Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Evaluation of Neuroprotective effect of Cassia occidentalis L. against Colchicine Induced Memory Impairment in Wistar Rats

Author(s): Devika Jadhav, Nikita Saraswat*, Neeraj Vyawahare and Devendra Shirode

Volume 5, 2024

Published on: 26 December, 2023

Article ID: e261223224844 Pages: 17

DOI: 10.2174/0126659786275281231207115631

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is a progressive neurological disorder that develops with aging.

Objective: In this research, we have examined the anti - Alzheimer’s effect of ethanolic extract from roots of Cassia occidentalis L. on colchicine-induced Alzheimer’s in Wistar rats.

Methods: Ethanolic extract was obtained and spectroscopic, chromatography analysis was performed. Acute toxicity studies using Organization of Economic Co-operation and Development (OECD) Guidelines 423 were performed to examine and make sure that there were no signs of toxic effects. The induction of AD was done using colchicine which leads to symptoms like neurotoxicity, neuroinflammation, and neurodegeneration. In this experiment, a thorough analysis of body weight, behavioral parameters, locomotor activity, and biochemical evaluation was performed to estimate the medicinal properties of Cassia occidentalis L in treating Alzheimer’s disease.

Results: Pharmacognostic analysis showed the presence of vascular bundles, starch grains, fibers, calcium oxalate crystals, elongated parenchyma, and collenchyma mucilage as shown in the supplementary files. Locomotor activity, Escape latency time, Conditioned avoidance response, and Transfer latency were improved with treatment. Interleukin- 6 (IL - 6) levels were reduced significantly in the Colchicine + 200 Cassia mg/kg group (739.2 ± 0.37 pg/ml) than in the Colchicine Group (850.6 ± 0.40 pg/ml). Tumor necrosis factor (TNF-α) was decreased in the Colchicine + 200 Cassia mg/kg Group (1030.93 ± 0.51 pg/ml) than in the Colchicine Group (1455.06 ± 1.25 pg/ml). A significant decrease in total protein level was observed in the Colchicine Group (2.52 ± 0.10 mg/ml), (3.33 ± 0.90 mg/ml) as compared to Colchicine + 200 Cassia mg/kg Group (5.27 ± 0.09 mg/ml, (5.01 ± 0.10 mg/ml) respectively, in the Hippocampus and Entorhinal cortex. The levels of antioxidant enzymes such as Catalase (CAT), Serum superoxide dismutase (SOD), Reduced glutathione (GSH) and Malondialdehyde (MDA) were measured. When compared to the Colchicine Group (7.33 ± 0.16 nM/ mg, the MDA level was lower in the Colchicine + 100 Cassia mg/kg Group (3.20 ± 0.01 nM/ mg). The level of CAT in Colchicine + 200 Cassia mg/kg Group (7.01 ± 0.03 μmoles of H2O2/mg of protein) was seen to be increased when compared to Colchicine Group (3.32 ± 0.17 μmoles of H2O2/mg of protein). The level of SOD in Colchicine + 200 Cassia mg/kg Group (7.43 ± 0.02 U mg -1 of protein) was seen to be increased when compared with Colchicine Group (4.55 ± 0.03 U mg -1 of protein). The level of GSH in Colchicine + 200 Cassia mg/kg Group (10.07 ± 0.19 nM/mg -1 of protein) was increased when compared with the Colchicine Group (5.82 ± 0.11nM/mg -1 of protein). Histopathology of the Hippocampus and Entorhinal cortex showed diminished amyloid plaques, and neurodegeneration in the treatment groups.

Conclusion: The present study showed that ethanolic extract from the roots of Cassia occidentalis L. At 100 and 200 mg/kg doses in Wistar rats improved memory damage, by reducing oxidative stress. Levels of the antioxidant enzymes as CAT, and SOD, GSH were increased and MDA was decreased. The cytokine levels in the serum of Wistar rats of IL-6 level and TNF-α level were reduced significantly. Estimation of total protein level was found to be increased. It restored neuronal degeneration in the Hippocampus, and Entorhinal cortex and reduced oxidative stress. This suggests that the ethanolic extract of Cassia occidentalis L. could be an effective therapeutic treatment for neurodegenerative diseases like AD.

[1]
Razavi, F.; Tarokh, M.J.; Alborzi, M. An intelligent Alzheimer’s disease diagnosis method using unsupervised feature learning. J. Big Data, 2019, 6(1), 32.
[http://dx.doi.org/10.1186/s40537-019-0190-7]
[2]
Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment strategies and their limitations. Int. J. Mol. Sci., 2022, 23(22), 13954.
[http://dx.doi.org/10.3390/ijms232213954] [PMID: 36430432]
[3]
Crous-Bou, M.; Minguillón, C.; Gramunt, N.; Molinuevo, J.L. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res. Ther., 2017, 9(1), 71.
[http://dx.doi.org/10.1186/s13195-017-0297-z] [PMID: 28899416]
[4]
Jack, C.R., Jr; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Lesnick, T.G.; Pankratz, V.S.; Donohue, M.C.; Trojanowski, J.Q. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol., 2013, 12(2), 207-216.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[5]
Ng, A.; Tam, W.W.; Zhang, M.W.; Ho, C.S.; Husain, S.F.; McIntyre, R.S.; Ho, R.C. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci. Rep., 2018, 8(1), 12050.
[http://dx.doi.org/10.1038/s41598-018-30487-6] [PMID: 30104698]
[6]
Zambrano, P.; Suwalsky, M.; Jemiola-Rzeminska, M.; Strzalka, K.; Sepúlveda, B.; Gallardo, M.J.; Aguilar, L.F. The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes. Biochim. Biophys. Acta Biomembr., 2019, 1861(6), 1078-1085.
[http://dx.doi.org/10.1016/j.bbamem.2019.03.014] [PMID: 30904408]
[7]
Ritchie, C.W.; Molinuevo, J.L.; Truyen, L.; Satlin, A.; Van der Geyten, S.; Lovestone, S. Development of interventions for the secondary prevention of Alzheimer’s dementia: The European Prevention of Alzheimer’s Dementia (EPAD) project. Lancet Psychiatry, 2016, 3(2), 179-186.
[http://dx.doi.org/10.1016/S2215-0366(15)00454-X] [PMID: 26683239]
[8]
Lee, S.; Pronto, J.; Sarankhuu, B.E.; Ko, K.; Rhee, B.; Kim, N.; Mishchenko, N.; Fedoreyev, S.; Stonik, V.; Han, J. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis. Mar. Drugs, 2014, 12(6), 3560-3573.
[http://dx.doi.org/10.3390/md12063560] [PMID: 24918454]
[9]
Cavaleri, F.; Jia, W. The True Nature of Curcumin’s Polypharmacology. J. Prev. Med., 2017, 2(2)
[http://dx.doi.org/10.21767/2572-5483.100015]
[10]
Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[11]
Koul, B.; Farooq, U.; Yadav, D.; Song, M. Phytochemicals: A promising alternative for the prevention of alzheimer’s disease. Life, 2023, 13(4), 999.
[http://dx.doi.org/10.3390/life13040999] [PMID: 37109528]
[12]
Yadav, J.P.; Arya, V.; Yadav, S.; Panghal, M.; Kumar, S.; Dhankhar, S. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia, 2010, 81(4), 223-230.
[http://dx.doi.org/10.1016/j.fitote.2009.09.008] [PMID: 19796670]
[13]
Mao, R.; Xia, P.; He, Z.; Liu, Y.; Liu, F.; Zhao, H.; Han, R.; Liang, Z. Identification of seeds based on molecular markers and secondary metabolites in Senna obtusifolia and Senna occidentalis. Bot. Stud., 2017, 58(1), 43.
[http://dx.doi.org/10.1186/s40529-017-0196-4] [PMID: 29098509]
[14]
De Sousa, R.A.L.; Rodrigues, C.M.; Mendes, B.F.; Improta-Caria, A.C.; Peixoto, M.F.D.; Cassilhas, R.C. Physical exercise protocols in animal models of Alzheimer’s disease: A systematic review. Metab. Brain Dis., 2021, 36(1), 85-95.
[http://dx.doi.org/10.1007/s11011-020-00633-z] [PMID: 33095371]
[15]
Mahanthesh, M.C.; Manjappa, A.S.; Sherikar, A.S.; Disouza, J.I.; Shinde, M.V. Biological Activities of Cassia occidentalis Linn: A Systematic Review. World J. Pharm. Res., 2019, 8(9), 100-117.
[16]
Alamgir, A.N.M.; Alamgir, A.N.M. Pharmacognostical botany: Classification of medicinal and aromatic plants (MAPs), Botanical Taxonomy, morphology, and anatomy of drug plants. In: In Therapeutic Use of Medicinal Plants and Their Extracts; Pharmacognosy, 2017; pp. 177-293.
[17]
Mohammadi, M.; Alaei, M.; Bajalan, I. Phytochemical screening, total phenolic and flavonoid contents and antioxidant activity of Anabasis setifera and Salsola tomentosa extracted with different extraction methods and solvents. Orient. Pharm. Exp. Med., 2016, 16(1), 31-35.
[http://dx.doi.org/10.1007/s13596-016-0220-3]
[18]
Zieneldien, T.; Kim, J.; Cao, C. The multifaceted role of neuroprotective plants in alzheimer’s disease treatment. Geriatrics, 2022, 7(2), 24.
[http://dx.doi.org/10.3390/geriatrics7020024] [PMID: 35314596]
[19]
Tsai, Y.T.; Kao, S.T.; Cheng, C.Y. Medicinal herbs and their derived ingredients protect against cognitive decline in in vivo models of alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(19), 11311.
[http://dx.doi.org/10.3390/ijms231911311] [PMID: 36232612]
[20]
Seethapathy, G.S.; Ganesh, D.; Santhosh Kumar, J.U.; Senthilkumar, U.; Newmaster, S.G.; Ragupathy, S.; Uma Shaanker, R.; Ravikanth, G. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int. J. Legal Med., 2015, 129(4), 693-700.
[http://dx.doi.org/10.1007/s00414-014-1120-z] [PMID: 25425095]
[21]
Ali, M.; Ansari, S.H.; Ahmad, S.; Sanobar, S.; Hussain, A. “Phytochemical and Pharmacological Approaches of Traditional Alternate Cassia occidentalis L.” Plant and Human Health. Pharmacology and Therapeutic Uses, 2019, 3, 321-341.
[22]
Zhu, Z.; Wang, W.; Wang, X.; Zhao, X.; Xia, N.; Kong, F.; Wang, S. Easy way to prepare dispersible CNC dry powder by precipitation and conventional evaporation. Cellulose, 2021, 28(15), 9661-9676.
[http://dx.doi.org/10.1007/s10570-021-04123-y]
[23]
Veblen, D.R.; Guthrie, G.D.; Livi, K.J.; Reynolds, R.C. High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results. Clays Clay Miner., 1990, 38(1), 1-13.
[http://dx.doi.org/10.1346/CCMN.1990.0380101]
[24]
Odeja, O.; Obi, G.; Ogwuche, C.E.; Elemike, E.E.; Oderinlo, Y. RETRACTED ARTICLE: Phytochemical screening, antioxidant and antimicrobial activities of senna occidentalis (l.) leaves extract. Clinical Phytoscience, 2015, 1(1), 6.
[http://dx.doi.org/10.1186/s40816-015-0007-y]
[25]
Gwatidzo, L.; Dzomba, P.; Mangena, M. TLC separation and antioxidant activity of flavonoids from Carissa bispinosa, Ficus sycomorus, and Grewia bicolar fruits. Nutrire, 2018, 43(1), 3.
[http://dx.doi.org/10.1186/s41110-018-0062-5]
[26]
Shustov, B.; Gómez de Castro, A.I.; Sachkov, M.; Vallejo, J.C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S. The world space observatory ultraviolet (WSO–UV), as a bridge to future UV astronomy. Astrophys. Space Sci., 2018, 363(4), 62.
[http://dx.doi.org/10.1007/s10509-018-3280-7]
[27]
Vishwasrao, C.; Momin, B.; Ananthanarayan, L. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valoriz., 2019, 10(8), 2353-2363.
[http://dx.doi.org/10.1007/s12649-018-0230-0]
[28]
Prabu, P.C.; Panchapakesan, S.; Raj, C.D. Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withania somnifera roots in Wistar rats. Phytother. Res., 2013, 27(8), 1169-1178.
[http://dx.doi.org/10.1002/ptr.4854] [PMID: 22996349]
[29]
Benrahou, K.; Mrabti, H.N.; Assaggaf, H.M.; Mortada, S.; Salhi, N.; Rouas, L.; El Bacha, R.; Dami, A.; Masrar, A.; Alshahrani, M.M.; Awadh, A.A.A.; Bouyahya, A.; Goh, K.W.; Ming, L.C.; Cherrah, Y.; Faouzi, M.E.A. Acute and subacute toxicity studies of erodium guttatum extracts by oral administration in rodents. Toxins, 2022, 14(11), 735.
[http://dx.doi.org/10.3390/toxins14110735] [PMID: 36355985]
[30]
Hawash, Z.A.S.; Yassien, E.M.; Alotaibi, B.S.; El-Moslemany, A.M.; Shukry, M. Assessment of anti-alzheimer pursuit of jambolan fruit extract and/or choline against AlCl3 toxicity in rats. Toxics, 2023, 11(6), 509.
[http://dx.doi.org/10.3390/toxics11060509] [PMID: 37368609]
[31]
Ojha, P. S.; Biradar, P. R.; Tubachi, S.; Patil, V. S. Evaluation of neuroprotective effects of canna indica L. against aluminium chloride induced memory impairment in rats. Adv. Trad. Med, 2022, 1-18.
[32]
Li, Y.; Zheng, M.; Sah, S.K.; Mishra, A.; Singh, Y. Neuroprotective influence of sitagliptin against cisplatin-induced neurotoxicity, biochemical and behavioral alterations in Wistar rats. Mol. Cell. Biochem., 2019, 455(1-2), 91-97.
[http://dx.doi.org/10.1007/s11010-018-3472-z] [PMID: 30446906]
[33]
Patel, R.; Kaur, K.; Singh, S. Protective effect of andrographolide against STZ induced Alzheimer’s disease in experimental rats: possible neuromodulation and Aβ(1–42) analysis. Inflammopharmacology, 2021, 29(4), 1157-1168.
[http://dx.doi.org/10.1007/s10787-021-00843-6] [PMID: 34235591]
[34]
Bhattacharjee, A.; Shashidhara, S.C.; Saha, S. Nootropic activity of Crataeva nurvala Buch-Ham against scopolamine induced cognitive impairment. EXCLI J., 2015, 14, 335-345.
[PMID: 27065767]
[35]
Thornberry, C.; Cimadevilla, J.M.; Commins, S. Virtual Morris water maze: Opportunities and challenges. Rev. Neurosci., 2021, 32(8), 887-903.
[http://dx.doi.org/10.1515/revneuro-2020-0149] [PMID: 33838098]
[36]
Guan, Y.; Jiang, L.; Zhu, H.; Wu, W.; Zhou, X.; Zhang, H.; Zhang, X. Climbot: A bio-inspired modular biped climbing robot—system development, climbing gaits, and experiments. J. Mech. Robot., 2016, 8(2), 021026.
[http://dx.doi.org/10.1115/1.4028683]
[37]
Pritam, P.; Deka, R.; Bhardwaj, A.; Srivastava, R.; Kumar, D.; Jha, A.K.; Jha, N.K.; Villa, C.; Jha, S.K. Antioxidants in alzheimer’s disease: current therapeutic significance and future prospects. Biology, 2022, 11(2), 212.
[http://dx.doi.org/10.3390/biology11020212] [PMID: 35205079]
[38]
D’Onofrio, G.; Sancarlo, D.; Ruan, Q.; Yu, Z.; Panza, F.; Daniele, A.; Greco, A.; Seripa, D. Phytochemicals in the treatment of alzheimer’s disease: A systematic review. Curr. Drug Targets, 2017, 18(13), 1487-1498.
[PMID: 27809746]
[39]
El Sayed, N.S.; Ghoneum, M.H.; Ghoneum, M.H. Antia, a natural antioxidant product, attenuates cognitive dysfunction in streptozotocin-induced mouse model of sporadic alzheimer’s disease by targeting the amyloidogenic, inflammatory, autophagy, and oxidative stress pathways. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/4386562] [PMID: 32655767]
[40]
Verdile, G.; Keane, K.N.; Cruzat, V.F.; Medic, S.; Sabale, M.; Rowles, J.; Wijesekara, N.; Martins, R.N.; Fraser, P.E.; Newsholme, P. Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and alzheimer’s disease. Mediators Inflamm., 2015, 2015, 1-17.
[http://dx.doi.org/10.1155/2015/105828] [PMID: 26693205]
[41]
Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012, 1-17.
[http://dx.doi.org/10.1155/2012/472932] [PMID: 22888398]
[42]
Revathi, A.; Kaladevi, R.; Ramana, K.; Jhaveri, R.H.; Rudra Kumar, M.; Sankara Prasanna Kumar, M. Early detection of cognitive decline using machine learning algorithm and cognitive ability test. Secur. Commun. Netw., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/4190023]
[43]
Mahadevan, J.; Sundaresh, A.; Rajkumar, R.P.; Muthuramalingam, A.; Menon, V.; Negi, V.S.; Sridhar, M.G. An exploratory study of immune markers in acute and transient psychosis. Asian J. Psychiatr., 2017, 25, 219-223.
[http://dx.doi.org/10.1016/j.ajp.2016.11.010] [PMID: 28262155]
[44]
Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol., 2018, 14(S2)(2), 49.
[http://dx.doi.org/10.1186/s13223-018-0278-1] [PMID: 30263032]
[45]
Onyango, I.G.; Jauregui, G.V.; Čarná, M.; Bennett, J.P., Jr; Stokin, G.B. Neuroinflammation in Alzheimer’s Disease. Biomedicines, 2021, 9(5), 524.
[http://dx.doi.org/10.3390/biomedicines9050524] [PMID: 34067173]
[46]
Hughes, C.G.; Boncyk, C.S.; Fedeles, B.; Pandharipande, P.P.; Chen, W.; Patel, M.B.; Brummel, N.E.; Jackson, J.C.; Raman, R.; Ely, E.W.; Girard, T.D. Association between cholinesterase activity and critical illness brain dysfunction. Crit. Care, 2022, 26(1), 377.
[http://dx.doi.org/10.1186/s13054-022-04260-1] [PMID: 36474266]
[47]
Xia, F.; Yiu, A.; Stone, S.S.D.; Oh, S.; Lozano, A.M.; Josselyn, S.A.; Frankland, P.W. Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model alzheimer’s disease. Neuropsychopharmacology, 2017, 42(13), 2493-2503.
[http://dx.doi.org/10.1038/npp.2017.100] [PMID: 28540926]
[48]
Regitz, C.; Fitzenberger, E.; Mahn, F.L.; Dußling, L.M.; Wenzel, U. Resveratrol reduces amyloid-beta (Aβ1–42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur. J. Nutr., 2016, 55(2), 741-747.
[http://dx.doi.org/10.1007/s00394-015-0894-1] [PMID: 25851110]
[49]
Mudò, G.; Frinchi, M.; Nuzzo, D.; Scaduto, P.; Plescia, F.; Massenti, M.F.; Di Carlo, M.; Cannizzaro, C.; Cassata, G.; Cicero, L.; Ruscica, M.; Belluardo, N.; Grimaldi, L.M. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 44.
[http://dx.doi.org/10.1186/s12974-019-1417-4] [PMID: 30777084]
[50]
Nelson, P.T.; Smith, C.D.; Abner, E.L.; Wilfred, B.J.; Wang, W.X.; Neltner, J.H.; Baker, M.; Fardo, D.W.; Kryscio, R.J.; Scheff, S.W.; Jicha, G.A.; Jellinger, K.A.; Van Eldik, L.J.; Schmitt, F.A. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol., 2013, 126(2), 161-177.
[http://dx.doi.org/10.1007/s00401-013-1154-1] [PMID: 23864344]
[51]
Weisbecker, V. Distortion in formalin-fixed brains: Using geometric morphometrics to quantify the worst-case scenario in mice. Brain Struct. Funct., 2012, 217(2), 677-685.
[http://dx.doi.org/10.1007/s00429-011-0366-1] [PMID: 22139139]
[52]
Stuhlmann-Laeisz, C.; Schönland, S.O.; Hegenbart, U.; Oschlies, I.; Baumgart, J.V.; Krüger, S.; Röcken, C. AL amyloidosis with a localized B cell neoplasia. Virchows Arch., 2019, 474(3), 353-363.
[http://dx.doi.org/10.1007/s00428-019-02527-7] [PMID: 30680453]
[53]
Chung, S.J.; Lee, Y.H.; Yoo, H.S.; Sohn, Y.H.; Ye, B.S.; Cha, J.; Lee, P.H. Distinct FP-CIT PET patterns of Alzheimer’s disease with parkinsonism and dementia with Lewy bodies. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(8), 1652-1660.
[http://dx.doi.org/10.1007/s00259-019-04315-6] [PMID: 30980099]
[54]
Kang, S.Y.; Kim, Y.J.; Jang, W.; Son, K.Y.; Park, H.S.; Kim, Y.S. Body mass index trajectories and the risk for Alzheimer’s disease among older adults. Sci. Rep., 2021, 11(1), 3087.
[http://dx.doi.org/10.1038/s41598-021-82593-7] [PMID: 33542352]
[55]
Buchman, A.S.; Bennett, D.A. Loss of motor function in preclinical Alzheimer’s disease. Expert Rev. Neurother., 2011, 11(5), 665-676.
[http://dx.doi.org/10.1586/ern.11.57] [PMID: 21539487]
[56]
Attar, A.; Liu, T.; Chan, W.T.C.; Hayes, J.; Nejad, M.; Lei, K.; Bitan, G. A shortened Barnes maze protocol reveals memory deficits at 4-months of age in the triple-transgenic mouse model of Alzheimer’s disease. PLoS One, 2013, 8(11), e80355.
[http://dx.doi.org/10.1371/journal.pone.0080355] [PMID: 24236177]
[57]
Caccamo, A.; Belfiore, R.; Oddo, S. RETRACTED: Genetically reducing mTOR signaling rescues central insulin dysregulation in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2018, 68, 1.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.03.032] [PMID: 29729422]
[58]
Fatima, F.; Qadeer, F.; Abidi, A.; Rizvi, D.A. Evaluating the role of punica granatum and rosuvastatin in an experimental model of alzheimer’s disease. Biomed. Pharmacol. J., 2020, 13(4), 2101-2108.
[http://dx.doi.org/10.13005/bpj/2091]
[59]
Nazem, A.; Sankowski, R.; Bacher, M.; Al-Abed, Y. Rodent models of neuroinflammation for Alzheimer’s disease. J. Neuroinflammation, 2015, 12(1), 74.
[http://dx.doi.org/10.1186/s12974-015-0291-y] [PMID: 25890375]
[60]
Siddiqui, N.; Ali, J.; Parvez, S.; Najmi, A.K.; Akhtar, M. Neuroprotective role of DPP-4 inhibitor linagliptin against neurodegeneration, neuronal insulin resistance and neuroinflammation induced by intracerebroventricular streptozotocin in rat model of alzheimer’s disease. Neurochem. Res., 2023, 48(9), 2714-2730.
[http://dx.doi.org/10.1007/s11064-023-03924-w] [PMID: 37079222]
[61]
Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(6), 4094-4125.
[http://dx.doi.org/10.1007/s12035-015-9337-5] [PMID: 26198567]
[62]
Hira, S.; Saleem, U.; Anwar, F.; Raza, Z.; Rehman, A.U.; Ahmad, B. In silico study and pharmacological evaluation of eplerinone as an anti-alzheimer’s Drug in STZ-Induced alzheimer’s disease model. ACS Omega, 2020, 5(23), 13973-13983.
[http://dx.doi.org/10.1021/acsomega.0c01381] [PMID: 32566864]
[63]
Rao, Y. L.; Ganaraja, B.; Marathe, A.; Manjrekar, P. A.; Joy, T.; Ullal, S.; Pai, M. M.; Murlimanju, B. V. Comparison of malondialdehyde levels and superoxide dismutase activity in resveratrol and resveratrol/donepezil combination treatment groups in alzheimer’s disease induced rat model. 3 Biotech, 2021, 11(7), 329.
[64]
Kaur, H.; Chahal, S.; Jha, P.; Lekhak, M.M.; Shekhawat, M.S.; Naidoo, D.; Arencibia, A.D.; Ochatt, S.J.; Kumar, V. Harnessing plant biotechnology-based strategies for in vitro galanthamine (GAL) Biosynthesis: A potent drug against alzheimer’s disease. Plant Cell Tissue Organ Cult., 2022, 149(1-2), 81-103.
[65]
Barone, E. Editorial (Thematic Issue: Oxidative stress and alzheimer disease: Where do we stand?). Curr. Alzheimer Res., 2016, 13(2), 108-111.
[http://dx.doi.org/10.2174/156720501302160101123849] [PMID: 26750609]
[66]
Saxena, P.; Selvaraj, K.; Khare, S.K.; Chaudhary, N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett., 2022, 44(1), 1-22.
[http://dx.doi.org/10.1007/s10529-021-03200-3] [PMID: 34734354]
[67]
Brás, J.P.; Bravo, J.; Freitas, J.; Barbosa, M.A.; Santos, S.G.; Summavielle, T.; Almeida, M.I. TNF-alpha-induced microglia activation requires miR-342: Impact on NF-kB signaling and neurotoxicity. Cell Death Dis., 2020, 11(6), 415.
[http://dx.doi.org/10.1038/s41419-020-2626-6] [PMID: 32488063]
[68]
McKinley, R.; Meier, R.; Wiest, R. Ensembles of densely connected CNNs with label-uncertainty for brain tumor segmentation. Brain Lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 4th International Workshop. BrainLes;; Granada, Spain, September 16, 2018. Revised Selected Papers,, 2018.
[69]
Wang, Z.; Zhou, F.; Dou, Y.; Tian, X.; Liu, C.; Li, H.; Shen, H.; Chen, G. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA Damage, and Mitochondria Injury. Transl. Stroke Res., 2018, 9(1), 74-91.
[http://dx.doi.org/10.1007/s12975-017-0559-x] [PMID: 28766251]
[70]
Kaoud Hussein, A. Article review: Heavy metals and pesticides in aquaculture: Health problems. Eur. J. Acad. Essays, 2015, 2(9), 15-22.
[71]
Meurs, J.; Krap, T.; Duijst, W. Evaluation of postmortem biochemical markers: Completeness of data and assessment of implication in the field. Sci. Justice, 2019, 59(2), 177-180.
[http://dx.doi.org/10.1016/j.scijus.2018.09.002] [PMID: 30798866]
[72]
Kaushal, J.; Mehandia, S.; Singh, G.; Raina, A.; Arya, S.K. Catalase enzyme: Application in bioremediation and food industry. Biocatal. Agric. Biotechnol., 2018, 16, 192-199.
[http://dx.doi.org/10.1016/j.bcab.2018.07.035]
[73]
Chiapinotto Spiazzi, C.; Bucco Soares, M.; Pinto Izaguirry, A.; Musacchio Vargas, L.; Zanchi, M.M.; Frasson Pavin, N.; Ferreira Affeldt, R.; Seibert Lüdtke, D.; Prigol, M.; Santos, F.W. Selenofuranoside ameliorates memory loss in alzheimer-like sporadic dementia: AChE activity, oxidative stress, and inflammation involvement. Oxid. Med. Cell. Longev., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/976908] [PMID: 26090073]
[74]
Zuo, L.; Hemmelgarn, B.T.; Chuang, C.C.; Best, T.M. The role of oxidative stress-induced epigenetic alterations in amyloid- β production in alzheimer’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/604658] [PMID: 26543520]
[75]
Saraswat, N.; Sachan, N.; Chandra, P.M. Anti- diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from selinum vaginatum roots in rats. Heliyon, 2020, 6(10), 05137.
[76]
Sachan, N.; Saraswat, N.; Chandra, P.; Khalid, M.; Kabra, A. Isolation of thymol from trachyspermum ammi fruits for treatment of diabetes and diabetic neuropathy in STZ-Induced rats. BioMed Res. Int., 2022, 2022, 1-20.
[http://dx.doi.org/10.1155/2022/8263999] [PMID: 35528161]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy