Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Research Article

Determining Anti-Acne Potential of Azadirachta Indica Leaf Powder, Herbal Hydrogel using S. Aureus Growth Inhibition Model, by Agar Well Diffusion Technique

Author(s): Harish Kumar*, Madhu Verma, Harshit Garg, Ishu Garg and Ishika Sharma

Volume 3, 2024

Published on: 20 December, 2023

Article ID: e201223224719 Pages: 7

DOI: 10.2174/0126667797276773231215053914

Price: $65

Abstract

Background: Neem (Azadirachta indica) can be considered as a boon to mankind as it possesses innumerable medicinal benefits despite being cost effective. Its use as an anti-acne agent is widely anticipated. A topical formulation of neem leaf powder as hydrogel was prepared recognizing the use of its phytoconstituents in many skin therapies. The primary goal of topical formulations is to provide drug contact with the skin while reducing overall absorption.

Aim: The aim of this study was to evaluate the anti-acne potential of Neem leaves powder hydrogel.

Method: Neem leaf powder was tested for its organoleptic and physical characteristics. Neem leaf hydrogel was prepared in a 1% w/v carbopol gel and evaluated by agar disk diffusion. A 3% w/w (F1) and 2% w/w (F2) hydrogel was prepared by adding 3 g and 2 g of Neem leaf powder respectively, making a volume of 100 ml, and was evaluated for various parameters. A comparative evaluation tests were conducted for F1, F2 and 1% w/v carbopol gel (blank). After the test results, F1 was optimized for pH and viscosity by adding triethanolamine. Optimized F1 was tested against 1% w/w salicylic acid gel, and Zitcare-S (Standard) for anti-acne activity. Agar plates were prepared and a well was dug using a borer. The wells were filled with the F1, standard and blank, inoculated by the Staphylococcus aureus using the spread culture technique. The plates were incubated for 24 hours at standard conditions.

Results: F1, F2, blank and standard were tested for their viscosity, spreadability, pH and some organoleptic parameters. The test results from F1 and F2 suggested F1 to be a more efficient hydrogel. Standard, blank and F1 were tested using agar well diffusion technique. After the incubation period, the plates were taken out and kept on a white sheet. Using a meter scale, the radius of the zone of inhibition was determined. It was found that F1 gave 1.7 cm, standard gave 1.3 cm and blank gave 0 cm radius size zone of inhibition.

Conclusion: Test results suggest that F1 has better spreadability and viscosity in comparison to F2. This study concludes that F1 is a more stable and efficient formulation as a hydrogel with efficient spreadability and optimum viscosity. F1 has better anti-bacterial activity than the standard and has better anti-acne potential.

[1]
Das, B.K.; Mukherjee, S.C.; Sahu, B.B.; Murjani, G. Neem (Azadirachta indica) extract as an antibacterial agent against fish pathogenic bacteria. Indian J. Exp. Biol., 1999, 37(11), 1097-1100.
[PMID: 10783742]
[2]
Mosaddek, A.S.M.; Rashid, M.M.U. A comparative study of the anti-inflammatory effect of aqueous extract of neem leaf and dexame-thasone. Bangladesh J. Pharmacol., 2008, 3(1), 44-47.
[http://dx.doi.org/10.3329/bjp.v3i1.836]
[3]
Biswas, K.; Chattopadhyay, I.; Banerjee, R.K.; Bandyopadhyay, U. Biological activities and medicinal properties of Neem (Azadirachta indica). Curr. Sci., 2002, 82(11), 1336-1345.
[4]
Harish Kumar, G.; Vidya Priyadarsini, R.; Vinothini, G.; Vidjaya Letchoumy, P.; Nagini, S. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis. Invest. New Drugs, 2010, 28(4), 392-401.
[http://dx.doi.org/10.1007/s10637-009-9263-3] [PMID: 19458912]
[5]
Rahmani, A.H.; Aly, S.M. Nigella sativa and its active constituents thymoquinone shows pivotal role in the diseases prevention and treatment. Asian J. Pharm. Clin. Res., 2015, 8(1), 48-53.
[6]
Chattopadhyay, R.R. Possible biochemical mode of anti-inflammatory action of Azadirachta indica A. Juss. In rats. Indian J. Exp. Biol., 1998, 36(4), 418-420.
[PMID: 9717455]
[7]
Kaur, G.; Sarwar Alam, M.; Athar, M. Nimbidin suppresses functions of macrophages and neutrophils: Relevance to its antiinflammatory mechanisms. Phytother. Res., 2004, 18(5), 419-424.
[http://dx.doi.org/10.1002/ptr.1474] [PMID: 15174005]
[8]
Baligar, N.S.; Aladakatti, R.H.; Ahmed, M.; Hiremath, M.B. Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated Wistar rats. Can. J. Physiol. Pharmacol., 2014, 92(4), 267-277.
[http://dx.doi.org/10.1139/cjpp-2013-0449] [PMID: 24708208]
[9]
Barua, C.C.; Talukdar, A.; Barua, A.G.; Chakraborty, A.; Sarma, R.K.; Bora, R.S. Evaluation of the wound healing activity of methanolic extract of Azadirachta Indica (Neem) and Tinospora cordifolia (Guduchi) in rats. Pharmacologyonline, 2010, 1, 70-77.
[10]
Ghonmode, W.N.; Balsaraf, O.D.; Tambe, V.H.; Saujanya, K.P.; Patil, A.K.; Kakde, D.D. Comparison of the antibacterial efficiency of neem leaf extracts, grape seed extracts and 3% sodium hypochlorite against E. feacalis - An in vitro study. J. Int. Oral Health, 2013, 5(6), 61-66.
[PMID: 24453446]
[11]
Mahfuzul Hoque, M.D.; Bari, Y.; Inatsu, M.L. V. K., J S.uneja; Kawamoto, S.; Inatsu, M.L. Antibacterial activity of guava (Psidium guajava L.) and neem (Azadirachta indica A. Juss.) extracts against food borne pathogens and spoilage bacteria. Foodborne Pathog. Dis., 2007, 4(4), 481-488.
[http://dx.doi.org/10.1089/fpd.2007.0040] [PMID: 18041957]
[12]
Bhargava, K.P.; Gupta, M.B.; Gupta, G.P.; Mitra, C.R. Anti-inflammatory activity of saponins and ot-her natural products. Indian J. Med. Res., 1970, 58(6), 724-730.
[PMID: 5485844]
[13]
Pillai, N.; Santhakumari, G. Anti-arthritic and anti-inflammatory actions of nimbidin. Planta Med., 1981, 43(9), 59-63.
[http://dx.doi.org/10.1055/s-2007-971474] [PMID: 7345443]
[14]
Parveen, M. The bioactivity of neem (Azadirachta indica A. Juss.) based products against various animal systems. Indian J Appl Pure Biol, 2013, 28(2), 287-289.
[15]
Sharma, V.N.; Saksena, K.P. Spermicidal action of sodium nimbinate. Indian J. Med. Res., 1959, 47(3), 322-324.
[http://dx.doi.org/10.4103/ijmr.IJMR_1899_19] [PMID: 13664335]
[16]
Rao, B.S. Nazma and Rao, MJ, Antifungal activity of gedunin. Curr. Sci., 1977, (46), 714-716.
[17]
Bhide, N.K.; Mehta, D.J.; Lewis, R.A. Diuretic action of sodium nimbidinate. Indian J. Med. Sci., 1958, 12(3), 141-145.
[PMID: 13538534]
[18]
Thappa, D.M.; Adityan, B.; Kumari, R. Scoring systems in acne vulgaris. Indian J. Dermatol. Venereol. Leprol., 2009, 75(3), 323-326.
[http://dx.doi.org/10.4103/0378-6323.51258] [PMID: 19439902]
[19]
Davis, E.C.; Callender, V.D. A review of acne in ethnic skin: Pathogenesis, clinical manifestations, and management strategies. J. Clin. Aesthet. Dermatol., 2010, 3(4), 24-38.
[PMID: 20725545]
[20]
Hassanzadeh, P.; Bahmani, M.; Mehrabani, D. Bacterial resistance to antibiotics in acne vulgaris: An in vitro study. Indian J. Dermatol., 2008, 53(3), 122-124.
[http://dx.doi.org/10.4103/0019-5154.43213] [PMID: 19882009]
[21]
Adetutu, A.A.; Oritsewehi, B.; Ikhiwili, O.M.; Moradeke, A.O.; Odochi, A.S.; Adeola, O.E. Studies on staphylococcus aureus isolated from pimples. Pak. J. Biol. Sci., 2017, 20(7), 350-354.
[http://dx.doi.org/10.3923/pjbs.2017.350.354] [PMID: 29023067]
[22]
Dreno, B.; Martin, R.; Moyal, D.; Henley, J.B.; Khammari, A.; Seité, S. Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne. Exp. Dermatol., 2017, 26(9), 798-803.
[http://dx.doi.org/10.1111/exd.13296] [PMID: 28094874]
[24]
Arif, T. Salicylic acid as a peeling agent: A comprehensive review. Clin. Cosmet. Investig. Dermatol., 2015, 8, 455-461.
[http://dx.doi.org/10.2147/CCID.S84765] [PMID: 26347269]
[25]
Banker, G.S.; Rhodes, C.T. Modern Pharmaceutics, 4th ed; Marcel Deckker Inc., 1979, pp. 272-276.
[26]
Pando, D.; Caddeo, C.; Manconi, M.; Fadda, A.M.; Pazos, C. Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol. J. Pharm. Pharmacol., 2013, 65(8), 1158-1167.
[http://dx.doi.org/10.1111/jphp.12093] [PMID: 23837583]
[27]
Lachman, L.; Lieberman, H.A.; Kanig, J.L. Theory and Practice of Industrial Pharmacy, 4th Indian Edition; Verghese Publishing House, 1991, pp. 534-563.
[29]
2023. Accessed from: http://www.fda.gov/ohrms/dockets/ac/03/transcripts/3926T1.htm (March 11, 2023).
[30]
Murdan, S. Organogels in drug delivery. Expert Opin. Drug Deliv., 2005, 2(3), 489-505.
[http://dx.doi.org/10.1517/17425247.2.3.489] [PMID: 16296770]
[31]
Chater, S.J. Cooper and Gunn, Dispensing Pharmacy for Pharmaceutical Students, 12th ed; CBS Publication, 2001, pp. 192-231.
[32]
Suchithra, A.B.; Jeganath, S.; Jeevitha, E. Pharmaceutical gels and recent trends- A review. Res J Pharm Technol, 2019, 12(12), 6181-6186.
[33]
Syeda Ayesha, Ahmed un Nabi; Muhammad Ali, Sheraz; Sofia, Ahmed; Nafeesa, Mustaan; Iqbal, Ahmad Pharmaceutical gels- A review, RADS-. J. Pharm. Pharm. Sci., 2016, 4(1), 40-44.
[34]
Karande, P.; Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta Biomembr., 2009, 1788(11), 2362-2373.
[http://dx.doi.org/10.1016/j.bbamem.2009.08.015] [PMID: 19733150]
[35]
Prem, S.; Surendra, D.; Teena, P.; Maroti, S.S. A review on topical gel. Int. j. creat. res. thoughts, 2020, 8(4), 3951-3954.
[36]
Kulkarni Vishakha, S.; Butte Kishor, D.; Rathod, S.S. Natural polymers–A comprehensive review. Int. j. pharm. biomed. Sci., 2012, 3, 1597-1613.
[37]
van Dijk-Wolthuis, W.N.E.; Hoogeboom, J.A.M.; van Steenbergen, M.J.; Tsang, S.K.Y.; Hennink, W.E. Degradation and release behavior of dextran-based hydrogels. Macromolecules, 1997, 30(16), 4639-4645.
[http://dx.doi.org/10.1021/ma9704018]
[38]
Kovalenko, S.M. Prospects of using synthetic and semi-synthetic gelling substances in development of medicinal and cosmetic gels. Asian J. Pharm., 2017, 11(02)
[39]
Germershaus, O.; Lühmann, T.; Rybak, J.C.; Ritzer, J.; Meinel, L. Application of natural and semi-synthetic polymers for the delivery of sensitive drugs. Int. Mater. Rev., 2015, 60(2), 101-131.
[http://dx.doi.org/10.1179/1743280414Y.0000000045]
[40]
Ubaid, M.; Ilyas, S.; Mir, S.; Khan, A.K.; Rashid, R.; Khan, M.Z.U.; Kanwal, Z.G.; Nawaz, A.; Shah, A.; Murtaza, G. Formulation and in vitro evaluation of carbopol 934-based modified clotrimazole gel for topical application. An. Acad. Bras. Cienc., 2016, 88(4), 2303-2317.
[http://dx.doi.org/10.1590/0001-3765201620160162] [PMID: 27925034]
[41]
Umakanta, Sharma; Saurabh, Arjariya; Rajendra, Chouksey; Neeraj, Sharma A review: Formulation and evaluation of pharmaceutical gel. J. Pharm. Negat. Results., 2022, 13(special issue 1), 1346-1350.
[42]
Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci., 2007, 32(10), 1205-1237.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003]
[43]
Rathod Hemendrasinh, J.; Mehta Dhruti, P. A review on pharmaceutical gel. Int. J. Pharma Sci., 2015, 1(1), 1-14.
[44]
Basha, Shaik Arif Recent trends in usage of polymers in the formulation of dermatological gels. Indian j. biotechnol. pharm. res., 2013, 1(2), 161-168.
[45]
2023. Accessed from: https://pharmacyinfoline.com/carbopol-gel/ (March 25, 2023).
[46]
Fatima, Grace Formulation and evaluation of polyherbal anti-acne gel. Adv J Pharm Life sci Res, 2015, 3(1), 5-8.
[47]
Quality control methods for medicinal plant materials In: World health Organization; Geneve, A. I. T. B. S. Publishers and Distributors: New Delhi, 2002.
[48]
Final text for revision of the international pharmacopoeia, 2012, 1-2.
[49]
Mukherjee, PK Quality control of herbal drugs; Horizons pharmaceutical publishers, 2012, pp. 186-193.
[50]
Kaur, L.P.; Garg, R.; Gupta, G.D. Development and evaluation of topical gel of minoxidil from different polymer bases in application of alopecia. Int. J. Pharm. Pharm. Sci., 2010, 2, 43-47.
[51]
Shivhare, U.D.; Jain, K.B.; Mathur, V.B. Formulation development and evaluation of diclofenac sodium gel using water soluble poly-acrylamide polymer. Dig. J. Nanomater. Biostruct., 2009, 4, 285-290.
[52]
Shah, K.; Desai, T. Formulation and evaluation of wheatgrass topical gel. Indian J. Pharm. Sci., 2012, 3, 3010-3017.
[53]
Ramchandani, U.; Sangameswaran, B. Formulation and evaluation of topical gel of ketoprofen using different polymers. Int. J. Pharm. Biol. Arch., 2013, 4(2), 323-326.
[55]
Shelke Usha, Y.; Mahajan Ashish, A. Review on: An ointment. Int. J. Pharm. Pharm. Res., 2015, 4, 170-192.
[56]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[57]
Oladimeji, F.A.; Akinkunmi, E.O.; Raheem, A.I.; Abiodun, G.O.; Bankole, V.O. Evaluation of topical antimicrobial ointment formulations of essential oil of lippia multiflora moldenke. Afr. J. Tradit. Complement. Altern. Med., 2015, 12(5), 135-144.
[http://dx.doi.org/10.21010/ajtcam.v12i5.18]
[58]
Magaldi, S.; Mata-Essayag, S.; Hartung de Capriles, C.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis., 2004, 8(1), 39-45.
[http://dx.doi.org/10.1016/j.ijid.2003.03.002] [PMID: 14690779]
[59]
Rajveer, B.; Monica, O.; Patil, P.H.; Nawandar, K.S. A review on: Ointment and ointment bases. World J. Pharm. Res., 2016, 5(9), 335-345.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy