Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Research Article

Rosmarinic Acid as a Potential Multi-targeted Inhibitor for SAR-CoV-2: An In silico Virtual Screening Approach

Author(s): Sumit Kumar* and Vikash Kumar

Volume 5, Issue 3, 2024

Published on: 18 December, 2023

Article ID: e181223224611 Pages: 10

DOI: 10.2174/0126667975275509231211062032

Price: $65

Abstract

Background: Rosmarinic acid, a natural compound found in various plants like rosemary and lemon balm, may have potential as a multi-targeted inhibitor for SARS-CoV-2, a strain of virus responsible for COVID-19. SARS-CoV-2, a fusion protein of S1 and S2 subunits, has multiple precursors angiotensin-converting enzyme2 (ACE2), transmembrane serine protease 2 (TMPRSS2), papain-like protease (PLpro), and 3-chymotrypsin-like protease (3CLpro). The chemical interaction of rosmarinic acid with SARS-CoV-2 is of major interest reported here.

Objective: The quantitative study of rosmarinic acid with various precursors of SARS-CoV-2 has been accounted for in detail. Furthermore, the conformational flexibility of rosmarinic acid has also been investigated during the interaction with four different precursors of SARS-CoV-2.

Methods: This investigation delves deeply into the analysis of various aspects, including geometric parameters, atomic charge, the energy gap between the highest occupied and lowest unoccupied molecular orbitals, dipole moments, and the analysis of non-covalent interactions (NCI). Furthermore, the study incorporates molecular docking techniques in conjunction with thorough quantum chemical calculations to provide comprehensive insights.

Results: Rosmarinic acid shows promise as a versatile inhibitor of SARS-CoV-2, the virus responsible for COVID-19. It can target multiple key precursors of the virus, including TMPRSS2, angiotensin- converting enzyme2, 3CLpro, and PLpro, found in the fusion protein comprising S1 and S2 subunits. This study delves into the quantitative analysis of rosmarinic acid's interactions with these precursors. Its adaptable structure allows it to engage with them effectively. Various molecular parameters, including atomic charge, energy gap between molecular orbitals, dipole moment, and noncovalent interactions, are comprehensively explored.

Conclusion: Combining molecular docking and quantum mechanics, the findings suggest rosmarinic acid's potential as a multi-targeted SARS-CoV-2 inhibitor.

Graphical Abstract

[1]
Zhou H, Yang J, Zhou C, et al. A review of SARS-CoV2: Compared with SARS-CoV and MERS-CoV. Front Med 2021; 8: 628370.
[http://dx.doi.org/10.3389/fmed.2021.628370] [PMID: 34950674]
[2]
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, et al. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7(2): e06350.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06350] [PMID: 33655086]
[3]
Saeedi-Boroujeni A, Mahmoudian-Sani MR, Bahadoram M, Alghasi A. COVID‐19: A case for inhibiting nlrp3 inflammasome, suppression of inflammation with curcumin? Basic Clin Pharmacol Toxicol 2021; 128(1): 37-45.
[http://dx.doi.org/10.1111/bcpt.13503] [PMID: 33099890]
[4]
Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021; 2(1): e13-22.
[http://dx.doi.org/10.1016/S2666-5247(20)30172-5] [PMID: 33521734]
[5]
Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66: 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[6]
Yan Y, Chang L, Wang L. Laboratory testing of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 (2019‐nCoV): Current status, challenges, and countermeasures. Rev Med Virol 2020; 30(3): e2106.
[http://dx.doi.org/10.1002/rmv.2106] [PMID: 32302058]
[7]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[9]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[10]
Mortola E, Roy P. Efficient assembly and release of SARS coronavirus‐like particles by a heterologous expression system. FEBS Lett 2004; 576(1-2): 174-8.
[http://dx.doi.org/10.1016/j.febslet.2004.09.009] [PMID: 15474033]
[11]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[12]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[13]
Dömling A, Gao L. Chemistry and biology of SARS-CoV-2. Chem 2020; 6(6): 1283-95.
[http://dx.doi.org/10.1016/j.chempr.2020.04.023] [PMID: 32529116]
[14]
DeDiego ML, Álvarez E, Almazán F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 2007; 81(4): 1701-13.
[http://dx.doi.org/10.1128/JVI.01467-06] [PMID: 17108030]
[15]
Wang C, Zheng X, Gai W, et al. MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in Rhesus macaques. Oncotarget 2017; 8(8): 12686-94.
[http://dx.doi.org/10.18632/oncotarget.8475] [PMID: 27050368]
[16]
Graham BS. Rapid COVID-19 vaccine development. Science 2020; 368(6494): 945-6.
[http://dx.doi.org/10.1126/science.abb8923] [PMID: 32385100]
[17]
A translatable subunit nanovaccine for COVID-19 2020.
[18]
Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601.
[http://dx.doi.org/10.1038/s41467-020-16505-0] [PMID: 32433465]
[19]
Wang J, Peng Y, Xu H, Cui Z, Williams RO III. The COVID-19 vaccine race: Challenges and opportunities in vaccine formulation. AAPS PharmSciTech 2020; 21(6): 225.
[http://dx.doi.org/10.1208/s12249-020-01744-7] [PMID: 32761294]
[20]
Inatani R, Nakatani N, Fuwa H. Antioxidative effect of the constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agric Biol Chem 1983; 47(3): 521-8.
[http://dx.doi.org/10.1271/bbb1961.47.521]
[21]
Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018; 5(3): 98.
[http://dx.doi.org/10.3390/medicines5030098] [PMID: 30181448]
[22]
González-Minero FJ, Bravo-Díaz L, Ayala-Gómez A. Rosmarinus officinalis L.(Rosemary): An ancient plant with uses in personal healthcare and cosmetics. Cosmetics 2020; 7(4): 77.
[http://dx.doi.org/10.3390/cosmetics7040077]
[23]
de Macedo LM, Santos ÉM, Militão L, et al. Rosemary (Rosmarinus officinalis L., Syn Salvia rosmarinus Spenn.) and its topical applications: A review. Plants 2020; 9(5): 651.
[24]
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 2020; 23(9): 1100-12.
[PMID: 32963731]
[25]
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants 2021; 10(9): 1439.
[http://dx.doi.org/10.3390/antiox10091439] [PMID: 34573069]
[26]
Mahmod AI, Haif SK, Kamal A, Al-ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9: 924192.
[http://dx.doi.org/10.3389/fnut.2022.924192] [PMID: 35990343]
[27]
Ngo SNT, Williams DB, Head RJ. Rosemary and cancer prevention: Preclinical perspectives. Crit Rev Food Sci Nutr 2011; 51(10): 946-54.
[http://dx.doi.org/10.1080/10408398.2010.490883] [PMID: 21955093]
[28]
al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999; 37(2): 124-30.
[PMID: 10641130]
[29]
Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003; 62(2): 121-5.
[http://dx.doi.org/10.1016/S0031-9422(02)00513-7] [PMID: 12482446]
[30]
Park SU, Uddin R, Xu H, Kim YK, Lee SY. Biotechnological applications for rosmarinic acid production in plant. Afr J Biotechnol 2008; 7.
[31]
Alagawany M, Abd El-Hack ME, Farag MR, et al. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim Health Res Rev 2017; 18(2): 167-76.
[http://dx.doi.org/10.1017/S1466252317000081] [PMID: 29110743]
[32]
Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual screening of natural products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules 2020; 25(10): 2271.
[http://dx.doi.org/10.3390/molecules25102271] [PMID: 32408547]
[33]
Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: Proposed targets and repurposed drugs. Future Med Chem 2020; 12(17): 1579-601.
[http://dx.doi.org/10.4155/fmc-2020-0147] [PMID: 32564623]
[34]
Kumar S. Curcumin as a potential multiple-target inhibitor against SARS-CoV-2 infection: A detailed interaction study using quantum chemical calculations. J Serb Chem Soc 2023; 88(4): 381-94.
[http://dx.doi.org/10.2298/JSC220921087K]
[35]
McAloon C, Collins Á, Hunt K, et al. Incubation period of COVID-19: A rapid systematic review and meta-analysis of observational research. BMJ Open 2020; 10(8): e039652.
[http://dx.doi.org/10.1136/bmjopen-2020-039652] [PMID: 32801208]
[36]
Byrne AW, McEvoy D, Collins AB, et al. Inferred duration of infectious period of SARS-CoV-2: Rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 2020; 10(8): e039856.
[http://dx.doi.org/10.1136/bmjopen-2020-039856] [PMID: 32759252]
[37]
Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 2020; 396(10262): 1595-606.
[http://dx.doi.org/10.1016/S0140-6736(20)32137-1] [PMID: 33065034]
[38]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[39]
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586(7830): 516-27.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[40]
Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021; 891: 173759.
[http://dx.doi.org/10.1016/j.ejphar.2020.173759] [PMID: 33249077]
[41]
dos Santos Nascimento IJ, de Moura RO. Would the development of a multitarget inhibitor of 3CLpro and TMPRSS2 be promising in the fight against SARS-CoV-2? Med Chem 2023; 19(5): 405-12.
[http://dx.doi.org/10.2174/1573406418666221011093439] [PMID: 36221875]
[42]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[43]
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[44]
Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ Res 2020; 188: 109819.
[http://dx.doi.org/10.1016/j.envres.2020.109819] [PMID: 32569870]
[45]
Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci Technol 2020; 54(6): 635-8.
[http://dx.doi.org/10.1080/02786826.2020.1749229] [PMID: 32308568]
[46]
Mahdian S, Ebrahim-Habibi A, Zarrabi M. Drug repurposing using computational methods to identify therapeutic options for COVID-19. J Diabetes Metab Disord 2020; 19(2): 691-9.
[http://dx.doi.org/10.1007/s40200-020-00546-9] [PMID: 32837954]
[47]
Alrasheid AA, Babiker MY, Awad TA. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In silico Pharmacol 2021; 9(1): 10.
[http://dx.doi.org/10.1007/s40203-020-00073-8] [PMID: 33432283]
[48]
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Computeraided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[49]
Kumar S, Mukherjee A, Das A. Structure of indole···imidazole heterodimer in a supersonic jet: a gas phase study on the interaction between the aromatic side chains of tryptophan and histidine residues in proteins. J Phys Chem A 2012; 116(47): 11573-80.
[http://dx.doi.org/10.1021/jp309167a] [PMID: 23134474]
[50]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[51]
Sanner MF. Python: A programming language for software integration and development. J Mol Graph Model 1999; 17(1): 57-61.
[PMID: 10660911]
[52]
Kumar S, Pande V, Das A. π-Hydrogen bonding wins over conventional hydrogen bonding interaction: A jet-cooled study of indole···furan heterodimer. J Phys Chem A 2012; 116(5): 1368-74.
[http://dx.doi.org/10.1021/jp211366z] [PMID: 22224425]
[53]
Kumar S, Kaul I, Biswas P, Das A. Structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet: Competition between NH··· N and N-H···F interactions. J Phys Chem A 2011; 115(37): 10299-308.
[http://dx.doi.org/10.1021/jp205894q] [PMID: 21830828]
[54]
Furche F, Ahlrichs R, Hättig C, Klopper W, Sierka M, Weigend F. Turbomole. Wiley Interdiscip Rev Comput Mol Sci 2014; 4(2): 91-100.
[http://dx.doi.org/10.1002/wcms.1162]
[55]
Steffen C, Thomas K, Huniar U, et al. TmoleX—A graphical user interface for TURBOMOLE. J Comput Chem 2010; 31(16): 2967-70.
[http://dx.doi.org/10.1002/jcc.21576] [PMID: 20928852]
[56]
Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. Revealing noncovalent interactions. J Am Chem Soc 2010; 132(18): 6498-506.
[http://dx.doi.org/10.1021/ja100936w]
[57]
Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 2006; 8(9): 1057-65.
[http://dx.doi.org/10.1039/b515623h] [PMID: 16633586]
[58]
Tirado-Rives J, Jorgensen WL. Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 2008; 4(2): 297-306.
[http://dx.doi.org/10.1021/ct700248k] [PMID: 26620661]
[59]
Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys 1985; 83(2): 735-46.
[http://dx.doi.org/10.1063/1.449486]
[60]
Trabada DG, Soler-Polo D, Mendieta-Moreno JI, Ortega J. Mulliken-dipole population analysis. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12722072.v1]
[61]
Kumar S, Kumar S, Rai RN, et al. Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Sol Energy 2023; 249: 606-23.
[http://dx.doi.org/10.1016/j.solener.2022.12.013]
[62]
Katoch G. Sol-gel auto-combustion developed Nd and Dy co-doped Mg nanoferrites for photocatalytic water treatment, electrocatalytic water splitting and biological applications. JWPE 2023; 53: 103726.
[63]
Kumar S, Das A. Observation of exclusively π-stacked heterodimer of indole and hexafluorobenzene in the gas phase. J Chem Phys 2013; 139(10): 104311.
[http://dx.doi.org/10.1063/1.4820532] [PMID: 24050348]
[64]
Saleh G, Gatti C, Lo Presti L, Contreras-García J. Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chemistry 2012; 18(48): 15523-36. \
[http://dx.doi.org/10.1002/chem.201201290] [PMID: 23038653]
[65]
Khadija , Irshad H, Rafique S, et al. AIEE active J-aggregates of naphthalimide based fluorescent probe for detection of Nitrobenzene: Combined experimental and theoretical approaches for Non-covalent interaction analysis. Spectrochim Acta A Mol Biomol Spectrosc 2023; 290: 122273.
[http://dx.doi.org/10.1016/j.saa.2022.122273] [PMID: 36584641]
[66]
Kumar Panja S, Kumar S, Fazal AD, Bera S. Molecular aggregation kinetics of Heteropolyene: An experimental, topological and solvation dynamics studies. J Photochem Photobiol Chem 2023; 445: 115084.
[http://dx.doi.org/10.1016/j.jphotochem.2023.115084]
[67]
Kumar Panja S, Kumar S. Weak intra and intermolecular interactions via aliphatic hydrogen bonding in piperidinium based ionic Liquids: Experimental, topological and molecular dynamics studies. J Mol Liq 2023; 375: 121354.
[http://dx.doi.org/10.1016/j.molliq.2023.121354]
[68]
Kumar S, Singh SK, Vaishnav JK, Hill JG, Das A. Interplay among electrostatic, dispersion, and steric interactions: Spectroscopy and quantum chemical calculations of π‐hydrogen bonded complexes. ChemPhysChem 2017; 18(7): 828-38.
[http://dx.doi.org/10.1002/cphc.201601405] [PMID: 28124829]
[69]
Singh SK, Kumar S, Das A. Competition between n → π Ar * and conventional hydrogen bonding (N–H···N) interactions: an ab initio study of the complexes of 7-azaindole and fluorosubstituted pyridines. Phys Chem Chem Phys 2014; 16(19): 8819-27.
[http://dx.doi.org/10.1039/C3CP54169J] [PMID: 24326976]
[70]
Kumar S, Singh SK, Calabrese C, Maris A, Melandri S, Das A. Structure of saligenin: Microwave, UV and IR spectroscopy studies in a supersonic jet combined with quantum chemistry calculations. Phys Chem Chem Phys 2014; 16(32): 17163-71.
[http://dx.doi.org/10.1039/C4CP01693A] [PMID: 25010147]
[71]
Kumar S, Das A. Effect of acceptor heteroatoms on π-hydrogen bonding interactions: A study of indole⋅⋅⋅thiophene heterodimer in a supersonic jet. J Chem Phys 2012; 137(9): 094309.
[http://dx.doi.org/10.1063/1.4748818] [PMID: 22957571]
[72]
Kumar S, Das A. Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase study of indole[ellipsis (horizontal)](pyrrole)2 heterotrimer. J Chem Phys 2012; 136: 174302.
[http://dx.doi.org/10.1063/1.4706517] [PMID: 22583225]
[73]
Kumar S, Biswas P, Kaul I, Das A. Competition between hydrogen bonding and dispersion interactions in the indole···pyridine dimer and (indole)2···pyridine trimer studied in a supersonic jet. J Phys Chem A 2011; 115(26): 7461-72.
[http://dx.doi.org/10.1021/jp202658r] [PMID: 21634367]
[74]
Novoa T, Laplaza R, Peccati F, Fuster F, Contreras-García J. The NCIWEB server: A novel implementation of the noncovalent interactions index for biomolecular systems. J Chem Inf Model 2023; 63(15): 4483-9.
[http://dx.doi.org/10.1021/acs.jcim.3c00271] [PMID: 37537899]
[75]
Sepay N, Chakrabarti S, Afzal M, Alarifi A, Mal D. Identification of 4-acrylamido-N-(pyridazin-3-yl)benzamide as anti-COVID-19 compound: A DFTB, molecular docking, and molecular dynamics study. RSC Advances 2022; 12(37): 24178-86.
[http://dx.doi.org/10.1039/D2RA04333E] [PMID: 36128538]
[76]
Contreras-García J, Johnson ER, Keinan S, et al. NCIPLOT: A program for plotting non-covalent interaction regions. J Chem Theory Comput 2011; 7(3): 625-32.
[http://dx.doi.org/10.1021/ct100641a] [PMID: 21516178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy