Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Review on Heavy Metal Removal and Efficacy of Biosorbents

In Press, (this is not the final "Version of Record"). Available online 08 December, 2023
Author(s): Rajesh Nithyanandam*, Rupika Rajendran, Rajavarsini Rajesh and Moontarij Jahan Orvy
Published on: 08 December, 2023

DOI: 10.2174/0115734137278018231127062510

open access plus

Abstract

Industries release a significant amount of wastewater contaminated with heavy metals. It is a major cause of pollution and a potential health hazard when discharged into the environment without treatment. Standard adsorbents for removing heavy metals have certain limitations, like incomplete metal removal, high energy requirements, and undesirable waste generation. Therefore, the use of biosorbents is an effective alternative to conventional procedures. This critical review evaluates and summarizes the optimum results obtained from different papers covering different parameters such as biosorbent removal efficiency and their adsorption capacity, adsorbent dosage, and effect of pretreatment for removal of single and combination of heavy metals. The influence of pH, contact time, and sorbent dose on biosorption has been discussed. The Langmuir model and the Freundlich model are studied for various biosorbents, and the respective results are obtained and summarised. The pseudo-first and second-order models have been evaluated to study the sorption kinetics. Through this review, it can be concluded that biosorbents can be a promising alternative to treat industrial effluents, mainly because of their high metal binding capacity, low cost, high efficiency in diluted effluents, and environmentally friendly nature.

[1]
Sassi, M.; Bestani, B.; Said, A.H.; Benderdouche, N.; Guibal, E. Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination, 2010, 262(1-3), 243-250.
[http://dx.doi.org/10.1016/j.desal.2010.06.022]
[2]
Farnane, M.; Tounsadi, H.; Elmoubarki, R.; Mahjoubi, F.Z.; Elhalil, A.; Saqrane, S.; Abdennouri, M.; Qourzal, S.; Barka, N. Alkaline treated carob shells as sustainable biosorbent for clean recovery of heavy metals: Kinetics, equilibrium, ions interference and process optimisation. Ecol. Eng., 2017, 101, 9-20.
[http://dx.doi.org/10.1016/j.ecoleng.2017.01.012]
[3]
Wang, X.; Li, Z.; Sun, C. Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: Marine macroalgae and agricultural by-products. J. Hazard. Mater., 2008, 153(3), 1176-1184.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.079] [PMID: 17997216]
[4]
Ihsanullah; Al-Khaldi, F.A.; Abu-Sharkh, B.; Abulkibash, A.M.; Qureshi, M.I.; Laoui, T.; Atieh, M.A. Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination Water Treat., 2016, 57(16), 7232-7244.
[http://dx.doi.org/10.1080/19443994.2015.1021847]
[5]
Gupta, V.K.; Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater., 2008, 152(1), 407-414.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.028] [PMID: 17716814]
[6]
Waseem, S.; Din, M.I.; Nasir, S.; Rasool, A. Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II) and Cd(II) ions from aqueous solutions. Arab. J. Chem., 2014, 7(6), 1091-1098.
[http://dx.doi.org/10.1016/j.arabjc.2012.03.020]
[7]
Chakraborty, D.; Maji, S.; Bandyopadhyay, A.; Basu, S. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol., 2007, 98(15), 2949-2952.
[http://dx.doi.org/10.1016/j.biortech.2006.09.035] [PMID: 17118649]
[8]
Kumar, M.; Singh, A.K.; Sikandar, M. Biosorption of Hg (II) from aqueous solution using algal biomass: Kinetics and isotherm studies. Heliyon, 2020, 6(1), e03321.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03321] [PMID: 32042987]
[9]
Quyen, V.; Pham, T-H.; Kim, J.; Thanh, D.M.; Thang, P.Q.; Van Le, Q.; Jung, S.H.; Kim, T.Y. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 2021, 284, 131312.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131312]
[10]
Ihsanullah; Al-Khaldi, F.A.; Abusharkh, B.; Khaled, M.; Atieh, M.A.; Nasser, M.S.; laoui, T.; Saleh, T.A.; Agarwal, S.; Tyagi, I.; Gupta, V.K. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq., 2015, 204, 255-263.
[http://dx.doi.org/10.1016/j.molliq.2015.01.033]
[11]
Ihsanullah, I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J., 2020, 388, 124340.
[http://dx.doi.org/10.1016/j.cej.2020.124340]
[12]
Kelly-Vargas, K.; Cerro-Lopez, M.; Reyna-Tellez, S.; Bandala, E.R.; Sanchez-Salas, J.L. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys. Chem. Earth Parts ABC, 2012, 37-39, 26-29.
[http://dx.doi.org/10.1016/j.pce.2011.03.006]
[13]
Volesky, B. Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol. Rev., 1994, 14(4), 291-302.
[http://dx.doi.org/10.1111/j.1574-6976.1994.tb00102.x] [PMID: 7917417]
[14]
Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Separ. Purif. Tech., 2021, 278, 119510.
[http://dx.doi.org/10.1016/j.seppur.2021.119510]
[15]
Raza, M.H.; Sadiq, A.; Farooq, U.; Athar, M.; Hussain, T.; Mujahid, A.; Salman, M. Phragmites karka as a biosorbent for the removal of mercury metal ions from aqueous solution: Effect of modification. J. Chem., 2015, 2015, 1-12.
[16]
Manohar, D.M.; Anoop Krishnan, K.; Anirudhan, T.S. Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res., 2002, 36(6), 1609-1619.
[http://dx.doi.org/10.1016/S0043-1354(01)00362-1] [PMID: 11996349]
[17]
Es-sahbany, H.; Berradi, M.; Nkhili, S.; Hsissou, R.; Allaoui, M.; Loutfi, M.; Bassir, D.; Belfaquir, M.; El Youbi, M.S. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Mater. Today Proc., 2019, 13, 866-875.
[http://dx.doi.org/10.1016/j.matpr.2019.04.050]
[18]
Raji, C.; Anirudhan, T.S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Res., 1998, 32(12), 3772-3780.
[http://dx.doi.org/10.1016/S0043-1354(98)00150-X]
[19]
Beidokhti, M.Z.; Naeeni, S.T. AbdiGhahroudi MS. Biosorption of nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civil Eng. J., 2019, 5(2), 447-457.
[http://dx.doi.org/10.28991/cej-2019-03091259]
[20]
Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K.S.; Kornaros, M.; Anastopoulos, I. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. J. Environ. Manage., 2018, 227, 354-364.
[http://dx.doi.org/10.1016/j.jenvman.2018.08.064] [PMID: 30199731]
[21]
Nasrullah, A.; Khan, H.; Khan, A.S.; Man, Z.; Muhammad, N.; Khan, M.I.; Abd El-Salam, N.M.; Naser, M. Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution. ScientificWorldJournal, 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/562693] [PMID: 25705714]
[22]
Gupta, S.; Sharma, S.K.; Kumar, A. Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Sci. Eng., 2019, 12(1), 27-36.
[http://dx.doi.org/10.1016/j.wse.2019.04.003]
[23]
Saravanan, D.; Gomathi, T.; Sudha, P.N. Sorption studies on heavy metal removal using chitin/bentonite biocomposite. Int. J. Biol. Macromol., 2013, 53, 67-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.005] [PMID: 23148945]
[24]
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, 40(9), 1361-1403.
[http://dx.doi.org/10.1021/ja02242a004]
[25]
Karthikeyan, G.; Anbalagan, K.; Andal, N.M. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. J. Chem. Sci., 2004, 116(2), 119-127.
[http://dx.doi.org/10.1007/BF02708205]
[26]
Kurniawan, A.; Sisnandy, V.O.A.; Trilestari, K.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater. Ecol. Eng., 2011, 37(6), 940-947.
[http://dx.doi.org/10.1016/j.ecoleng.2011.01.019]
[27]
Park, D.; Yun, Y.S.; Park, J.M. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere, 2005, 60(10), 1356-1364.
[http://dx.doi.org/10.1016/j.chemosphere.2005.02.020] [PMID: 16054904]
[28]
Pillai, S.S.; Mullassery, M.D.; Fernandez, N.B.; Girija, N.; Geetha, P.; Koshy, M. Biosorption of Cr(VI) from aqueous solution by chemically modified potato starch: Equilibrium and kinetic studies. Ecotoxicol. Environ. Saf., 2013, 92, 199-205.
[http://dx.doi.org/10.1016/j.ecoenv.2013.01.020] [PMID: 23499185]
[29]
Forstner, V.; Wittman, G.T.W. Metal Pollution in the Aquatic Environment; Springer-Verlag, Berlin: Heidelberg, New York, 1981, p. 12±45.
[http://dx.doi.org/10.1007/978-3-642-69385-4]
[30]
Gupta, S.; Garg, D.; Kumar, A. Cadmium biosorption using Aloe. barbadensis Miller leaves waste powder treated with sodium bicarbonate. Cleaner Waste Systems, 2022, 3, 100032.
[http://dx.doi.org/10.1016/j.clwas.2022.100032]
[31]
Fourest, E.; Roux, J.C. Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH. Appl. Microbiol. Biotechnol., 1992, 37(3), 399-403.
[http://dx.doi.org/10.1007/BF00211001]
[32]
Selatnia, A.; Bakhti, M.Z.; Madani, A.; Kertous, L.; Mansouri, Y. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy, 2004, 75(1-4), 11-24.
[http://dx.doi.org/10.1016/j.hydromet.2004.06.005]
[33]
Matheickal, J.T.; Yu, Q. Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour. Technol., 1999, 69(3), 223-229.
[http://dx.doi.org/10.1016/S0960-8524(98)00196-5]
[34]
Kaewsarn, P.; Yu, Q. Cadmium(II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Environ. Pollut., 2001, 112(2), 209-213.
[http://dx.doi.org/10.1016/S0269-7491(00)00114-7] [PMID: 11234537]
[35]
Du, Y.; Lian, F.; Zhu, L. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environ. Pollut., 2011, 159(7), 1763-1768.
[http://dx.doi.org/10.1016/j.envpol.2011.04.017] [PMID: 21550150]
[36]
Peña-Rodríguez, S.; Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E. Kinetics of Hg(II) adsorption and desorption in calcined mussel shells. J. Hazard. Mater., 2010, 180(1-3), 622-627.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.079] [PMID: 20466485]
[37]
Hossain, A.; Bhattacharyya, S.R.; Aditya, G. Biosorption of cadmium from aqueous solution by shell dust of the freshwater snail Lymnaea luteola. Environ. Technol. Innov., 2015, 4, 82-91.
[http://dx.doi.org/10.1016/j.eti.2015.05.001]
[38]
Wickham, J.R.; Halye, J.L.; Kashtanov, S.; Khandogin, J.; Rice, C.V. Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations. J. Phys. Chem. B, 2009, 113(7), 2177-2183.
[http://dx.doi.org/10.1021/jp809313j] [PMID: 19173634]
[39]
Çolak, F.; Atar, N.; Yazıcıoğlu, D.; Olgun, A. Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem. Eng. J., 2011, 173(2), 422-428.
[http://dx.doi.org/10.1016/j.cej.2011.07.084]
[40]
Hanif, M.A.; Nadeem, R.; Bhatti, H.N.; Ahmad, N.R.; Ansari, T.M. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater., 2007, 139(2), 345-355.
[http://dx.doi.org/10.1016/j.jhazmat.2006.06.040] [PMID: 16860463]
[41]
Riaz, M.; Nadeem, R.; Hanif, M.A.; Ansari, T.M.; Rehman, K. Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass. J. Hazard. Mater., 2009, 161(1), 88-94.
[http://dx.doi.org/10.1016/j.jhazmat.2008.03.096] [PMID: 18502037]
[42]
King, P.; Rakesh, N.; Beenalahari, S.; Prasanna Kumar, Y.; Prasad, V.S.R.K. Removal of lead from aqueous solution using Syzygium cumini L.: Equilibrium and kinetic studies. J. Hazard. Mater., 2007, 142(1-2), 340-347.
[http://dx.doi.org/10.1016/j.jhazmat.2006.08.027] [PMID: 16987604]
[43]
Ekmekyapar Torun, F.; Aslan, A.; Bayhan, Y.K.; Cakici, A. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J. Hazard. Mater., 2006, 137(1), 293-298.
[http://dx.doi.org/10.1016/j.jhazmat.2006.02.003] [PMID: 16530938]
[44]
Basci, N.; Kocadagistan, E.; Kocadagistan, B. Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination, 2004, 164(2), 135-140.
[http://dx.doi.org/10.1016/S0011-9164(04)00172-9]
[45]
Chen, H.; Dai, G.; Zhao, J.; Zhong, A.; Wu, J.; Yan, H. Removal of copper(II) ions by a biosorbent—Cinnamomum camphora leaves powder. J. Hazard. Mater., 2010, 177(1-3), 228-236.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.022] [PMID: 20022692]
[46]
Aksu, Z.; İşoğlu, İ.A. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem., 2005, 40(9), 3031-3044.
[http://dx.doi.org/10.1016/j.procbio.2005.02.004]
[47]
Norouzi, S.; Heidari, M.; Alipour, V.; Rahmanian, O.; Fazlzadeh, M.; Mohammadi-moghadam, F.; Nourmoradi, H.; Goudarzi, B.; Dindarloo, K. Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresour. Technol., 2018, 258, 48-56.
[http://dx.doi.org/10.1016/j.biortech.2018.02.106] [PMID: 29522925]
[48]
Nham, N.T.; Tahtamouni, T.M.A.; Nguyen, T.D.; Huong, P.T.; Jitae, K.; Viet, N.M.; Noi, N.V.; Phuong, N.M.; Anh, N.T.H. Synthesis of iron modified rice straw biochar toward arsenic from groundwater. Mater. Res. Express, 2019, 6(11), 115528.
[http://dx.doi.org/10.1088/2053-1591/ab4b98]
[49]
Şen, A.; Pereira, H.; Olivella, M.A.; Villaescusa, I. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol., 2015, 12(1), 391-404.
[http://dx.doi.org/10.1007/s13762-014-0525-z]
[50]
Sen, A.U.; Olivella Costa, À.; Fiol Santaló, N.; Miranda, I.; Villaescusa Gil, I.; Pereira, H Removal of chromium (VI) in aqueous environments using cork and heat-treated cork samples from Quercus cerris and Quercus suber. BioResources, 2012, 7(4), 4843-4857.
[51]
Niad, M.; Rasoolzadeh, L.; Zarei, F. Biosorption of copper (II) on Sargassum angostifolium C. agardh phaeophyceae biomass. Chem. Spec. Bioavail., 2014, 26(3), 176-183.
[http://dx.doi.org/10.3184/095422914X14039722451529]
[52]
Aldor, I.; Fourest, E.; Volesky, B. Desorption of cadmium from algal biosorbent. Can. J. Chem. Eng., 1995, 73(4), 516-522.
[http://dx.doi.org/10.1002/cjce.5450730412]
[53]
Davis, T.A.; Volesky, B.; Vieira, R.H.S.F. Sargassum seaweed as biosorbent for heavy metals. Water Res., 2000, 34(17), 4270-4278.
[http://dx.doi.org/10.1016/S0043-1354(00)00177-9]
[54]
Kılıç, M.; Keskin, M.E.; Mazlum, S.; Mazlum, N. Hg(II) and Pb(II) adsorption on activated sludge biomass: Effective biosorption mechanism. Int. J. Miner. Process., 2008, 87(1-2), 1-8.
[http://dx.doi.org/10.1016/j.minpro.2008.01.001]
[55]
Wang, X.; Chen, L.; Xia, S.; Zhao, J.; Chovelon, J.M.; Renault, N.J. Biosorption of Cu(II) and Pb(II) from aqueous solutions by dried activated sludge. Miner. Eng., 2006, 19(9), 968-971.
[http://dx.doi.org/10.1016/j.mineng.2005.09.042]
[56]
Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Separ. Purif. Tech., 2004, 38(1), 43-74.
[http://dx.doi.org/10.1016/j.seppur.2003.10.004]
[57]
Svecova, L.; Spanelova, M.; Kubal, M.; Guibal, E. Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Separ. Purif. Tech., 2006, 52(1), 142-153.
[http://dx.doi.org/10.1016/j.seppur.2006.03.024]
[58]
Schiewer, S.; Volesky, B. Biosorption processes for heavy metal removal. Environ. Microbe‐metal Interac., 2000, 329-362.
[http://dx.doi.org/10.1128/9781555818098.ch14]
[59]
Saeed, A.; Akhter, M.; Iqbal, M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separ. Purif. Tech., 2005, 45(1), 25-31.
[http://dx.doi.org/10.1016/j.seppur.2005.02.004]
[60]
Bagchi, S.N.; Sharma, R.; Singh, H.N. Inorganic nitrogen control of growth, chlorophyll, and protein level in cyanobacterium Nostoc muscorum. J. Plant Physiol., 1985, 121(1), 73-81.
[http://dx.doi.org/10.1016/S0176-1617(85)80092-4] [PMID: 23195932]
[61]
El-Enany, A.E.; Issa, A.A. Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ. Toxicol. Pharmacol., 2000, 8(2), 95-101.
[http://dx.doi.org/10.1016/S1382-6689(99)00037-X] [PMID: 10867368]
[62]
Du Laing, G.; Tack, F.M.G.; Verloo, M.G. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal. Chim. Acta, 2003, 497(1-2), 191-198.
[http://dx.doi.org/10.1016/j.aca.2003.08.044]
[63]
Southichak, B.; Nakano, K.; Nomura, M.; Chiba, N.; Nishimura, O. Phragmites australis: A novel biosorbent for the removal of heavy metals from aqueous solution. Water Res., 2006, 40(12), 2295-2302.
[http://dx.doi.org/10.1016/j.watres.2006.04.027] [PMID: 16766011]
[64]
Liang, P.; Ding, Q.; Song, F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J. Sep. Sci., 2005, 28(17), 2339-2343.
[http://dx.doi.org/10.1002/jssc.200500154] [PMID: 16342800]
[65]
Tuzen, M.; Saygi, K.O.; Usta, C.; Soylak, M. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour. Technol., 2008, 99(6), 1563-1570.
[http://dx.doi.org/10.1016/j.biortech.2007.04.013] [PMID: 17532628]
[66]
Zhou, Q.; Wang, W.; Xiao, J.; Wang, J.; Liu, G.; Shi, Q.; Guo, G. Comparison of the enrichment efficiency of multiwalled carbon nanotubes, C18 silica, and activated carbon as the adsorbents for the solid phase extraction of atrazine and simazine in water samples. Mikrochim. Acta, 2006, 152(3-4), 215-224.
[http://dx.doi.org/10.1007/s00604-005-0448-y]
[67]
Anirudhan, T.S.; Radhakrishnan, P.G. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. J. Chem. Thermodyn., 2008, 40(4), 702-709.
[http://dx.doi.org/10.1016/j.jct.2007.10.005]
[68]
Saviozzi, A.; Riffaldi, R.; Levi-Minzi, R.; Scagnozzi, A.; Vanni, G. Decomposition of vegetation-water sludge in soil. Bioresour. Technol., 1993, 44(3), 223-228.
[http://dx.doi.org/10.1016/0960-8524(93)90156-6]
[69]
Reddy, B.R.; Mirghaffari, N.; Gaballah, I. Removal and recycling of copper from aqueous solutions using treated Indian barks. Resour. Conserv. Recycling, 1997, 21(4), 227-245.
[http://dx.doi.org/10.1016/S0921-3449(97)00036-0]
[70]
Chouchene, A.; Jeguirim, M.; Trouvé, G. Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technol. Environ. Policy, 2014, 16(5), 979-986.
[http://dx.doi.org/10.1007/s10098-013-0680-9]
[71]
Barka, N.; Ouzaouit, K.; Abdennouri, M.; El Makhfouk, M.; Qourzal, S.; Assabbane, A.; Ait-Ichou, Y.; Nounah, A. Kinetics and equilibrium of cadmium removal from aqueous solutions by sorption onto synthesized hydroxyapatite. Desalination Water Treat., 2012, 43(1-3), 8-16.
[http://dx.doi.org/10.1080/19443994.2012.672189]
[72]
Rubio, F.; Gonçalves, A.C., Jr; Meneghel, A.P.; Tarley, C.R.T.; Schwantes, D.; Coelho, G.F. Removal of cadmium from water using by-product Crambe abyssinica Hochst seeds as biosorbent material. Water Sci. Technol., 2013, 68(1), 227-233.
[http://dx.doi.org/10.2166/wst.2013.233] [PMID: 23823559]
[73]
Djinni, I.; Djoudi, W. Streptomyces sp. WR1L1S8 a potent endophytic marine strain for heavy metal resistance and copper removal enhanced by RSM modeling. Acta Ecol. Sin., 2022, 42(2), 80-89.
[http://dx.doi.org/10.1016/j.chnaes.2021.04.004]
[74]
Karthikeyan, S.; Balasubramanian, R.; Iyer, C.S.P. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour. Technol., 2007, 98(2), 452-455.
[http://dx.doi.org/10.1016/j.biortech.2006.01.010] [PMID: 16530408]
[75]
Ibrahim, W.M. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater., 2011, 192(3), 1827-1835.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.019] [PMID: 21798665]
[76]
Khalil, H.P.S.A.; Alwani, M.S.; Omar, A.K.M. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 2006, 1(2), 220-232.
[http://dx.doi.org/10.15376/biores.1.2.220-232]
[77]
Fry, S.C. Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells. New Phytol., 2004, 161(3), 641-675.
[http://dx.doi.org/10.1111/j.1469-8137.2004.00980.x] [PMID: 33873719]
[78]
Schneider, I.A.H.; Rubio, J.; Misra, M.; Smith, R.W. Eichhornia crassipes as biosorbent for heavy metal ions. Miner. Eng., 1995, 8(9), 979-988.
[http://dx.doi.org/10.1016/0892-6875(95)00061-T]
[79]
Salah Azab, M.; Peterson, P.J. The removal of cadmium from water by the use of biological sorbents. Water Sci. Technol., 1989, 21(12), 1705-1706.
[http://dx.doi.org/10.2166/wst.1989.0149]
[80]
Muhammad, A.A.; Abdul, W.; Karamat, M.; Mohd, J.M.; Ismail, Y. Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals. Sci. Res. Essays, 2011, 6(19), 4055-4064.
[http://dx.doi.org/10.5897/SRE11.303]
[81]
Faucette, L.B.; Cardoso-Gendreau, F.A.; Codling, E.; Sadeghi, A.M.; Pachepsky, Y.A.; Shelton, D.R. Storm water pollutant removal performance of compost filter socks. J. Environ. Qual., 2009, 38(3), 1233-1239.
[http://dx.doi.org/10.2134/jeq2008.0306] [PMID: 19398521]
[82]
Pennanen, T.; Srivastava, V.; Sillanpää, M.; Sainio, T. Compost: Potent biosorbent for the removal of heavy metals from industrial and landfill stormwater. J. Clean. Prod., 2020, 273, 122736.
[http://dx.doi.org/10.1016/j.jclepro.2020.122736]
[83]
Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm–1. Anal. Bioanal. Chem., 2016, 408(13), 3373-3379.
[http://dx.doi.org/10.1007/s00216-016-9411-5] [PMID: 26968569]
[84]
Witek-Krowiak, A.; Szafran, R.G.; Modelski, S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 2011, 265(1-3), 126-134.
[http://dx.doi.org/10.1016/j.desal.2010.07.042]
[85]
Iqbal, M.; Saeed, A.; Akhtar, N. Petiolar felt-sheath of palm: A new biosorbent for the removal of heavy metals from contaminated water. Bioresour. Technol., 2002, 81(2), 151-153.
[http://dx.doi.org/10.1016/S0960-8524(01)00126-2] [PMID: 11762907]
[86]
Sheikh, Z.; Amin, M.; Khan, N.; Khan, M.N.; Sami, S.K.; Khan, S.B.; Hafeez, I.; Khan, S.A.; Bakhsh, E.M.; Cheng, C.K. Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 2021, 279, 130545.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130545] [PMID: 33866098]
[87]
Bartnicki-Garcia, S.; Nickerson, W.J. Nutrition, growth, and morphogenesis of Mucor rouxii. J. Bacteriol., 1962, 84(4), 841-858.
[http://dx.doi.org/10.1128/jb.84.4.841-858.1962] [PMID: 13969720]
[88]
Tewari, N.; Vasudevan, P.; Guha, B.K. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem. Eng. J., 2005, 23(2), 185-192.
[http://dx.doi.org/10.1016/j.bej.2005.01.011]
[89]
Yan, G.; Viraraghavan, T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res., 2003, 37(18), 4486-4496.
[http://dx.doi.org/10.1016/S0043-1354(03)00409-3] [PMID: 14511719]
[90]
Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Scholarly Res. Notices., 2011, 2011
[http://dx.doi.org/10.5402/2011/402647]
[91]
Ibrahim, W.M.; Hassan, A.F.; Azab, Y.A. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt. J. Basic Appl. Sci., 2016, 3(3), 241-249.
[92]
Wong, K.K.; Lee, C.K.; Low, K.S.; Haron, M.J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 2003, 50(1), 23-28.
[http://dx.doi.org/10.1016/S0045-6535(02)00598-2] [PMID: 12656225]
[93]
Crist, R.H.; Martin, J.R.; Guptill, P.W.; Eslinger, J.M.; Crist, D.R. Interaction of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons. Environ. Sci. Technol., 1990, 24(3), 337-342.
[http://dx.doi.org/10.1021/es00073a008]
[94]
Suhasini, I.; Sriram, G.; Asolekar, S.; Sureshkumar, G. Nickel biosorption from aqueous systems: Studies on single and multimetal equilibria, kinetics, and recovery. Sep. Sci. Technol., 1999, 34(14), 2761-2779.
[http://dx.doi.org/10.1081/SS-100100803]
[95]
Schiewer, S.; Volesky, B. Modeling multi-metal ion exchange in biosorption. Environ. Sci. Technol., 1996, 30(10), 2921-2927.
[http://dx.doi.org/10.1021/es950800n]
[96]
Villaescusa, I.; Fiol, N.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res., 2004, 38(4), 992-1002.
[http://dx.doi.org/10.1016/j.watres.2003.10.040] [PMID: 14769419]
[97]
Abdulrasaq, O.O.; Basiru, O.G. Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr. J. Environ. Sci. Technol., 2010, 4(6)
[98]
Ahmadi, H.; Hafiz, S.S.; Sharifi, H.; Rene, N.N.; Habibi, S.S.; Hussain, S. Low cost biosorbent (Melon Peel) for effective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution. Case Studies Chem. Environ. Eng., 2022, 6, 100242.
[http://dx.doi.org/10.1016/j.cscee.2022.100242]
[99]
Conrad, K.; Bruunhansen, H. Sorption of zinc and lead on coir. Bioresour. Technol., 2007, 98(1), 89-97.
[http://dx.doi.org/10.1016/j.biortech.2005.11.018] [PMID: 16413776]
[100]
Adegoke, K.A.; Akinnawo, S.O.; Ajala, O.A.; Adebusuyi, T.A.; Maxakato, N.W.; Bello, O.S. Progress and challenges in batch and optimization studies on the adsorptive removal of heavy metals using modified biomass-based adsorbents. Bioresour. Technol. Rep., 2022, 19, 101115.
[http://dx.doi.org/10.1016/j.biteb.2022.101115]
[101]
Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv., 2009, 27(2), 195-226.
[http://dx.doi.org/10.1016/j.biotechadv.2008.11.002] [PMID: 19103274]

© 2025 Bentham Science Publishers | Privacy Policy