Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Immunization against COVID-19: A Comprehensive Review on the Leading Vaccines

Author(s): Ananyaa Srinivasan, Vijaishree Rajesh, Dharani Thamilvanan, Sanjeev Keekan Ganesh and Subathra Devi. Chandrasekaran*

Volume 5, Issue 4, 2024

Published on: 22 December, 2023

Article ID: e221223224786 Pages: 16

DOI: 10.2174/0126667975285709231219080802

Price: $65

Abstract

The global impact of coronavirus disease (COVID-19) has prompted researchers and scientists to develop effective vaccines to contain the spread of the pandemic. This has led to the deployment of a range of vaccines from different pharmaceutical companies across the globe in a very short span of time. The current article provides a comprehensive record of all the vaccines developed against coronavirus with a specific focus on the mode of action and administration of the vaccines. The article also dwells on the composition, possible side effects and criteria for the choice of individuals for the administration of the vaccines. Vaccines against COVID-19 have been broadly categorized as mRNA vaccines, adenoviral vector-based vaccines and inactivated vaccines. Among the mRNA vaccines, the Pfizer vaccine and Moderna vaccines gained significant popularity. The Oxford Astro Zeneca vaccine and Sputnik V were the most effective viral vector vaccines. Inactivated vaccines such as Covaxin and Sinovac were also significant contributions to contain the pandemic. The review discusses the efficiency of vaccines against the variants of SARS-CoV-2. The review will provide a clear-cut idea about all kinds of exciting vaccines against COVID-19. At present, where the immediate crisis of the pandemic has been successfully contained, this article acts as a resource for future public health endeavors, policy makers, health care professionals and the general public to understand the diversity of COVID-19 vaccines.

Graphical Abstract

[1]
Li M, Wang H, Tian L, et al. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7(1): 146.
[http://dx.doi.org/10.1038/s41392-022-00996-y] [PMID: 35504917]
[2]
Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 pandemic: A comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med 2020; 9(4): 1225.
[http://dx.doi.org/10.3390/jcm9041225] [PMID: 32344679]
[3]
Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2(8): 1804-20.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[4]
Gliga S, Lübke N, Killer A, et al. Rapid selection of sotrovimab escape variants in severe acute respiratory syndrome coronavirus 2 Omicron-infected immunocompromised patients. Clin Infect Dis 2023; 76(3): 408-15.
[http://dx.doi.org/10.1093/cid/ciac802] [PMID: 36189631]
[5]
Jen TH, Wu JW, Chien TW, Chou W. Using dashboards to verify coronavirus (COVID-19) vaccinations can reduce fatality rates in countries/regions: Development and usability study. Medicine 2023; 102(11): e33274.
[http://dx.doi.org/10.1097/MD.0000000000033274] [PMID: 36930101]
[6]
Binns CW, Lee MK, Doan TTD, Lee A, Pham M, Zhao Y. COVID and gender: A narrative review of the asia-pacific region. Int J Environ Res Public Health 2022; 20(1): 245.
[http://dx.doi.org/10.3390/ijerph20010245]
[7]
Shaffer L. 15 drugs being tested to treat COVID-19 and how they would work. Nat Med 2020.
[http://dx.doi.org/10.1038/d41591-020-00019-9] [PMID: 32415251]
[8]
Ganesh SK, Subathra Devi C. Molecular and therapeutic insights of rapamycin: A multi-faceted drug from Streptomyces hygroscopicus. Mol Biol Rep 2023; 50(4): 3815-33.
[http://dx.doi.org/10.1007/s11033-023-08283-x] [PMID: 36696023]
[9]
Chiappelli F, Chiappelli F. Colliding pandemics and COVID-19. Bioinformation 2023; 19(3): 251-4.
[http://dx.doi.org/10.6026/97320630019251] [PMID: 37808373]
[10]
Sabsay K R, Velthuis A J. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol 2023; e00082-23.
[11]
Goscianska J, Freund R, Wuttke S. Nanoscience versus viruses: The SARS‐CoV‐2 case. Adv Funct Mater 2022; 32(14): 2107826.
[http://dx.doi.org/10.1002/adfm.202107826]
[12]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[13]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[14]
Lalchhandama K. The chronicles of coronaviruses: The electron microscope, the doughnut, and the spike. Sci Vis 2020; 20(2): 78-92.
[http://dx.doi.org/10.33493/scivis.20.02.03]
[15]
J Alsaadi EA Jones IM. Membrane binding proteins of coronaviruses. Future Virol 2019; 14(4): 275-86.
[http://dx.doi.org/10.2217/fvl-2018-0144] [PMID: 32201500]
[16]
Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol 2016; 90(16): 7415-28.
[http://dx.doi.org/10.1128/JVI.00080-16] [PMID: 27279608]
[17]
Huang Q, Zeng J, Yan J. COVID-19 mRNA vaccines. J Genet Genomics 2021; 48(2): 107-14.
[http://dx.doi.org/10.1016/j.jgg.2021.02.006] [PMID: 34006471]
[18]
Ye Z, Harmon J, Ni W, Li Y, Wich D, Xu Q. The mRNA Vaccine Revolution: COVID-19 has launched the future of Vaccinology. ACS Nano 2023; 17(16): 15231-53.
[http://dx.doi.org/10.1021/acsnano.2c12584] [PMID: 37535899]
[19]
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-based vaccine for COVID-19: They are new but not unknown! Vaccines 2023; 11(3): 507.
[http://dx.doi.org/10.3390/vaccines11030507] [PMID: 36992091]
[20]
Herzog RW, Giangrande PH. The Nobel Prize awarded to pioneers of mRNA vaccines. Mol Ther 2023; 31(11): 3105-6.
[http://dx.doi.org/10.1016/j.ymthe.2023.10.006] [PMID: 37863063]
[21]
Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infect Drug Resist 2021; 14: 3459-76.
[http://dx.doi.org/10.2147/IDR.S315727] [PMID: 34511939]
[22]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[23]
Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: A randomized clinical trial. JAMA 2021; 326(1): 35-45.
[http://dx.doi.org/10.1001/jama.2021.8565] [PMID: 34037666]
[24]
Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N Engl J Med 2020; 383(25): 2439-50.
[http://dx.doi.org/10.1056/NEJMoa2027906] [PMID: 33053279]
[25]
Flaxman A, Marchevsky NG, Jenkin D, et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: A substudy of two randomised controlled trials (COV001 and COV002). Lancet 2021; 398(10304): 981-90.
[http://dx.doi.org/10.1016/S0140-6736(21)01699-8] [PMID: 34480858]
[26]
Atzrodt CL, Maknojia I, McCarthy RDP, et al. A Guide to COVID‐19: A global pandemic caused by the novel coronavirus SARS‐CoV‐2. FEBS J 2020; 287(17): 3633-50.
[http://dx.doi.org/10.1111/febs.15375] [PMID: 32446285]
[27]
Cabanillas B, Akdis CA, Novak N. Allergic reactions to the first COVID‐19 vaccine: A potential role of polyethylene glycol? Allergy 2021; -1618; 76(6): 1617-8.
[http://dx.doi.org/10.1111/all.14711]
[28]
Dighriri IM, Alhusayni KM, Mobarki AY, et al. Pfizer-BioNTech COVID-19 vaccine (BNT162b2) side effects: A systematic review. Cureus 2022; 14(3): e23526.
[http://dx.doi.org/10.7759/cureus.23526] [PMID: 35494952]
[29]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[30]
Astuti I. Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[31]
Farzi R, Aghbash PS, Eslami N, et al. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022; 233: 153848.
[http://dx.doi.org/10.1016/j.prp.2022.153848] [PMID: 35338971]
[32]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - A new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[33]
Privor-Dumm LA, Poland GA, Barratt J, et al. A global agenda for older adult immunization in the COVID-19 era: A roadmap for action. Vaccine 2021; 39(37): 5240-50.
[http://dx.doi.org/10.1016/j.vaccine.2020.06.082] [PMID: 32703743]
[34]
Wang Y, Deng Z, Shi D. How effective is a mask in preventing COVID‐19 infection? Med Devices Sens 2021; 4(1): e10163.
[http://dx.doi.org/10.1002/mds3.10163] [PMID: 33615150]
[35]
Garg I, Shekhar R, Sheikh AB, Pal S. COVID-19 vaccine in pregnant and lactating women: A review of existing evidence and practice guidelines. Infect Dis Rep 2021; 13(3): 685-99.
[http://dx.doi.org/10.3390/idr13030064] [PMID: 34449637]
[36]
Corrao G, Franchi M, Cereda D, et al. Persistence of protection against SARS-CoV-2 clinical outcomes up to 9 months since vaccine completion: A retrospective observational analysis in Lombardy, Italy. Lancet Infect Dis 2022; 22(5): 649-56.
[http://dx.doi.org/10.1016/S1473-3099(21)00813-6] [PMID: 35093194]
[37]
Yasmin F, Najeeb H, Naeem U, et al. Adverse events following COVID‐19 mRNA vaccines: A systematic review of cardiovascular complication, thrombosis, and thrombocytopenia. Immun Inflamm Dis 2023; 11(3): e807.
[http://dx.doi.org/10.1002/iid3.807] [PMID: 36988252]
[38]
Mozersky J, Mann DL, DuBois JM. The national institute of allergy and infectious diseases decision to stop the adaptive COVID-19 trial: On solid ethical and scientific grounds. JACC Basic Transl Sci 2020; 5(6): 645-7.
[http://dx.doi.org/10.1016/j.jacbts.2020.05.002] [PMID: 32572386]
[39]
Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US. JAMA 2021; 325(11): 1101-2.
[http://dx.doi.org/10.1001/jama.2021.1967] [PMID: 33576785]
[40]
Colmegna I, Valerio V, Amiable N, et al. COVID-19 Vaccine in immunosuppressed adults with autoimmune rheumatic diseases (COVIAAD): Safety, immunogenicity and antibody persistence at 12 months following Moderna Spikevax primary series. RMD 2023; 9(4): e003004.
[41]
Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin Microbiol Infect 2022; 28(2): 202-21.
[http://dx.doi.org/10.1016/j.cmi.2021.10.005] [PMID: 34715347]
[42]
Laczkó D, Hogan MJ, Toulmin SA, et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 2020; 53(4): 724-732.e7.
[http://dx.doi.org/10.1016/j.immuni.2020.07.019] [PMID: 32783919]
[43]
Granados-Riveron JT, Aquino-Jarquin G. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 2021; 142: 111953.
[http://dx.doi.org/10.1016/j.biopha.2021.111953] [PMID: 34343897]
[44]
Ahmed S, Khan S, Imran I, et al. Vaccine development against COVID-19: Study from pre-clinical phases to clinical trials and global use. Vaccines 2021; 9(8): 836.
[http://dx.doi.org/10.3390/vaccines9080836] [PMID: 34451961]
[45]
Paradise J. COVID-IP: Staring down the Bayh-Dole Act with 2020 vision. J Law Biosci 2020; 7(1): lsaa073.
[http://dx.doi.org/10.1093/jlb/lsaa073] [PMID: 33033619]
[46]
Neumann PJ, Cohen JT, Kim DD, Ollendorf DA. Consideration of value-based pricing for treatments and vaccines is important, even in the COVID-19 pandemic. Health Aff 2021; 40(1): 53-61.
[http://dx.doi.org/10.1377/hlthaff.2020.01548] [PMID: 33211534]
[47]
Chu L, McPhee R, Huang W, et al. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 2021; 39(20): 2791-9.
[http://dx.doi.org/10.1016/j.vaccine.2021.02.007] [PMID: 33707061]
[48]
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2 - preliminary report. N Engl J Med 2020; 383(20): 1920-31.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[49]
Saini P. COVID-19 pandemic: potential phase III vaccines in development. Appl Biol Chem J 2020; 1(1): 21-33.
[http://dx.doi.org/10.52679/tabcj.2020.0004]
[50]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[51]
Gote V, Bolla PK, Kommineni N, et al. A comprehensive review of mRNA vaccines. Int J Mol Sci 2023; 24(3): 2700.
[http://dx.doi.org/10.3390/ijms24032700] [PMID: 36769023]
[52]
Chen JH, Ikwuanusi IA, Bommu VJL, et al. COVID-19 vaccine-related myocarditis: A descriptive study of 40 case reports. Cureus 2022; 14(1): e21740.
[http://dx.doi.org/10.7759/cureus.21740] [PMID: 35251812]
[53]
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles- from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[54]
Li YR, Dunn ZS, Garcia G Jr, et al. Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Res Ther 2022; 13(1): 112.
[http://dx.doi.org/10.1186/s13287-022-02787-2] [PMID: 35313965]
[55]
Kong J, Cuevas-Castillo F, Nassar M, et al. Bullous drug eruption after second dose of mRNA-1273 (Moderna) COVID-19 vaccine: Case report. J Infect Public Health 2021; 14(10): 1392-4.
[http://dx.doi.org/10.1016/j.jiph.2021.06.021] [PMID: 34294590]
[56]
Chavda V, Bezbaruah R, Valu D, et al. Adenoviral vector-based vaccine platform for COVID-19: Current status. Vaccines 2023; 11(2): 432.
[http://dx.doi.org/10.3390/vaccines11020432] [PMID: 36851309]
[57]
Mangia A, Serra N, Cocomazzi G, et al. Cellular and humoral immune responses and breakthrough infections after two doses of BNT162b vaccine in healthcare workers (HW) 180 days after the second vaccine dose. Front Public Health 2022; 10: 847384.
[http://dx.doi.org/10.3389/fpubh.2022.847384] [PMID: 35433614]
[58]
Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomised trials. Lancet 2021; 397(10277): 881-91.
[http://dx.doi.org/10.1016/S0140-6736(21)00432-3] [PMID: 33617777]
[59]
Nanthapisal S, Puthanakit T, Jaru-Ampornpan P, et al. A randomized clinical trial of a booster dose with low versus standard dose of AZD1222 in adult after 2 doses of inactivated vaccines. Vaccine 2022; 40(18): 2551-60.
[http://dx.doi.org/10.1016/j.vaccine.2022.03.036] [PMID: 35341647]
[60]
Dal-Ré R. The winding 12-month journey of the AstraZeneca COVID-19 vaccine since its first administration to humans. Therapie 2023; 78(3): 293-302.
[http://dx.doi.org/10.1016/j.therap.2022.07.003] [PMID: 35907680]
[61]
Matar RH, Than CA, Nakanishi H, et al. Outcomes of patients with thromboembolic events following coronavirus disease 2019 AstraZeneca vaccination: A systematic review and meta-analysis. Blood Coagul Fibrinolysis 2022; 33(2): 90-112.
[http://dx.doi.org/10.1097/MBC.0000000000001113] [PMID: 34980833]
[62]
Solomon Y, Eshete T, Mekasha B, Assefa W. COVID-19 vaccine: Side effects after the first dose of the Oxford AstraZeneca vaccine among health professionals in low-income country: Ethiopia. J Multidiscip Healthc 2021; 14: 2577-85.
[http://dx.doi.org/10.2147/JMDH.S331140] [PMID: 34556992]
[63]
Østergaard SD, Schmidt M, Horváth-Puhó E, Thomsen RW, Sørensen HT. Thromboembolism and the Oxford-AstraZeneca COVID-19 vaccine: Side-effect or coincidence? Lancet 2021; 397(10283): 1441-3.
[http://dx.doi.org/10.1016/S0140-6736(21)00762-5] [PMID: 33798498]
[64]
Cross S, Rho Y, Reddy H, et al. Who funded the research behind the Oxford-AstraZeneca COVID-19 vaccine? BMJ Glob Health 2021; 6(12): e007321.
[http://dx.doi.org/10.1136/bmjgh-2021-007321] [PMID: 34937701]
[65]
Falsey AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N Engl J Med 2021; 385(25): 2348-60.
[http://dx.doi.org/10.1056/NEJMoa2105290] [PMID: 34587382]
[66]
Stasi C, Meoni B, Voller F, Silvestri C. SARS-CoV-2 vaccination and the bridge between first and fourth dose: where are we? Vaccines 2022; 10(3): 444.
[http://dx.doi.org/10.3390/vaccines10030444] [PMID: 35335075]
[67]
Chirico F, Teixeira da Silva J, Tsigaris P, Sharun K. Safety & effectiveness of COVID-19 vaccines: A narrative review. Indian J Med Res 2022; 155(1): 91-104.
[http://dx.doi.org/10.4103/ijmr.IJMR_474_21] [PMID: 35859436]
[68]
Bogdanov G, Bogdanov I, Kazandjieva J, Tsankov N. Cutaneous adverse effects of the available COVID-19 vaccines. Clin Dermatol 2021; 39(3): 523-31.
[http://dx.doi.org/10.1016/j.clindermatol.2021.04.001] [PMID: 34518015]
[69]
Stafie C, Petroaie AD, Ungureanu MI, Mihaela A, Viţalariu IIC. COVID-19 vaccines impact on dental practice-review. Rom J Oral Rehabil 2021; 13(1)
[70]
Andrzejczak-Grządko S, Czudy Z, Donderska M. Side effects after COVID-19 vaccinations among residents of Poland. Eur Rev Med Pharmacol Sci 2021; 25(12): 4418-21.
[PMID: 34227078]
[71]
Davis C, Logan N, Tyson G, et al. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog 2021; 17(12): e1010022.
[http://dx.doi.org/10.1371/journal.ppat.1010022] [PMID: 34855916]
[72]
Humphreys IR, Godkin AJ. The potential risks of delaying the second vaccine dose during the SARS-CoV-2 pandemic. QJM 2021; 114(3): 163-5.
[http://dx.doi.org/10.1093/qjmed/hcab046] [PMID: 33677593]
[73]
El-Menyar A, Khan NA, Mekkodathil A, et al. A quick scoping review of the first year of vaccination against the COVID-19 pandemic: Do we need more shots or time? Medicine 2022; 101(37): e30609.
[http://dx.doi.org/10.1097/MD.0000000000030609] [PMID: 36123868]
[74]
Dolzhikova IV, Gushchin VA, Shcheblyakov DV, et al. One-shot immunization with Sputnik Light (the first component of Sputnik V vaccine) is effective against SARS-CoV-2 Delta variant: efficacy data on the use of the vaccine in civil circulation in Moscow. medRxiv 2021; 2021; 21264715.
[http://dx.doi.org/10.1101/2021.10.08.21264715]
[75]
Shkoda AS, Gushchin VA, Ogarkova DA, et al. Sputnik V effectiveness against hospitalization with COVID-19 during Omicron dominance. Vaccines 2022; 10(6): 938.
[http://dx.doi.org/10.3390/vaccines10060938] [PMID: 35746546]
[76]
Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021; 397(10275): 671-81.
[http://dx.doi.org/10.1016/S0140-6736(21)00234-8] [PMID: 33545094]
[77]
Herrera-Comoglio R, Lane S. Vaccine-induced immune thrombocytopenia and thrombosis after the Sputnik V vaccine. N Engl J Med 2022; 387(15): 1431-2.
[http://dx.doi.org/10.1056/NEJMc2210813] [PMID: 36103622]
[78]
Hossain MK, Hassanzadeganroudsari M, Feehan J, Apostolopoulos V. The race for a COVID-19 vaccine: Where are we up to? Expert Rev Vaccines 2022; 21(3): 355-76.
[http://dx.doi.org/10.1080/14760584.2022.2021074] [PMID: 34937492]
[79]
Gushchin VA, Dolzhikova IV, Shchetinin AM, et al. Neutralizing activity of sera from Sputnik V-vaccinated people against variants of concern (VOC: B. 1.1. 7, B. 1.351, P. 1, B. 1.617. 2, B. 1.617. 3) and Moscow endemic SARS-CoV-2 variants. Vaccines 2021; 9(7): 779.
[http://dx.doi.org/10.3390/vaccines9070779] [PMID: 34358195]
[80]
Tumban E. Lead SARS-CoV-2 candidate vaccines: Expectations from phase III trials and recommendations post-vaccine approval. Viruses 2020; 13(1): 54.
[http://dx.doi.org/10.3390/v13010054] [PMID: 33396343]
[81]
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020; 396(10255): 887-97.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[82]
Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet 2021; 397(10275): 642-3.
[http://dx.doi.org/10.1016/S0140-6736(21)00191-4] [PMID: 33545098]
[83]
Turner PJ, Ansotegui IJ, Campbell DE, et al. COVID-19 vaccine-associated anaphylaxis: A statement of the world allergy organization anaphylaxis committee. World Allergy Organ J 2021; 14(2): 100517.
[http://dx.doi.org/10.1016/j.waojou.2021.100517] [PMID: 33558825]
[84]
Cazzola M, Rogliani P, Mazzeo F, Matera MG. Controversy surrounding the Sputnik V vaccine. Respir Med 2021; 187(187): 106569.
[http://dx.doi.org/10.1016/j.rmed.2021.106569] [PMID: 34399368]
[85]
Godkov MA, Ogarkova DA, Gushchin VA, et al. Revaccination in age-risk groups with Sputnik V is immunologically effective and depends on the initial neutralizing SARS-CoV-2 IgG antibodies level. Vaccines 2022; 11(1): 90.
[http://dx.doi.org/10.3390/vaccines11010090] [PMID: 36679936]
[86]
Iversen PL, Bavari S. Inactivated COVID-19 vaccines to make a global impact. Lancet Infect Dis 2021; 21(6): 746-8.
[http://dx.doi.org/10.1016/S1473-3099(21)00020-7] [PMID: 33548196]
[87]
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: A comparative review. Immunol Res 2022; 70(3): 289-315.
[http://dx.doi.org/10.1007/s12026-022-09265-0] [PMID: 35192185]
[88]
Behera P, Singh AK, Subba SH, et al. Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India. Hum Vaccin Immunother 2022; 18(1): 2034456.
[http://dx.doi.org/10.1080/21645515.2022.2034456] [PMID: 35321625]
[89]
Kumar VM, Pandi-Perumal SR, Trakht I, Thyagarajan SP. Strategy for COVID-19 vaccination in India: The country with the second highest population and number of cases. NPJ Vaccines 2021; 6(1): 60.
[http://dx.doi.org/10.1038/s41541-021-00327-2] [PMID: 33883557]
[90]
Talukder A, Kalita C, Neog N, Goswami C, Sarma MK, Hazarika I. A comparative analysis on the safety and efficacy of Covaxin versus other vaccines against COVID-19: A review. Z Naturforsch C J Biosci 2022; 77(7-8): 351-62.
[http://dx.doi.org/10.1515/znc-2021-0301] [PMID: 35245422]
[91]
Yan ZP, Yang M, Lai CL. COVID-19 vaccines: A review of the safety and efficacy of current clinical trials. Pharmaceuticals 2021; 14(5): 406.
[http://dx.doi.org/10.3390/ph14050406] [PMID: 33923054]
[92]
Ghosh PK. Global efforts on vaccines development against SARS-CoV-2 and Indian endeavor. J Med Sci 2021; 8(4): 422-34.
[93]
Dixit A, Tiwari S, Dixit A. Covaxin: An overview of its immunogenicity and safety trials in India. Bioinformation 2021; 17(10): 840-5.
[http://dx.doi.org/10.6026/97320630017840] [PMID: 35574502]
[94]
Hadj Hassine I. COVID‐19 vaccines and variants of concern: A review. Rev Med Virol 2022; 32(4): e2313.
[http://dx.doi.org/10.1002/rmv.2313] [PMID: 34755408]
[95]
Kashte S, Gulbake A, El-Amin SF III, Gupta A. COVID-19 vaccines: Rapid development, implications, challenges and future prospects. Hum Cell 2021; 34(3): 711-33.
[http://dx.doi.org/10.1007/s13577-021-00512-4] [PMID: 33677814]
[96]
El Ayadi AM, Singh P, Duggal M, et al. Feasibility and acceptability of Saheli, a WhatsApp Chatbot, on COVID-19 vaccination among pregnant and breastfeeding women in rural North India. BMJ Innov 2023; 9(4): 195-206.
[http://dx.doi.org/10.1136/bmjinnov-2022-001012]
[97]
Rzymski P, Zeyland J, Poniedziałek B, Małecka I, Wysocki J. The perception and attitudes toward COVID-19 vaccines: A cross-sectional study in Poland. Vaccines 2021; 9(4): 382.
[http://dx.doi.org/10.3390/vaccines9040382] [PMID: 33919672]
[98]
Rabail R, Ahmed W, Ilyas M, et al. The side effects and adverse clinical cases reported after COVID-19 immunization. Vaccines 2022; 10(4): 488.
[http://dx.doi.org/10.3390/vaccines10040488] [PMID: 35455237]
[99]
Darbar S, Agarwal S, Saha S. COVID19 vaccine: COVAXIN®-India’s first indigenous effective weapon to fight against coronavirus (A Review). Parana J Sci Educ 2021; 7(3): 1-9.
[100]
Yan Y, Pang Y, Lyu Z, et al. The COVID-19 vaccines: Recent development, challenges and prospects. Vaccines 2021; 9(4): 349.
[http://dx.doi.org/10.3390/vaccines9040349] [PMID: 33916489]
[101]
Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines 2021; 6(1): 28.
[http://dx.doi.org/10.1038/s41541-021-00292-w] [PMID: 33619260]
[102]
Khare S. Niharika, Singh A, Hussain I, Singh NB, Singh S. SARS-CoV-2 Vaccines: Types, working principle, and its impact on thrombosis and gastrointestinal disorders. Appl Biochem Biotechnol 2023; 195(2): 1541-73.
[http://dx.doi.org/10.1007/s12010-022-04181-3] [PMID: 36222988]
[103]
Joe CC, Segireddy RR, Oliveira C, et al. Accelerating manufacturing to enable large-scale supply of a new adenovirus-vectored vaccine within 100 days. bioRxiv 2021; 2021; 473478.
[http://dx.doi.org/10.1101/2021.12.22.473478]
[104]
Marfe G, Perna S, Shukla A. Effectiveness of COVID 19 vaccines and their challenges (Review). Exp Ther Med 2021; 22(6): 1407.
[http://dx.doi.org/10.3892/etm.2021.10843] [PMID: 34676000]
[105]
Vitiello A, Ferrara F, Auti AM, Di Domenico M, Boccellino M. Advances in the Omicron variant development. J Intern Med 2022; 292(1): 81-90.
[http://dx.doi.org/10.1111/joim.13478] [PMID: 35289434]
[106]
Khoshnood S, Arshadi M, Akrami S, et al. An overview on inactivated and live‐attenuated SARS‐CoV‐2 vaccines. J Clin Lab Anal 2022; 36(5): e24418.
[http://dx.doi.org/10.1002/jcla.24418] [PMID: 35421266]
[107]
Sette A, Crotty S. Immunological memory to SARS‐CoV ‐2 infection and COVID ‐19 vaccines. Immunol Rev 2022; 310(1): 27-46.
[http://dx.doi.org/10.1111/imr.13089] [PMID: 35733376]
[108]
Khan WH, Hashmi Z, Goel A, et al. COVID-19 pandemic and vaccines update on challenges and resolutions. Front Cell Infect Microbiol 2021; 11: 690621.
[109]
Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines 2023; 11(5): 902.
[http://dx.doi.org/10.3390/vaccines11050902] [PMID: 37243006]
[110]
Angkasekwinai N, Niyomnaitham S, Sewatanon J, et al. The immunogenicity against variants of concern and reactogenicity of four COVID-19 booster vaccinations following CoronaVac or ChAdOx1 nCoV-19 primary series. medRxiv 2021.2021.
[111]
Singh JA, Upshur REG. The granting of emergency use designation to COVID-19 candidate vaccines: implications for COVID-19 vaccine trials. Lancet Infect Dis 2021; 21(4): e103-9.
[http://dx.doi.org/10.1016/S1473-3099(20)30923-3] [PMID: 33306980]
[112]
Rashedi R, Samieefar N, Masoumi N, Mohseni S, Rezaei N. COVID‐19 vaccines mix‐and‐match: The concept, the efficacy and the doubts. J Med Virol 2022; 94(4): 1294-9.
[http://dx.doi.org/10.1002/jmv.27463] [PMID: 34796525]
[113]
Shen M, Zhou Y, Ye J, et al. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal 2020; 10(2): 97-101.
[http://dx.doi.org/10.1016/j.jpha.2020.02.010] [PMID: 32292623]
[114]
Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: A systematic review and meta-analysis. BMC Med 2022; 20(1): 200.
[http://dx.doi.org/10.1186/s12916-022-02397-y] [PMID: 35606843]
[115]
Hoffmann M, Krüger N, Schulz S, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022; 185(3): 447-456.e11.
[http://dx.doi.org/10.1016/j.cell.2021.12.032] [PMID: 35026151]
[116]
Pozzetto B, Legros V, Djebali S, et al. Immunogenicity and efficacy of heterologous ChAdOx1-BNT162b2 vaccination. Nature 2021; 600(7890): 701-6.
[http://dx.doi.org/10.1038/s41586-021-04120-y] [PMID: 34673755]
[117]
Richman DD. COVID-19 vaccines: Implementation, limitations and opportunities. J Glob Health Med 2021; 3(1): 1-5.
[118]
Wouters OJ, Shadlen KC, Salcher-Konrad M, et al. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet 2021; 397(10278): 1023-34.
[http://dx.doi.org/10.1016/S0140-6736(21)00306-8] [PMID: 33587887]
[119]
Pai SM, Othman AA, Rusch L, et al. Science and evidence‐based review and approval of COVID‐19 vaccines: A statement of support for the us fda. J Clin Pharmacol 2021; 61(3): 277-9.
[http://dx.doi.org/10.1002/jcph.1794] [PMID: 33274473]
[120]
Mullard A. How COVID vaccines are being divvied up around the world. Nature 2020; 30(1038)
[http://dx.doi.org/10.1038/d41586-020-03370-6] [PMID: 33257891]
[121]
Tregoning JS, Brown ES, Cheeseman HM, et al. Vaccines for COVID-19. Clin Exp Immunol 2020; 202(2): 162-92.
[http://dx.doi.org/10.1111/cei.13517] [PMID: 32935331]
[122]
Ekström AM, Tomson G, Wanyenze R, et al. Addressing production gaps for vaccines in African countries. Bull World Health Organ 2021; 99(12): 910-2.
[http://dx.doi.org/10.2471/BLT.21.287381] [PMID: 34866689]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy