID: 34064572]
[148]
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem 2022; 10850757.
[http://dx.doi.org/10.3389/fchem.2022.850757] [PMID: 35494641]
[149]
Grimaudo MA, Pescina S, Padula C, et al. Topical application of polymeric nanomicelles in ophthalmology: A review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv 2019; 16(4): 397-413.
[http://dx.doi.org/10.1080/17425247.2019.1597848] [PMID: 30889977]
[150]
Pal N, Mandal S, Shiva K, Kumar B. Pharmacognostical, phytochemical and pharmacological evaluation of mallotus philippensis. J Drug Deliv Ther 2022; 12(5): 175-81.
[http://dx.doi.org/10.22270/jddt.v12i5.5675]
[151]
Singh A, Mandal S. Ajwain (Trachyspermum ammi Linn): A review on tremendous herbal plant with various pharmacological activity. International Journal of Recent Advances in Multidisciplinary Topics 2021; 2(6): 36-8.
[152]
Mandal S, Jaiswal V, Sagar MK, Kumar S. Formulation and evaluation of carica papaya nanoemulsion for treatment of dengue and thrombocytopenia. Plant Arch 2021; 21(1): 1345-54.
[http://dx.doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.179]
[153]
Mandal S, Shiva K, Kumar KP, et al. Ocular drug delivery system (ODDS): Exploration the challenges and approaches to improve ODDS. J Pharma Bio Sci 2021; 9(2): 88-94.
[http://dx.doi.org/10.18231/j.jpbs.2021.012]
[154]
Ali SA, Pathak D, Mandal S. A review of current knowledge on airborne transmission of covid-19 and their relationship with environment. Inter J Pharma Professional’s Res 2023; 14(1): 1-5. [IJPPR].
[155]
Shiva K, Mandal S, Kumar S. Formulation and evaluation of topical antifungal gel of fluconazole using aloe vera gel. Int J Sci Res Develop 2021; 1: 187-93.
[156]
Vishvakarma P, Mandal S, Verma A. A review on current aspects of nutraceuticals and dietary supplements. Inter J Pharma Prof Res 2023; 14(1): 78-91. [IJPPR].
[157]
Ali S, Farooqui NA, Ahmad S, Salman M, Mandal S. Catharanthus roseus (sadabahar): A brief study on medicinal plant having different pharmacological activities. Plant Arch 2021; 21(2): 556-9.
[158]
Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. Inter J Pharma Res 2020; 12(3)
[159]
Mandal S, Vishvakarma P, Verma M, Alam MS, Agrawal A, Mishra A. Solanum nigrum linn: An analysis of the medicinal properties of the plant. J Pharm Negat Results 2023; 1595-600.
[160]
Vishvakarma P, Mandal S, Pandey J, Bhatt AK, Banerjee VB, Gupta JK. An analysis of the most recent trends in flavoring herbal medicines in today’s market. J Pharm Negat Results 2022; 9189-98.
[161]
Mandal S, Pathak D, Rajput K, Khan S, Shiva K. Thrombophob-induced acute urticaria: A case report and discussion of the case. Inter J Pharma Prof Res 2022; 13(4): 1-4. [IJPPR].
[162]
Mandal S, Shiva K, Yadav R, Sen J, Kori R. Leiomyosarcoma: A case report on the preoperative diagnostic criteria. Inter J Pharma Prof Res 2022; 13(4): 1-4. [IJPPR].
[163]
Mandal S, Vishvakarma P, Mandal S. Future aspects and applications of nanoemulgel formulation for topical lipophilic drug delivery. Eur J Mol Clin Med 2023; 10(01)
[164]
Chawla A, Mandal S, Vishvakarma P, et al. Ultra-Performance Liquid Chromatography. 2017.
[165]
Mandal S, Raju D, Namdeo P, et al. Development, characterization, and evaluation of rosa alba l extract-loaded phytosomes. 2023; 12(1)
[166]
Mandal S, Goel S, Saxena M, et al. Screening of catharanthus roseus stem extract for anti-ulcer potential in wistar rat 2021.
[http://dx.doi.org/10.53730/ijhs.v6nS9.12889]
[167]
Shiva K, Kaushik A, Irshad M, Sharma G, Mandal S. Evaluation and preparation: herbal gel containing thuja occidentalis and curcuma longa extracts https://www.eurchembull.com/uploads/paper/814490bced92cea9bf0319c5cf6803e1.pdf
[168]
Vishvakarma P, Mohapatra L, Kumar NN, Mandal S, Mandal S. An innovative approach on microemulsion: A review. European Chemical Bulletin 2023; 12(4): 11710-33.
[169]
Vishvakarma P. Design and development of montelukast sodium fast dissolving films for better therapeutic efficacy. J Chil Chem Soc 2018; 63(2): 3988-93.
[http://dx.doi.org/10.4067/s0717-97072018000203988]
[170]
Prabhakar V, Shivendra A, Ritika S, Sharma S. Transdermal drug delivery system. Inter Res J Pharma 2012; 3(5): 50-3.
[171]
Vishvakrama P, Sharma S. Liposomes: An overview. J Drug Deliv Ther 2014; 47-55.
[172]
Prabhakar V, Agarwal S, Chauhan R, Sharma S. Fast dissolving tablets: An overview. Int J Pharm Sci Rev Res 2012; 16(1): 17.
[173]
Wu Y, Tao Q, Xie J, et al. Advances in nanogels for topical drug delivery in ocular diseases. Gels 2023; 9(4): 292.
[http://dx.doi.org/10.3390/gels9040292] [PMID: 37102904]
[174]
Mandal S, Vishvakarma P. Nanoemulgel: A smarter topical lipidic emulsion-based nanocarrier. Indian J Pharma Edu Res 2023; 57(3s): s481-98.
[http://dx.doi.org/10.5530/ijper.57.3s.56]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy