Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Unveiling Wide Spectrum Therapeutic Implications and Signaling Mechanisms of Valsartan in Diverse Disorders: A Comprehensive Review

Author(s): Kuldeep Kumar, Pooja Rawat, Simrat Kaur, Nirmal Singh*, Harlokesh Narayan Yadav, Dhandeep Singh, Amteshwar Singh Jaggi and Dimple Sethi

Volume 16, Issue 3, 2024

Published on: 22 December, 2023

Page: [268 - 288] Pages: 21

DOI: 10.2174/2589977515666230717120828

Price: $65

Abstract

Valsartan is an orally active non-peptide angiotensin receptor antagonist, an effective and well-tolerated anti-hypertensive drug. Besides its antihypertensive action, it has clinical implications in many other disorders, like heart failure (HF), arrhythmia, chronic kidney disease (CKD), diabetic complications (DM), atherosclerosis, etc. Besides angiotensin receptor blocking activity, valsartan reduces circulating levels of biochemical markers, such as hs-CRP, which is responsible for its anti-inflammatory and anti-oxidant activity. Moreover, valsartan also acts by inhibiting or inducing various signalling pathways, such as inducing autophagy via the AKT/mTOR/S6K pathway or inhibiting the TLR/NF-kB pathway. The current review exhaustively discusses the therapeutic implications of valsartan with specific emphasis on the mechanism of action in various disorders. The article provides a detailed spectrum of the therapeutic profile of valsartan and will likely be very useful to researchers working in the relevant research areas.

Graphical Abstract

[1]
Ferguson AV, Washburn DLS, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood) 2001; 226(2): 85-96.
[http://dx.doi.org/10.1177/153537020122600205] [PMID: 11446443]
[2]
Aggarwal S, Randhawa PK, Singh N, Jaggi AS. Preconditioning at a distance: Involvement of endothelial vasoactive substances in cardioprotection against ischemia-reperfusion injury. Life Sci 2016; 151: 250-8.
[http://dx.doi.org/10.1016/j.lfs.2016.03.021] [PMID: 26979771]
[3]
Cassis P, Conti S, Remuzzi G, Benigni A. Angiotensin receptors as determinants of life span. Pflugers Arch 2010; 459(2): 325-32.
[http://dx.doi.org/10.1007/s00424-009-0725-4] [PMID: 19763608]
[4]
Volpe M, Musumeci B, De Paolis P, Savoia C, Morganti A. Angiotensin II AT2 receptor subtype. J Hypertens 2003; 21(8): 1429-43.
[http://dx.doi.org/10.1097/00004872-200308000-00001] [PMID: 12872031]
[5]
Savoia C, D’Agostino M, Lauri F, Volpe M. Angiotensin type 2 receptor in hypertensive cardiovascular disease. Curr Opin Nephrol Hypertens 2011; 20(2): 125-32.
[http://dx.doi.org/10.1097/MNH.0b013e3283437fcd] [PMID: 21245762]
[6]
Schiffrin EL, Lipman ML, Mann JFE. Chronic kidney disease: Effects on the cardiovascular system. Circulation 2007; 116(1): 85-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.678342] [PMID: 17606856]
[7]
Cuthbert JJ, Pellicori P, Clark AL. Cardiovascular Outcomes with Sacubitril-Valsartan in Heart Failure: Emerging Clinical Data. Ther Clin Risk Manag 2020; 16: 715-26.
[http://dx.doi.org/10.2147/TCRM.S234772] [PMID: 32848403]
[8]
Iravanian S, Dudley SC Jr. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm 2008; 5(6) (Suppl.): S12-7.
[http://dx.doi.org/10.1016/j.hrthm.2008.02.025] [PMID: 18456194]
[9]
Azhar M, Schultz JEJ, Grupp I, et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 2003; 14(5): 391-407.
[http://dx.doi.org/10.1016/S1359-6101(03)00044-3] [PMID: 12948523]
[10]
Challa VR, Ravindra Babu P, Challa SR, Johnson B, Maheswari C. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev Ind Pharm 2013; 39(6): 865-72.
[http://dx.doi.org/10.3109/03639045.2012.693502] [PMID: 22670860]
[11]
Patil SR, Patil AP, Chaudhari PD, Sonar KV. Development and Validation of UV Spectroscopic Method for Estimation of Valsartan In Tablet Dosage Form. Res J Pharmacol Technol 2023; 15(11): 5232-8.
[http://dx.doi.org/10.52711/0974-360X.2022.00881]
[12]
Nekkanti V, Wang Z, Betageri GV. Pharmacokinetic Evaluation of improved oral bioavailability of valsartan: Proliposomes versus self-nanoemulsifying drug delivery system. AAPS PharmSciTech 2016; 17(4): 851-62.
[http://dx.doi.org/10.1208/s12249-015-0388-8] [PMID: 26381913]
[13]
Miura SI, Suematsu Y, Matsuo Y, et al. The angiotensin II type 1 receptor-neprilysin inhibitor LCZ696 blocked aldosterone synthesis in a human adrenocortical cell line. Hypertens Res 2016; 39(11): 758-63.
[http://dx.doi.org/10.1038/hr.2016.72] [PMID: 27334058]
[14]
Zhao Y, Shang F, Shi W, et al. Angiotensin II Receptor Type 1 Antagonists Modulate Vascular Smooth Muscle Cell Proliferation and Migration via AMPK/mTOR. Cardiology 2019; 143(1-2): 1-10.
[http://dx.doi.org/10.1159/000500038] [PMID: 31307032]
[15]
Kalinowski L, Matys T, Chabielska E, Buczko W, Malinski T. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. Hypertension 2002; 40(4): 521-7.
[http://dx.doi.org/10.1161/01.HYP.0000034745.98129.EC] [PMID: 12364357]
[16]
Iqbal M, Khuroo A, Batolar LS, Tandon M, Monif T, Sharma PL. Pharmacokinetics and bioequivalence study of three oral formulations of valsartan 160 mg: A single-dose, randomized, open-label, three-period crossover comparison in healthy Indian male volunteers. Clin Ther 2010; 32(3): 588-96.
[http://dx.doi.org/10.1016/j.clinthera.2010.03.004] [PMID: 20399995]
[17]
Schmidt EK, Antonin KH, Flesch G, Racine-Poon A. An interaction study with cimetidine and the new angiotensin II antagonist valsartan. Eur J Clin Pharmacol 1998; 53(6): 451-8.
[http://dx.doi.org/10.1007/s002280050406] [PMID: 9551704]
[18]
Wellington K, Faulds DM. Valsartan/Hydrochlorothiazide. Drugs 2002; 62(13): 1983-2005.
[http://dx.doi.org/10.2165/00003495-200262130-00015] [PMID: 12215069]
[19]
Markham A, Goa KL. Valsartan. Drugs 1997; 54(2): 299-311.
[http://dx.doi.org/10.2165/00003495-199754020-00009] [PMID: 9257084]
[20]
Flesch G, Müller P, Lloyd P. Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol 1997; 52(2): 115-20.
[http://dx.doi.org/10.1007/s002280050259] [PMID: 9174680]
[21]
Siddiqui N, Husain A, Chaudhry L, Alam MS, Mitra M, Bhasin PS. Pharmacological and pharmaceutical profile of valsartan: A review. J Appl Pharmaceut Sci 2011; 30: 12-9.
[22]
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol 2020; 16(4): 223-37.
[http://dx.doi.org/10.1038/s41581-019-0244-2] [PMID: 32024986]
[23]
Díez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension 2010; 55(1): 1-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.141887] [PMID: 19933923]
[24]
Nwabuo CC, Vasan RS. Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr Hypertens Rep 2020; 22(2): 11.
[http://dx.doi.org/10.1007/s11906-020-1017-9] [PMID: 32016791]
[25]
Deng X, Xia K, Chen P, et al. Reversion of left ventricle remodeling in spontaneously hypertensive rats by valsartan is associated with the inhibition of caspase-3, -8 and -9 activities. Biomed Rep 2015; 3(4): 533-6.
[http://dx.doi.org/10.3892/br.2015.458] [PMID: 26171161]
[26]
Pfau D, Thorn SL, Zhang J, et al. Angiotensin Receptor Neprilysin Inhibitor Attenuates Myocardial Remodeling and Improves Infarct Perfusion in Experimental Heart Failure. Scientific Reports 2019; 9(5791)
[http://dx.doi.org/10.1038/s41598-019-42113-0]
[27]
Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 2000; 14(S1) (Suppl. 1): S73-86.
[http://dx.doi.org/10.1038/sj.jhh.1000991] [PMID: 10854085]
[28]
Abdullah A, Rusli MF. Valsartan: A Brief Current Review. Pharmacophore 2020; 11(2): 58-64.
[29]
Hedner T, Oparil S, Rasmussen K, et al. A comparison of the angiotensin II antagonists valsartan and losartan in the treatment of essential hypertension. Am J Hypertens 1999; 12(4): 414-7.
[http://dx.doi.org/10.1016/S0895-7061(99)00082-5] [PMID: 10232502]
[30]
Nixon RM, Müller E, Lowy A, Falvey H. Valsartan vs. other angiotensin II receptor blockers in the treatment of hypertension: A meta-analytical approach. Int J Clin Pract 2009; 63(5): 766-75.
[http://dx.doi.org/10.1111/j.1742-1241.2009.02028.x] [PMID: 19392925]
[31]
Oparil S, Williams D, Chrysant SG, Marbury TC, Neutel J. Comparative efficacy of olmesartan, losartan, valsartan, and irbesartan in the control of essential hypertension. J Clin Hypertens (Greenwich) 2001; 3(5): 283-318, 318.
[http://dx.doi.org/10.1111/j.1524-6175.2001.01136.x] [PMID: 11588406]
[32]
Laffer CL, Scott RC III, Titze JM, Luft FC, Elijovich F. Hemodynamics and Salt-and-Water Balance Link Sodium Storage and Vascular Dysfunction in Salt-Sensitive Subjects. Hypertension 2016; 68(1): 195-203.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07289] [PMID: 27160204]
[33]
Wang TD, Tan RS, Lee HY, et al. Effects of Sacubitril/Valsartan (LCZ696) on Natriuresis, Diuresis, Blood Pressures, and NT-proBNP in Salt-Sensitive Hypertension. Hypertension 2017; 69(1): 32-41.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08484] [PMID: 27849566]
[34]
Myhre PL, Vaduganathan M, Claggett B, et al. B-Type Natriuretic Peptide During Treatment With Sacubitril/Valsartan. J Am Coll Cardiol 2019; 73(11): 1264-72.
[http://dx.doi.org/10.1016/j.jacc.2019.01.018] [PMID: 30846338]
[35]
Zandstra TE, Nederend M, Jongbloed MRM, et al. Sacubitril/valsartan in the treatment of systemic right ventricular failure. Heart 2021; 107(21): 1725-30.
[http://dx.doi.org/10.1136/heartjnl-2020-318074] [PMID: 33452121]
[36]
Santos C, Marques da Silva P. Hemodynamic patterns in obesity associated hypertension. BMC Obes 2018; 5(1): 13.
[http://dx.doi.org/10.1186/s40608-018-0190-8] [PMID: 29692916]
[37]
Engeli S, Böhnke J, Gorzelniak K, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005; 45(3): 356-62.
[http://dx.doi.org/10.1161/01.HYP.0000154361.47683.d3] [PMID: 15630041]
[38]
Borovac JA, D’Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12(8): 373-408.
[http://dx.doi.org/10.4330/wjc.v12.i8.373] [PMID: 32879702]
[39]
Suematsu Y, Jing W, Nunes A, et al. LCZ696 (Sacubitril/Valsartan), an Angiotensin-Receptor Neprilysin Inhibitor, Attenuates Cardiac Hypertrophy, Fibrosis, and Vasculopathy in a Rat Model of Chronic Kidney Disease. J Card Fail 2018; 24(4): 266-75.
[http://dx.doi.org/10.1016/j.cardfail.2017.12.010] [PMID: 29325796]
[40]
Martens P, Nuyens D, Rivero-Ayerza M, et al. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin Res Cardiol 2019; 108(10): 1074-82.
[http://dx.doi.org/10.1007/s00392-019-01440-y] [PMID: 30788621]
[41]
Gori M, D’Elia E, Senni M. Sacubitril/valsartan therapeutic strategy in HFpEF: Clinical insights and perspectives. Int J Cardiol 2019; 281: 158-65.
[http://dx.doi.org/10.1016/j.ijcard.2018.06.060] [PMID: 30420146]
[42]
Zhang L, Yang H, Yang P. Comparison of the Ameliorating Effects of Valsartan and Amlodipine on Vascular Endothelial Dysfunction and Oxidative Stress in Elderly Patients with Type H Hypertension. Evid Based Complement Alternat Med 2022; 2022: 1-6.
[http://dx.doi.org/10.1155/2022/5054511] [PMID: 35979006]
[43]
Sun F, Jiang D, Cai J. Effects of valsartan combined with α-lipoic acid on renal function in patients with diabetic nephropathy: A systematic review and meta-analysis. BMC Endocr Disord 2021; 21: 178.
[http://dx.doi.org/10.1186/s12902-021-00844-0]
[44]
Yildiz M, Oktay AA, Stewart MH, Milani RV, Ventura HO, Lavie CJ. Left ventricular hypertrophy and hypertension. Prog Cardiovasc Dis 2020; 63(1): 10-21.
[http://dx.doi.org/10.1016/j.pcad.2019.11.009] [PMID: 31759953]
[45]
Khairat I, Khedr L, Werida R. Valsartan versus amlodipine effect on left ventricular multidirectional deformation and adipocytokines levels in hypertensive patients: Speckle tracking echocardiography. High Blood Press Cardiovasc Prev 2020; 27(5): 379-88.
[http://dx.doi.org/10.1007/s40292-020-00398-7] [PMID: 32705504]
[46]
Wong PCY, Guo J, Zhang A. The renal and cardiovascular effects of natriuretic peptides. Adv Physiol Educ 2017; 41(2): 179-85.
[http://dx.doi.org/10.1152/advan.00177.2016] [PMID: 28377431]
[47]
Langenickel TH, Dole WP. Angiotensin receptor-neprilysin inhibition with LCZ696: A novel approach for the treatment of heart failure. Drug Discov Today Ther Strateg 2012; 9(4): e131-9.
[http://dx.doi.org/10.1016/j.ddstr.2013.11.002]
[48]
Carluccio E, Dini FL, Bitto R, et al. Benefit from sacubitril/valsartan is associated with hemodynamic improvement in heart failure with reduced ejection fraction: An echocardiographic study. Int J Cardiol 2022; 350: 62-8.
[http://dx.doi.org/10.1016/j.ijcard.2022.01.004] [PMID: 34998946]
[49]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 2016; 18(8): 891-975.
[http://dx.doi.org/10.1002/ejhf.592] [PMID: 27207191]
[50]
Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001; 345(23): 1667-75.
[http://dx.doi.org/10.1056/NEJMoa010713] [PMID: 11759645]
[51]
Chrysant SG, Chrysant GS. The pleiotropic effects of angiotensin receptor blockers. J Clin Hypertens (Greenwich) 2006; 8(4): 261-8.
[http://dx.doi.org/10.1111/j.1524-6175.2005.05264.x] [PMID: 16596029]
[52]
Spannella F, Giulietti F, Filipponi A, Sarzani R. Effect of sacubitril/valsartan on renal function: A systematic review and meta‐analysis of randomized controlled trials. ESC Heart Fail 2020; 7(6): 3487-96.
[http://dx.doi.org/10.1002/ehf2.13002] [PMID: 32960491]
[53]
Mogensen UM, Køber L, Jhund PS, et al. Sacubitril/valsartan reduces serum uric acid concentration, an independent predictor of adverse outcomes in PARADIGM‐HF. Eur J Heart Fail 2018; 20(3): 514-22.
[http://dx.doi.org/10.1002/ejhf.1056] [PMID: 29193563]
[54]
Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001; 104(20): 2407-11.
[http://dx.doi.org/10.1161/hc4501.098928] [PMID: 11705816]
[55]
Saavedra WF, Paolocci N, St John ME, et al. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 2002; 90(3): 297-304.
[http://dx.doi.org/10.1161/hh0302.104531] [PMID: 11861418]
[56]
Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: Results from 2 placebo-controlled studies. Circulation 2002; 105(22): 2619-24.
[http://dx.doi.org/10.1161/01.CIR.0000017502.58595.ED] [PMID: 12045167]
[57]
Gagliardi ACM, Miname MH, Santos RD. Uric acid: A marker of increased cardiovascular risk. Atherosclerosis 2009; 202(1): 11-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.05.022] [PMID: 18585721]
[58]
Selvaraj S, Claggett BL, Pfeffer MA, et al. Serum uric acid, influence of sacubitril–valsartan, and cardiovascular outcomes in heart failure with preserved ejection fraction: PARAGON‐HF. Eur J Heart Fail 2020; 22(11): 2093-101.
[http://dx.doi.org/10.1002/ejhf.1984] [PMID: 32840930]
[59]
Gronda E, Vanoli E, Iacoviello M. The PARAGON-HF trial: The sacubitril/valsartan in heart failure with preserved ejection fraction. Eur Heart J Suppl 2020; 22 (Suppl. L): L77-81.
[http://dx.doi.org/10.1093/eurheartj/suaa140] [PMID: 33727901]
[60]
Nougué H, Pezel T, Picard F, et al. Effects of sacubitril/valsartan on neprilysin targets and the metabolism of natriuretic peptides in chronic heart failure: A mechanistic clinical study. Eur J Heart Fail 2019; 21(5): 598-605.
[http://dx.doi.org/10.1002/ejhf.1342] [PMID: 30520545]
[61]
Vidaillet H, Granada JF, Chyou PH, et al. A population-based study of mortality among patients with atrial fibrillation or flutter. Am J Med 2002; 113(5): 365-70.
[http://dx.doi.org/10.1016/S0002-9343(02)01253-6] [PMID: 12401530]
[62]
Casaclang-Verzosa G, Gersh BJ, Tsang TSM. Structural and functional remodeling of the left atrium: Clinical and therapeutic implications for atrial fibrillation. J Am Coll Cardiol 2008; 51(1): 1-11.
[http://dx.doi.org/10.1016/j.jacc.2007.09.026] [PMID: 18174029]
[63]
Li X, Deng CY, Xue YM, et al. High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J Mol Cell Cardiol 2020; 140: 10-21.
[http://dx.doi.org/10.1016/j.yjmcc.2020.01.012] [PMID: 32006532]
[64]
Qi XY, Yeh YH, Xiao L, et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ Res 2008; 103(8): 845-54.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.175463] [PMID: 18723446]
[65]
Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol 2017; 103: 121-36.
[http://dx.doi.org/10.1016/j.yjmcc.2016.12.006] [PMID: 28007541]
[66]
Heijman J, Algalarrondo V, Voigt N, et al. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: A critical analysis. Cardiovasc Res 2016; 109(4): 467-79.
[http://dx.doi.org/10.1093/cvr/cvv275] [PMID: 26705366]
[67]
Zahid S, Cochet H, Boyle PM, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res 2016; 110(3): 443-54.
[http://dx.doi.org/10.1093/cvr/cvw073] [PMID: 27056895]
[68]
Brundel B, Ausma J, van Gelder IC, et al. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc Res 2002; 54(2): 380-9.
[http://dx.doi.org/10.1016/S0008-6363(02)00289-4] [PMID: 12062342]
[69]
Rábano M, Peña A, Brizuela L, Macarulla JM, Gómez-Muñoz A, Trueba M. Angiotensin II-stimulated cortisol secretion is mediated by phospholipase D. Mol Cell Endocrinol 2004; 222(1-2): 9-20.
[http://dx.doi.org/10.1016/j.mce.2004.05.006] [PMID: 15249121]
[70]
Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol 2003; 41(12): 2197-204.
[http://dx.doi.org/10.1016/S0735-1097(03)00464-9] [PMID: 12821247]
[71]
Zankov DP, Omatsu-Kanbe M, Isono T, et al. Angiotensin II potentiates the slow component of delayed rectifier K+ current via the AT1 receptor in guinea pig atrial myocytes. Circulation 2006; 113(10): 1278-86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.530592] [PMID: 16534027]
[72]
Sandmann S, Yu M, Unger T. Transcriptional and translational regulation of calpain in the rat heart after myocardial infarction – effects of AT 1 and AT 2 receptor antagonists and ACE inhibitor. Br J Pharmacol 2001; 132(3): 767-77.
[http://dx.doi.org/10.1038/sj.bjp.0703860] [PMID: 11159730]
[73]
Li Y, Li W, Gong Y, et al. The effects of cilazapril and valsartan on the mRNA and protein expressions of atrial calpains and atrial structural remodeling in atrial fibrillation dogs. Basic Res Cardiol 2007; 102(3): 245-56.
[http://dx.doi.org/10.1007/s00395-007-0641-8] [PMID: 17268887]
[74]
Nomura M, Kawano T, Nakayasu K, Nakaya Y. The effects of losartan on signal-averaged P wave in patients with atrial fibrillation. Int J Cardiol 2008; 126(1): 21-7.
[http://dx.doi.org/10.1016/j.ijcard.2007.03.106] [PMID: 17509704]
[75]
Fogari R, Derosa G, Ferrari I, et al. Effect of valsartan and ramipril on atrial fibrillation recurrence and P-wave dispersion in hypertensive patients with recurrent symptomatic lone atrial fibrillation. Am J Hypertens 2008; 21(9): 1034-9.
[http://dx.doi.org/10.1038/ajh.2008.217] [PMID: 18566593]
[76]
Nakashima H, Kumagai K, Urata H, Gondo N, Ideishi M, Arakawa K. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 2000; 101(22): 2612-7.
[http://dx.doi.org/10.1161/01.CIR.101.22.2612] [PMID: 10840013]
[77]
Shinagawa K, Mitamura H, Ogawa S, Nattel S. Effects of inhibiting Na+/H+-exchange or angiotensin converting enzyme on atrial tachycardia-induced remodeling. Cardiovasc Res 2002; 54(2): 438-46.
[http://dx.doi.org/10.1016/S0008-6363(01)00515-6] [PMID: 12062348]
[78]
Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. Eur Heart J 2006; 27(5): 512-8.
[http://dx.doi.org/10.1093/eurheartj/ehi668] [PMID: 16311236]
[79]
Li L, Lou Q, Liu G, et al. Sacubitril/valsartan attenuates atrial electrical and structural remodelling in a rabbit model of atrial fibrillation. Eur J Pharmacol 2020; 881(173120): 173120.
[http://dx.doi.org/10.1016/j.ejphar.2020.173120] [PMID: 32325147]
[80]
Dernellis J, Panaretou M. Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. Eur Heart J 2004; 25(13): 1100-7.
[http://dx.doi.org/10.1016/j.ehj.2004.04.025] [PMID: 15231367]
[81]
Kumar K, Singh N, Jaggi AS, Maslov L. Clinical Applicability of Conditioning Techniques in Ischemia-Reperfusion Injury: A Review of the Literature. Curr Cardiol Rev 2021; 17(3): 306-18.
[http://dx.doi.org/10.2174/1573403X16999200817170619] [PMID: 33109063]
[82]
Wu X, He L, Cai Y, et al. Induction of autophagy contributes to the myocardial protection of valsartan against ischemia-reperfusion injury. Mol Med Rep 2013; 8(6): 1824-30.
[http://dx.doi.org/10.3892/mmr.2013.1708] [PMID: 24084854]
[83]
Sala-Mercado JA, Wider J, Reddy Undyala VV, et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation 2010; 122(11_suppl_1)(Suppl.): S179-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.928242] [PMID: 20837911]
[84]
Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012; 485(7397): 251-5.
[http://dx.doi.org/10.1038/nature10992] [PMID: 22535248]
[85]
Kundu M, Thompson CB. Autophagy: Basic principles and relevance to disease. Annu Rev Pathol 2008; 3(1): 427-55.
[http://dx.doi.org/10.1146/annurev.pathmechdis.2.010506.091842] [PMID: 18039129]
[86]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[87]
Yang J, Jiang H, Yang J, et al. Valsartan preconditioning protects against myocardial ischemia–reperfusion injury through TLR4/NF-κB signaling pathway. Mol Cell Biochem 2009; 330(1-2): 39-46.
[http://dx.doi.org/10.1007/s11010-009-0098-1] [PMID: 19370315]
[88]
Sawicki G, Menon V, Jugdutt BI. Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail 2004; 10(5): 442-9.
[http://dx.doi.org/10.1016/j.cardfail.2004.01.012] [PMID: 15470656]
[89]
Iekushi K, Taniyama Y, Azuma J, et al. Novel mechanisms of valsartan on the treatment of acute myocardial infarction through inhibition of the antiadhesion molecule periostin. Hypertension 2007; 49(6): 1409-14.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.080994] [PMID: 17485602]
[90]
Miki T, Miura T, Tsuchida A, et al. Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type 1 receptor activation. Circulation 2000; 102(4): 458-63.
[http://dx.doi.org/10.1161/01.CIR.102.4.458] [PMID: 10908220]
[91]
Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep 2022; 49(5): 4013-24.
[http://dx.doi.org/10.1007/s11033-021-07109-y] [PMID: 35067816]
[92]
Jahani V, Kavousi A, Mehri S, Karimi G. Rho kinase, a potential target in the treatment of metabolic syndrome. Biomed Pharmacother 2018; 106: 1024-30.
[http://dx.doi.org/10.1016/j.biopha.2018.07.060] [PMID: 30119167]
[93]
Koju N, Taleb A, Zhou J, et al. Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111: 1478-98.
[http://dx.doi.org/10.1016/j.biopha.2018.11.128] [PMID: 30841463]
[94]
Nakagiri A, Sunamoto M, Takeuchi K, Murakami M. Evidence for the involvement of NADPH oxidase in ischemia/reperfusion-induced gastric damage via angiotensin II. J Physiol Pharmacol 2010; 61(2): 171-9.
[PMID: 20436217]
[95]
Lou LX, Uemura T, Mani H, et al. Endogenous signal transducer and activator of transcription 3 is required for the protection of hepatocytes against warm ischemia/reperfusion injury. Liver Transpl 2013; 19(10): 1078-87.
[http://dx.doi.org/10.1002/lt.23693] [PMID: 23836400]
[96]
Zheng LY, Zhang MH, Xue JH, et al. Effect of angiotensin II on STAT3 mediated atrial structural remodeling. Eur Rev Med Pharmacol Sci 2014; 18(16): 2365-77.
[PMID: 25219839]
[97]
Lucchese G, Cambi GE, De Rita F, et al. Cardioplegia and angiotensin II receptor antagonists modulate signal transducers and activators of transcription activation in neonatal rat myocytes. Artif Organs 2011; 35(11): 1075-81.
[http://dx.doi.org/10.1111/j.1525-1594.2011.01386.x] [PMID: 22097982]
[98]
Bujak M, Dobaczewski M, Chatila K, et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 2008; 173(1): 57-67.
[http://dx.doi.org/10.2353/ajpath.2008.070974] [PMID: 18535174]
[99]
Van Tassell BW, Varma A, Salloum FN, et al. Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol 2010; 55(2): 117-22.
[http://dx.doi.org/10.1097/FJC.0b013e3181c87e53] [PMID: 19920765]
[100]
Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and Valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice. Cardiovasc Drugs Ther 2011; 25(6): 505-15.
[http://dx.doi.org/10.1007/s10557-011-6339-z] [PMID: 21987107]
[101]
Koid SS, Ziogas J, Campbell DJ. Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 2014; 63(4): 768-73.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02902] [PMID: 24420538]
[102]
Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res 2004; 30(1): 073-80.
[http://dx.doi.org/10.1385/IR:30:1:073] [PMID: 15258311]
[103]
Gotlieb AI. Atherosclerosis and acute coronary syndromes. Cardiovasc Pathol 2005; 14(4): 181-4.
[http://dx.doi.org/10.1016/j.carpath.2005.03.007] [PMID: 16009315]
[104]
Keaney J Jr. Atherosclerosis: From lesion formation to plaque activation and endothelial dysfunction. Mol Aspects Med 2000; 21(4-5): 99-166.
[http://dx.doi.org/10.1016/S0098-2997(00)00005-4] [PMID: 11044550]
[105]
Heistad DD. Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol 2006; 26(4): 689-95.
[http://dx.doi.org/10.1161/01.ATV.0000203525.62147.28] [PMID: 16410455]
[106]
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11(4): 791-810.
[http://dx.doi.org/10.1089/ars.2008.2220] [PMID: 18783313]
[107]
de Winther MPJ, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25(5): 904-14.
[http://dx.doi.org/10.1161/01.ATV.0000160340.72641.87] [PMID: 15731497]
[108]
Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002; 22(8): 1257-66.
[http://dx.doi.org/10.1161/01.ATV.0000021412.56621.A2] [PMID: 12171785]
[109]
Jacoby DS, Rader DJ. Renin-angiotensin system and atherothrombotic disease: From genes to treatment. Arch Intern Med 2003; 163(10): 1155-64.
[http://dx.doi.org/10.1001/archinte.163.10.1155] [PMID: 12767951]
[110]
Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014; 2014(689360): 1-13.
[http://dx.doi.org/10.1155/2014/689360] [PMID: 24804145]
[111]
Zhang H, Liu G, Zhou W, Zhang W, Wang K, Zhang J. Neprilysin Inhibitor-Angiotensin II Receptor Blocker Combination Therapy (Sacubitril/valsartan) Suppresses Atherosclerotic Plaque Formation and Inhibits Inflammation in Apolipoprotein E-Deficient Mice. Sci Rep 2019; 9(1): 6509.
[http://dx.doi.org/10.1038/s41598-019-42994-1]
[112]
Suzuki H, Motley E, Frank G, Utsunomiya H, Eguchi S. Recent progress in signal transduction research of the angiotensin II type-1 receptor: Protein kinases, vascular dysfunction and structural requirement. Curr Med Chem Cardiovasc Hematol Agents 2005; 3(4): 305-22.
[http://dx.doi.org/10.2174/156801605774322355] [PMID: 16250862]
[113]
Hardie DG. AMPK--sensing energy while talking to other signaling pathways. Cell Metab 2014; 20(6): 939-52.
[http://dx.doi.org/10.1016/j.cmet.2014.09.013] [PMID: 25448702]
[114]
Ewart MA, Kennedy S. AMPK and vasculoprotection. Pharmacol Ther 2011; 131(2): 242-53.
[http://dx.doi.org/10.1016/j.pharmthera.2010.11.002] [PMID: 21111758]
[115]
Zhou M, Ma C, Liu W, et al. Valsartan Promoting Atherosclerotic Plaque Stabilization by Upregulating Renalase. J Cardiovasc Pharmacol Ther 2015; 20(5): 509-19.
[http://dx.doi.org/10.1177/1074248415575967] [PMID: 25818930]
[116]
Iacono KT, Brown AL, Greene MI, Saouaf SJ. CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 2007; 83(3): 283-95.
[http://dx.doi.org/10.1016/j.yexmp.2007.08.014] [PMID: 17945211]
[117]
Yano H, Hibi K, Nozawa N, et al. Effects of valsartan, an angiotensin II receptor blocker, on coronary atherosclerosis in patients with acute myocardial infarction who receive an angiotensin-converting enzyme inhibitor. Circ J 2012; 76(6): 1442-51.
[http://dx.doi.org/10.1253/circj.CJ-11-1102] [PMID: 22473458]
[118]
Junaid A, Amara FM. Osteopontin: Correlation with interstitial fibrosis in human diabetic kidney and PI3‐kinase‐mediated enhancement of expression by glucose in human proximal tubular epithelial cells. Histopathology 2004; 44(2): 136-46.
[http://dx.doi.org/10.1111/j.1365-2559.2004.01771.x] [PMID: 14764057]
[119]
Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM. Osteoprotegerin is an α vbeta 3-induced, NF-κ B-dependent survival factor for endothelial cells. J Biol Chem 2000; 275(28): 20959-62.
[http://dx.doi.org/10.1074/jbc.C000290200] [PMID: 10811631]
[120]
Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J. Osteopontin--a molecule for all seasons. QJM 2002; 95(1): 3-13.
[http://dx.doi.org/10.1093/qjmed/95.1.3]
[121]
Sodhi CP, Phadke SA, Batlle D, Sahai A. Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: potentiation by high glucose. Diabetes 2001; 50(6): 1482-90.
[http://dx.doi.org/10.2337/diabetes.50.6.1482]
[122]
Pan Y, Chen M, Lash GE. Role of osteopontin (OPN) in uterine spiral artery remodeling. Placenta 2022; 126: 70-5.
[http://dx.doi.org/10.1016/j.placenta.2022.06.014] [PMID: 35780519]
[123]
Abe K, Nakashima H, Ishida M, et al. Angiotensin II-induced osteopontin expression in vascular smooth muscle cells involves Gq/11, Ras, ERK, Src and Ets-1. Hypertens Res 2008; 31(5): 987-98.
[http://dx.doi.org/10.1291/hypres.31.987] [PMID: 18712054]
[124]
Sawada T, Yamada H, Dahlöf B, Matsubara H. Effects of valsartan on morbidity and mortality in uncontrolled hypertensive patients with high cardiovascular risks: KYOTO HEART Study. Eur Heart J 2009; 30(20): 2461-9.
[http://dx.doi.org/10.1093/eurheartj/ehp363] [PMID: 19723695]
[125]
Fu GX, Xu CC, Zhong Y, Zhu DL, Gao PJ. Aldosterone-induced osteopontin expression in vascular smooth muscle cells involves MR, ERK, and p38 MAPK. Endocrine 2012; 42(3): 676-83.
[http://dx.doi.org/10.1007/s12020-012-9675-2] [PMID: 22588951]
[126]
Kurata M, Okura T, Irita J, et al. Angiotensin II receptor blockade with valsartan decreases plasma osteopontin levels in patients with essential hypertension. J Hum Hypertens 2011; 25(5): 334-9.
[http://dx.doi.org/10.1038/jhh.2010.73] [PMID: 20664555]
[127]
Robertson AKL, Hansson GK. T cells in atherogenesis: For better or for worse? Arterioscler Thromb Vasc Biol 2006; 26(11): 2421-32.
[http://dx.doi.org/10.1161/01.ATV.0000245830.29764.84] [PMID: 16973967]
[128]
Medzhitov R, Shevach EM, Trinchieri G, et al. Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol 2011; 11(10): 693-702.
[http://dx.doi.org/10.1038/nri3063] [PMID: 21941295]
[129]
Meng K, Zeng Q, Lu Q, et al. Valsartan Attenuates Atherosclerosis via Upregulating the Th2 Immune Response in Prolonged Angiotensin II-Treated ApoE−/− Mice. Mol Med 2015; 21(1): 143-53.
[http://dx.doi.org/10.2119/molmed.2014.00195] [PMID: 25685964]
[130]
Takata Y, Liu J, Yin F, et al. PPARδ-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proc Natl Acad Sci USA 2008; 105(11): 4277-82.
[http://dx.doi.org/10.1073/pnas.0708647105] [PMID: 18337495]
[131]
Mueck AO, Seeger H, Heuberger W, Wallwiener D. Comparison of valsartan with candesartan on their possible protection from atherosclerosis. Journal of Clinical and Basic Cardiology 2001; 4(4): 297-300.
[132]
Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: A review. Eur J Vasc Endovasc Surg 2010; 40(1): 17-26.
[http://dx.doi.org/10.1016/j.ejvs.2010.04.012] [PMID: 20547081]
[133]
Saliques S, Zeller M, Lorin J, et al. Telomere length and cardiovascular disease. Arch Cardiovasc Dis 2010; 103(8-9): 454-9.
[http://dx.doi.org/10.1016/j.acvd.2010.08.002] [PMID: 21074124]
[134]
De Meyer T, Rietzschel ER, De Buyzere ML, Van Criekinge W, Bekaert S. Telomere length and cardiovascular aging: The means to the ends? Ageing Res Rev 2011; 10(2): 297-303.
[http://dx.doi.org/10.1016/j.arr.2010.11.001] [PMID: 21109027]
[135]
Minamino T, Komuro I. Role of telomere in endothelial dysfunction in atherosclerosis. Curr Opin Lipidol 2002; 13(5): 537-43.
[http://dx.doi.org/10.1097/00041433-200210000-00010] [PMID: 12352018]
[136]
Boncelj Svetek M, Eržen B, Kanc K, Šabovič M. Impaired endothelial function and arterial stiffness in patients with type 2 diabetes - The effect of a very low-dose combination of fluvastatin and valsartan. J Diabetes Complications 2017; 31(3): 544-50.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.12.002] [PMID: 28012835]
[137]
Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016; 11(7): e0158765.
[http://dx.doi.org/10.1371/journal.pone.0158765]
[138]
Parikh NI, Hwang SJ, Larson MG, Meigs JB, Levy D, Fox CS. Cardiovascular disease risk factors in chronic kidney disease: Overall burden and rates of treatment and control. Arch Intern Med 2006; 166(17): 1884-91.
[http://dx.doi.org/10.1001/archinte.166.17.1884] [PMID: 17000946]
[139]
Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur Heart J 2014; 35(7): 455-69.
[http://dx.doi.org/10.1093/eurheartj/eht386] [PMID: 24164864]
[140]
Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation 2019; 139(16): e840-78.
[http://dx.doi.org/10.1161/CIR.0000000000000664] [PMID: 30852913]
[141]
Spannella F, Marini M, Giulietti F, et al. Renal effects of Sacubitril/Valsartan in heart failure with reduced ejection fraction: A real life 1-year follow-up study. Intern Emerg Med 2019; 14(8): 1287-97.
[http://dx.doi.org/10.1007/s11739-019-02111-6] [PMID: 31147823]
[142]
Kuang H, Huang X, Zhou Z, Cheng X, Xu G. Sacubitril/valsartan in chronic kidney disease: From pharmacological mechanism to clinical application. Eur J Pharmacol 2021; 907(174288): 174288.
[http://dx.doi.org/10.1016/j.ejphar.2021.174288] [PMID: 34216577]
[143]
Kanwar YS, Sun L, Xie P, Liu F, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011; 6(1): 395-423.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092150] [PMID: 21261520]
[144]
Sulaiman MK. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management. Diabetol Metab Syndr 2019; 11(1): 7.
[http://dx.doi.org/10.1186/s13098-019-0403-4] [PMID: 30679960]
[145]
Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes 2014; 5(3): 393-8.
[http://dx.doi.org/10.4239/wjd.v5.i3.393] [PMID: 24936261]
[146]
Molitch ME, DeFronzo RA, Franz MJ, et al. Nephropathy in Diabetes. Diabetes Care 2004; 27 (Suppl. 1): s79-83.
[http://dx.doi.org/10.2337/diacare.27.2007.S79] [PMID: 14693934]
[147]
Lim A. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis 2014; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[148]
Peng X, Su H, Liang D, et al. Ramipril and resveratrol co‐treatment attenuates RhoA/ROCK pathway‐regulated early‐stage diabetic nephropathy‐associated glomerulosclerosis in streptozotocin‐induced diabetic rats. Environ Toxicol 2019; 34(7): 861-8.
[http://dx.doi.org/10.1002/tox.22758] [PMID: 31062909]
[149]
Mohany M, Alanazi AZ, Alqahtani F, Belali OM, Ahmed MM, Al-Rejaie SS. LCZ696 mitigates diabetic-induced nephropathy through inhibiting oxidative stress, NF-κB mediated inflammation and glomerulosclerosis in rats. PeerJ 2020; 8(e9196): e9196.
[http://dx.doi.org/10.7717/peerj.9196] [PMID: 32596035]
[150]
Yang T, Xu C. Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J Am Soc Nephrol 2017; 28(4): 1040-9.
[http://dx.doi.org/10.1681/ASN.2016070734] [PMID: 28255001]
[151]
Baltatzi M, Savopoulos Ch, Hatzitolios A. Role of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in hypertension of chronic kidney disease and renoprotection. Study results. Hippokratia 2011; 15 (Suppl. 1): 27-32.
[PMID: 21897755]
[152]
Judd E, Calhoun DA. Management of hypertension in CKD: Beyond the guidelines. Adv Chronic Kidney Dis 2015; 22(2): 116-22.
[http://dx.doi.org/10.1053/j.ackd.2014.12.001] [PMID: 25704348]
[153]
Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Can J Cardiol 2016; 32(5): 659-68.
[http://dx.doi.org/10.1016/j.cjca.2016.02.070] [PMID: 27118293]
[154]
Hausding M, Jurk K, Daub S, et al. CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Res Cardiol 2013; 108(6): 386.
[http://dx.doi.org/10.1007/s00395-013-0386-5]
[155]
Thai H, Guarraia D, Johnson N, Goldman S, Gaballa MA. Valsartan therapy in heart failure after myocardial infarction: The role of endothelial dependent vasorelaxation. J Cardiovasc Pharmacol 2007; 50(6): 703-7.
[http://dx.doi.org/10.1097/FJC.0b013e318159378b] [PMID: 18091589]
[156]
Ameer OZ, Butlin M, Kaschina E, Sommerfeld M, Avolio AP, Phillips JK. Long-Term Angiotensin II Receptor Blockade Limits Hypertension, Aortic Dysfunction, and Structural Remodeling in a Rat Model of Chronic Kidney Disease. J Vasc Res 2016; 53(3-4): 216-29.
[http://dx.doi.org/10.1159/000452411] [PMID: 27880955]
[157]
Zhou G, Cheung AK, Liu X, Huang Y. Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin Sci (Lond) 2014; 126(10): 707-20.
[http://dx.doi.org/10.1042/CS20130223] [PMID: 24195695]
[158]
Landmesser U, Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: Role of bradykinin and nitric oxide. J Hypertens 2006; 24(1) (Suppl. 1): S39-43.
[http://dx.doi.org/10.1097/01.hjh.0000220405.38622.23] [PMID: 16601572]
[159]
Wang Q, Zhao W, Wu G. Valsartan inhibits NPC cell line CNE-2 proliferation and invasion and promotes its sensitivity to radiation. Eur J Cancer Prev 2009; 18(6): 510-7.
[http://dx.doi.org/10.1097/CEJ.0b013e32832f9c00] [PMID: 19687742]
[160]
Sironi L, Gelosa P, Guerrini U, et al. Anti-inflammatory effects of AT1 receptor blockade provide end-organ protection in stroke-prone rats independently from blood pressure fall. J Pharmacol Exp Ther 2004; 311(3): 989-95.
[http://dx.doi.org/10.1124/jpet.104.072066] [PMID: 15302895]
[161]
Aslam S, Santha T, Leone A, Wilcox C. Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int 2006; 70(12): 2109-15.
[http://dx.doi.org/10.1038/sj.ki.5001983] [PMID: 17063175]
[162]
Abdel Kawy HS. Aliskiren and valsartan in combination is a promising therapy for hypertensive renal injury in rats. Clin Exp Hypertens 2018; 40(6): 560-8.
[http://dx.doi.org/10.1080/10641963.2017.1407333] [PMID: 29172824]
[163]
Yang CC, Chen YT, Chen CH, et al. The therapeutic impact of entresto on protecting against cardiorenal syndrome-associated renal damage in rats on high protein diet. Biomed Pharmacother 2019; 116(108954): 108954.
[http://dx.doi.org/10.1016/j.biopha.2019.108954] [PMID: 31108352]
[164]
Sobol AB, Watala C. The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract 2000; 50(1): 1-16.
[http://dx.doi.org/10.1016/S0168-8227(00)00160-1] [PMID: 10936664]
[165]
Chan P, Wong KL, Liu IM, Tzeng TF, Yang TL, Cheng JT. Antihyperglycemic action of angiotensin II receptor antagonist, valsartan, in streptozotocin-induced diabetic rats. J Hypertens 2003; 21(4): 761-9.
[http://dx.doi.org/10.1097/00004872-200304000-00020] [PMID: 12658023]
[166]
Kalantarinia K, Awad AS, Siragy HM. Urinary and renal interstitial concentrations of TNF-α increase prior to the rise in albuminuria in diabetic rats. Kidney Int 2003; 64(4): 1208-13.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00237.x] [PMID: 12969138]
[167]
Awad A, Webb R, Carey R, Siragy H. Increased renal production of angiotensin II and thromboxane B in conscious diabetic rats. Am J Hypertens 2005; 18(4): 544-8.
[http://dx.doi.org/10.1016/j.amjhyper.2004.10.018] [PMID: 15831366]
[168]
Zhao WY, Swanson SA, Shelton JM, Thomas GD. Oxidative stress impairs the modulation of sympathetic vasoconstriction in contracting skeletal muscle of angiotensin II-infused rats. FASEB J 2004; 18: A279-9.
[169]
dos Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: An epigenetic perspective. Metabolism 2015; 64(12): 1619-28.
[http://dx.doi.org/10.1016/j.metabol.2015.09.013] [PMID: 26481513]
[170]
Cheng JT, Liu IM, Tzeng TF, Tsai CC, Lai TY. Plasma glucose-lowering effect of beta-endorphin in streptozotocin-induced diabetic rats. Horm Metab Res 2002; 34(10): 570-6.
[http://dx.doi.org/10.1055/s-2002-35418] [PMID: 12439785]
[171]
Chan P, Liu IM, Tzeng TF, Yang TL, Cheng JT. Mechanism for blockade of angiotensin subtype 1 receptors to lower plasma glucose in streptozotocin‐induced diabetic rats. Diabetes Obes Metab 2007; 9(1): 39-49.
[http://dx.doi.org/10.1111/j.1463-1326.2005.00566.x] [PMID: 17199717]
[172]
Ruggenenti P, Perna A, Tonelli M, et al. Effects of add-on fluvastatin therapy in patients with chronic proteinuric nephropathy on dual renin-angiotensin system blockade: The ESPLANADE trial. Clin J Am Soc Nephrol 2010; 5(11): 1928-38.
[http://dx.doi.org/10.2215/CJN.03380410] [PMID: 20671225]
[173]
Hills CE, Squires PE. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 2011; 22(3): 131-9.
[http://dx.doi.org/10.1016/j.cytogfr.2011.06.002] [PMID: 21757394]
[174]
Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: An adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002; 13(2): 84-9.
[http://dx.doi.org/10.1016/S1043-2760(01)00524-0] [PMID: 11854024]
[175]
Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20(6): 1595-9.
[http://dx.doi.org/10.1161/01.ATV.20.6.1595] [PMID: 10845877]
[176]
Furuhashi M, Ura N, Higashiura K, et al. Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension 2003; 42(1): 76-81.
[http://dx.doi.org/10.1161/01.HYP.0000078490.59735.6E] [PMID: 12796280]
[177]
Yilmaz M, Sonmez A, Caglar K, et al. Effect of antihypertensive agents on plasma adiponectin levels in hypertensive patients with metabolic syndrome. Nephrology (Carlton) 2007; 12(2): 147-53.
[http://dx.doi.org/10.1111/j.1440-1797.2007.00764.x] [PMID: 17371337]
[178]
Dandona P, Kumar V, Aljada A, et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: Evidence of an antiinflammatory action. J Clin Endocrinol Metab 2003; 88(9): 4496-501.
[http://dx.doi.org/10.1210/jc.2002-021836] [PMID: 12970329]
[179]
Mori Y, Itoh Y, Tajima N. Angiotensin II receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity. Am J Hypertens 2007; 20(4): 431-6.
[http://dx.doi.org/10.1016/j.amjhyper.2006.09.016] [PMID: 17386352]
[180]
Bolanle IO, Omogbai EKI, Bafor EE. Effects of amlodipine and valsartan on glibenclamide-treated streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 106: 566-74.
[http://dx.doi.org/10.1016/j.biopha.2018.06.152] [PMID: 29990844]
[181]
Blumberg RS, Strober W. Prospects for research in inflammatory bowel disease. JAMA 2001; 285(5): 643-7.
[http://dx.doi.org/10.1001/jama.285.5.643] [PMID: 11176874]
[182]
Sands BE. Inflammatory bowel disease: Past, present, and future. J Gastroenterol 2007; 42(1): 16-25.
[http://dx.doi.org/10.1007/s00535-006-1995-7] [PMID: 17322989]
[183]
Dagenais NJ, Jamali F. Protective effects of angiotensin II interruption: Evidence for antiinflammatory actions. Pharmacotherapy 2005; 25(9): 1213-29.
[http://dx.doi.org/10.1592/phco.2005.25.9.1213] [PMID: 16164395]
[184]
Suzuki Y, Ruiz-Ortega M, Egido J. Angiotensin II: A double-edged sword in inflammation. J Nephrol 2000; 13 (Suppl. 3): S101-10.
[PMID: 11132026]
[185]
Bregonzio C, Armando I, Ando H, Jezova M, Baiardi G, Saavedra JM. Anti-inflammatory effects of angiotensin II AT 1 receptor antagonism prevent stress-induced gastric injury. Am J Physiol Gastrointest Liver Physiol 2003; 285(2): G414-23.
[http://dx.doi.org/10.1152/ajpgi.00058.2003] [PMID: 12686508]
[186]
Santiago OI, Rivera E, Ferder L, Appleyard CB. An angiotensin II receptor antagonist reduces inflammatory parameters in two models of colitis. Regul Pept 2008; 146(1-3): 250-9.
[http://dx.doi.org/10.1016/j.regpep.2007.10.004] [PMID: 18023891]
[187]
Asgharzadeh F, Yaghoubi A, Nazari SE, et al. The beneficial effect of combination therapy with sulfasalazine and valsartan in the treatment of ulcerative colitis. EXCLI J 2021; 20: 236-47.
[http://dx.doi.org/10.17179/excli2021-3370] [PMID: 33628160]
[188]
El-Azab NEE, Salem MY, Abd El-Salam S. A histological and immunohistochemical study of different therapeutic modalities for experimentally induced ulcerative colitis in rats. Egypt J Histol 2016; 39(1): 12-24.
[http://dx.doi.org/10.1097/01.EHX.0000481746.43677.e1]
[189]
Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001; 58(9): 1395-402.
[http://dx.doi.org/10.1001/archneur.58.9.1395] [PMID: 11559310]
[190]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189]
[191]
Wright JW, Kawas LH, Harding JW. A Role for the Brain RAS in Alzheimer’s and Parkinson’s Diseases. Front Endocrinol (Lausanne) 2013; 4(158): 158.
[http://dx.doi.org/10.3389/fendo.2013.00158] [PMID: 24298267]
[192]
Yagi S, Akaike M, Ise T, Ueda Y, Iwase T, Sata M. Renin–angiotensin–aldosterone system has a pivotal role in cognitive impairment. Hypertens Res 2013; 36(9): 753-8.
[http://dx.doi.org/10.1038/hr.2013.51] [PMID: 23698805]
[193]
Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2010; 469(1): 6-10.
[http://dx.doi.org/10.1016/j.neulet.2009.11.033] [PMID: 19914330]
[194]
Cetin F, Yazihan N, Dincer S, Akbulut G. The effect of intracerebroventricular injection of beta amyloid peptide (1-42) on caspase-3 activity, lipid peroxidation, nitric oxide and nos expression in young adult and aged rat brain. Turk Neurosurg 2012; 23(2): 144-50.
[http://dx.doi.org/10.5137/1019-5149.JTN.5855-12.1] [PMID: 23546897]
[195]
Wang X, Wang W, Li L, Perry G, Lee H, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842(8): 1240-7.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[196]
Singh B, Sharma B, Jaggi AS, Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: Possible involvement of PPAR-γ agonistic property. J Renin Angiotensin Aldosterone Syst 2013; 14(2): 124-36.
[http://dx.doi.org/10.1177/1470320312459977] [PMID: 23060470]
[197]
Awasthi H, Kaushal D, Siddiqui HH. Chronic inhibition of central Angiotensin-converting enzyme ameliorates colchicine-induced memory impairment in mice. Sci Pharm 2012; 80(3): 647-62.
[http://dx.doi.org/10.3797/scipharm.1203-06] [PMID: 23008812]
[198]
Wang J, Ho L, Chen L, et al. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest 2007; 117(11): 3393-402.
[http://dx.doi.org/10.1172/JCI31547] [PMID: 17965777]
[199]
Tsigos C, Kyrou I, Kassi E, Chrousos GP. Stress: Endocrine Physiology and Pathophysiology.Endotext. 8600 Rockville Pike: National Library Of Medicine 2020.
[200]
Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5(7): 374-81.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[201]
Mattson MP. Neuroprotective signaling and the aging brain: Take away my food and let me run11Published on the World Wide Web on 24 August 2000. Brain Res 2000; 886(1-2): 47-53.
[http://dx.doi.org/10.1016/S0006-8993(00)02790-6] [PMID: 11119686]
[202]
Saavedra JM, Benicky J. Brain and peripheral angiotensin II play a major role in stress. Stress 2007; 10(2): 185-93.
[http://dx.doi.org/10.1080/10253890701350735] [PMID: 17514587]
[203]
Young ES, Doom JR, Farrell AK, et al. Life stress and cortisol reactivity: An exploratory analysis of the effects of stress exposure across life on HPA-axis functioning. Dev Psychopathol 2021; 33(1): 301-12.
[http://dx.doi.org/10.1017/S0954579419001779] [PMID: 32124708]
[204]
McEwen BS. The neurobiology of stress: From serendipity to clinical relevance11Published on the World Wide Web on 22 November 2000. Brain Res 2000; 886(1-2): 172-89.
[http://dx.doi.org/10.1016/S0006-8993(00)02950-4] [PMID: 11119695]
[205]
Anil Kumar KV, Nagwar S, Thyloor R, Satyanarayana S. Anti-stress and nootropic activity of drugs affecting the renin-angiotensin system in rats based on indirect biochemical evidence. J Renin Angiotensin Aldosterone Syst 2015; 16(4): 801-12.
[http://dx.doi.org/10.1177/1470320313516173] [PMID: 24496517]
[206]
Meng Y. Status and Advances of Genetherapy Combined with Radiotherapy in Malignant Tumor. J Oncol 2002; 8: 63-5.
[207]
Yang HF, Tang WP. Vascular endothelial growth factor gene expression in nasopharyngeal carcinoma cell line induced by hypoxia in vitro]. Ai Zheng 2003; 22(2): 160-3.
[208]
Nadal JA, Scicli GM, Carbini LA, Scicli AG. Angiotensin II stimulates migration of retinal microvascular pericytes: Involvement of TGF-β and PDGF-BB. Am J Physiol Heart Circ Physiol 2002; 282(2): H739-48.
[http://dx.doi.org/10.1152/ajpheart.00656.2001] [PMID: 11788425]
[209]
Xu T, Fan X, Zhao M, et al. DNA Methylation-Reprogrammed Ang II (Angiotensin II) Type 1 Receptor-Early Growth Response Gene 1-Protein Kinase C ε Axis Underlies Vascular Hypercontractility in Antenatal Hypoxic Offspring. Hypertension 2021; 77(2): 491-506.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16247] [PMID: 33342239]
[210]
Wang Q, Zhao W, Li G, Zhang S, Wu G. The inhibitory effect of angiotensin II type 1 receptor blocker combined with radiation on the proliferation and invasion ablility of human nasopharyngeal carcinoma cells. Chin J Radiat Oncol 2008; 2008: 282-5.
[211]
Wang Z, Zhang X, Chen S, et al. Lithium chloride inhibits vascular smooth muscle cell proliferation and migration and alleviates injury-induced neointimal hyperplasia via induction of PGC-1α. PLoS One 2013; 8(1): e55471.
[http://dx.doi.org/10.1371/journal.pone.0055471]
[212]
Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol 2000; 190(3): 300-9.
[http://dx.doi.org/10.1002/(SICI)1096-9896(200002)190:3<300::AID-PATH596>3.0.CO;2-I] [PMID: 10685064]
[213]
Chung HT, Pae HO, Cha YN. Role of heme oxygenase-1 in vascular disease. Curr Pharm Des 2008; 14(5): 422-8.
[http://dx.doi.org/10.2174/138161208783597335] [PMID: 18289069]
[214]
Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Physiol Rev 2006; 86(2): 583-650.
[http://dx.doi.org/10.1152/physrev.00011.2005] [PMID: 16601269]
[215]
Sheng-Long C, Yan-Xin W, Yi-Yi H, et al. AVE0991, a nonpeptide compound, attenuates angiotensin II-induced vascular smooth muscle cell proliferation via induction of heme oxygenase-1 and downregulation of p-38 MAPK phosphorylation. Int J Hypertens 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/958298] [PMID: 22518299]
[216]
Togane Y, Morita T, Suematsu M, Ishimura Y, Yamazaki JI, Katayama S. Protective roles of endogenous carbon monoxide in neointimal development elicited by arterial injury. Am J Physiol Heart Circ Physiol 2000; 278(2): H623-32.
[http://dx.doi.org/10.1152/ajpheart.2000.278.2.H623] [PMID: 10666095]
[217]
Tulis DA, Durante W, Peyton KJ, Evans AJ, Schafer AI. Heme oxygenase-1 attenuates vascular remodeling following balloon injury in rat carotid arteries. Atherosclerosis 2001; 155(1): 113-22.
[http://dx.doi.org/10.1016/S0021-9150(00)00552-9] [PMID: 11223432]
[218]
Peyton KJ, Reyna SV, Chapman GB, et al. Heme oxygenase-1–derived carbon monoxide is an autocrine inhibitor of vascular smooth muscle cell growth. Blood 2002; 99(12): 4443-8.
[http://dx.doi.org/10.1182/blood.V99.12.4443] [PMID: 12036874]
[219]
Li Y, Wang Q, Xu Q, et al. Valsartan decreases neointimal hyperplasia in balloon-injured rat aortic arteries by upregulating HO-1 and inhibiting angiotensin II type 1 receptor. Life Sci 2014; 110(2): 70-6.
[http://dx.doi.org/10.1016/j.lfs.2014.06.021] [PMID: 25014676]
[220]
Li Y, Guo J, Yu H, et al. Valsartan prevented neointimal hyperplasia and inhibited SRSF1 expression and the TLR4–iNOS–ERK–AT1 receptor pathway in the balloon-injured rat aorta. Physiol Res 2021; 70(4): 533-42.
[http://dx.doi.org/10.33549/physiolres.934579] [PMID: 34062069]
[221]
Li Y, Guo J, Yu H, et al. Valsartan prevented neointimal hyperplasia and inhibited SRSF1 expression and the TLR4-iNOS-ERK-AT1 receptor pathway in the balloon-injured rat aorta. Physiol Res 2021 Aug 31; 70(4): 533-42. Epub 2021 Jun 1
[http://dx.doi.org/10.33549/physiolres.934579] [PMID: 34062069] [PMCID: PMC8820538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy