Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Is SiC a Predominant Technology for Future High Power Electronics?: A Critical Review

In Press, (this is not the final "Version of Record"). Available online 04 December, 2023
Author(s): A.S. Augustine Fletcher, D. Nirmal*, J. Ajayan and P. Murugapandiyan
Published on: 04 December, 2023

DOI: 10.2174/0115734137268803231120111751

open access plus

Abstract

Due to the magnificent properties of Silicon Carbide (SiC), such as high saturation drift velocity, large operating temperature, higher cut-off and maximum frequency (fT and fmax), high thermal conductivity and large breakdown voltages (BV), it is desirable for high power electronics. With the latest advancements in semiconductor materials and processing technologies, diverse high-power applications such as inverters, power supplies, power converters and smart electric vehicles are implemented using SiC-based power devices. Especially, SiC MOSFETs are mostly used in high-power applications due totheir capability to achieve lower switching loss, higher switching speed and lower ON resistance than the Si-based (Insulated gate bipolar transistor) IGBTs. In this paper, a critical study of SiC MOSFET architectures, emerging dielectric techniques, mobility enhancement methods and irradiation effects are discussed. Moreover, the roadmap of Silicon Carbide power devices is also briefly summarized.

[1]
Shuai, Z.; Shuai, H.; Yaru, X.; Yangjun, Z.; Jiangtao, G.; Yaoheng, L.; Guohui, L.; Jianqiu, L. Junction temperature estimation of a SiC MOSFET module for 800V high-voltage application in electric vehicles. eTrans., 2023, 16, 17-23.
[2]
Li, H.; Zhao, S.; Wang, X.; Ding, L.; Mantooth, H.A. Parallel connection of silicon carbide MOSFETs—challenges, mechanism, and solutions. IEEE Trans. Power Electron., 2023, 38(8), 9731-9749.
[http://dx.doi.org/10.1109/TPEL.2023.3278270]
[3]
Costa, P.; Pinto, S.; Silva, J.F. A novel analytical formulation of SiC-MOSFET losses to size high-efficiency three-phase inverters. Energies, 2023, 16(2), 818-822.
[http://dx.doi.org/10.3390/en16020818]
[4]
Zhang, Q.; Zhang, P. A junction temperature smoothing control method for sic mosfets based on the gate driving signal delay. IEEE Trans. Ind. Electron., 2023, 9, 1-10.
[http://dx.doi.org/10.1109/TIE.2023.3270530]
[5]
Feil, M.; Waschneck, K.; Reisinger, H.; Salmen, P.; Rescher, G.; Aichinger, T.; Grasser, T. On the frequency dependence of the gate switching instability in silicon carbide MOSFETs. Materials Science Forum, 2023.
[http://dx.doi.org/10.4028/p-6g5v7s]
[6]
He, Y.; Wang, X.; Shao, S.; Zhang, J. Active gate driver for dynamic current balancing of parallel-connected SiC MOSFETs. IEEE Trans. Power Electron., 2023, 38(5), 6116-6127.
[http://dx.doi.org/10.1109/TPEL.2023.3243053]
[7]
Şehirli, E. Examining the impacts of DM filters to PFC isolated Ćuk converter for DCM operation by comparing Si and SiC MOSFET. Sci. Rep., 2023, 13(1), 4732-4738.
[http://dx.doi.org/10.1038/s41598-023-31965-2] [PMID: 36959232]
[8]
Song, Y.; Bhattacharyya, A.; Karim, A.; Shoemaker, D.; Huang, H.L.; Roy, S.; McGray, C.; Leach, J.H.; Hwang, J.; Krishnamoorthy, S.; Choi, S. Ultra-Wide Band Gap Ga2O3-on-SiC MOSFETs. ACS Appl. Mater. Interfaces, 2023, 15(5), 7137-7147.
[http://dx.doi.org/10.1021/acsami.2c21048] [PMID: 36700621]
[9]
Baruah, R.K.; Mahajan, B.K.; Chen, Y-P.; Paily, R.P. A junctionless silicon carbide transistor for harsh environment applications. J. Electron. Mater., 2021, 50(10), 5682-5690.
[http://dx.doi.org/10.1007/s11664-021-09087-0]
[10]
Bencherif, H.; Dehimi, L.; Pezzimenti, F.; De Martino, G.; Della Corte, F.G. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J. Electron. Mater., 2019, 48(6), 3871-3880.
[http://dx.doi.org/10.1007/s11664-019-07142-5]
[11]
Konishi, K.; Fujita, R.; Shima, A. Modeling and evaluation of stacking fault expansion velocity in body diodes of 3.3 kV SiC MOSFET. J. Electron. Mater., 2019, 48(3), 1704-1713.
[http://dx.doi.org/10.1007/s11664-018-06901-0]
[12]
Roccaforte, F.; Fiorenza, P.; Greco, G.; Lo Nigro, R.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng., 2018, 187-188, 66-77.
[http://dx.doi.org/10.1016/j.mee.2017.11.021]
[13]
Ajayan, J.; Nirmal, D.; Ramesh, R.; Bhattacharya, S.; Tayal, S.; Leo Joseph, L.M.I.; Raju Thoutam, L.; Ajitha, D. A critical review of AlGaN/GaN-heterostructure based Schottky diode/HEMT hydrogen (H2) sensors for aerospace and industrial applications. Measurement, 2021, 186, 110100.
[http://dx.doi.org/10.1016/j.measurement.2021.110100]
[14]
Zhang, Y.; Zubair, A.; Liu, Z.; Xiao, M.; Perozek, J.; Ma, Y.; Palacios, T. GaN FinFETs and trigate devices for power and RF applications: review and perspective. Semicond. Sci. Technol., 2021, 36(5), 054001.
[http://dx.doi.org/10.1088/1361-6641/abde17]
[15]
Ding, X.; Zhou, Y.; Cheng, J. A review of gallium nitride power device and its applications in motor drive. CES Trans. Electr. Machines Syst., 2019, 3(1), 54-64.
[http://dx.doi.org/10.30941/CESTEMS.2019.00008]
[16]
Gui, H.; Chen, R.; Niu, J.; Zhang, Z.; Tolbert, L.M.; Wang, F.F.; Blalock, B.J.; Costinett, D.; Choi, B.B. Review of power electronics components at cryogenic temperatures. IEEE Trans. Power Electron., 2020, 35(5), 5144-5156.
[http://dx.doi.org/10.1109/TPEL.2019.2944781] [PMID: 32499667]
[17]
Maddi, H.R.; Susanna, Y.; Shengnan, Z.; Tianshi, L.; Limeng, S.; Minseok, K.; Diang, X.; Suvendu, N.; Marvin, H.; Anant, K. The road to a robust and affordable SiC power MOSFET technology. Energ., 2021, 14, 12-16.
[18]
Nakatani, K.; Yamaguchi, Y.; Torii, T.; Tsuru, M. A review of GaN MMIC power amplifier technologies for millimeter-wave applications. IEICE Trans. Electron., 2022, E105(C), 433-440.
[http://dx.doi.org/10.1587/transele.2022MMI0006]
[19]
Vechalapu, K.; Bhattacharya, S.; Van Brunt, E.; Ryu, S-H.; Grider, D.; Palmour, J.W.; Sei-Hyung, R.; Dave, G.; John, P. Comparative evaluation of 15-kV SiC MOSFET and 15-kV SiC IGBT for medium-voltage converter under the same dv/dt conditions. IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5(1), 469-489.
[http://dx.doi.org/10.1109/JESTPE.2016.2620991]
[20]
Taylor, A.; Lu, J.; Zhu, L.; Bai, K.H.; McAmmond, M.; Brown, A. Comparison of SiC MOSFET‐based and GaN HEMT‐based high‐efficiency high‐power‐density 7.2 kW EV battery chargers. IET Power Electron., 2018, 11(11), 1849-1857.
[http://dx.doi.org/10.1049/iet-pel.2017.0467]
[21]
Anthon, A.; Zhe, Z.; Andersen, M. Comparison of a state of the art Si IGBT and next generation fast switching devices in a 4 kW boost converter; IEEE Ener Conv Cong and Expos, 2015, pp. 3003-3011.
[22]
Hao, B.; Peng, C.; Tang, X.; Zhao, Z. Calculation and analysis of switching losses in IGBT devices based on switching transient processes. J. Power Electr., 2022, 22(10), 1801-1811.
[http://dx.doi.org/10.1007/s43236-022-00477-z]
[23]
Chen, J.; Cao, L.; Zang, Y. Turn-off over-voltage character of 6500V/600A IGBT module. IEEE Inter. Conf. Elect. Dev. Sol. Stat. Cir., 2019, 22, 1-3.
[http://dx.doi.org/10.1109/EDSSC.2019.8754383]
[24]
Wu, J.; Wu, Y.; Ning, H.; Wenxing, Z.; Seiki, I.; Tatsuhiko, F.; Dehong, X. Impact of SiC MOSFET on PV Inverter; IEEE Ener. Con. Cong. Exp., 2018, pp. 1853-1860.
[25]
Du, M.; Kong, Q.; Ouyang, Z.; Wei, K.; Hurley, W.G.; Kexin, W.; William, G. Strategy for diagnosing the aging of an IGBT module by on-state voltage separation. IEEE Trans. Electron Dev., 2019, 66(11), 4858-4864.
[http://dx.doi.org/10.1109/TED.2019.2942767]
[26]
Zhao, S.; Zhao, X.; Wei, Y.; Zhao, Y.; Mantooth, H.A. A review of switching slew rate control for silicon carbide devices using active gate drivers. IEEE J. Emerg. Sel. Top. Power Electron., 2021, 9(4), 4096-4114.
[http://dx.doi.org/10.1109/JESTPE.2020.3008344]
[27]
Wang, T.; Li, Z.; Zhao, Y.; Li, L.; Yang, Y.; Xia, Z.; Ren, M.; Li, W.; Zhang, J. A novel 3300 V trench IGBT with P-N-doped polysilicon split gate for low EMI noise. Semicond. Sci. Technol., 2022, 37(4), 045011.
[http://dx.doi.org/10.1088/1361-6641/ac5465]
[28]
Li, C.; Sheng, Y.; Jun, X.; Hua, Q.; Zhong, C.; Jin, Y. Research on performance parameter degradation of high voltage and high power IGBT module in power cycling test. J. Phys. Conf. Ser., 2022, 012041.
[29]
Yin, S.; Gu, Y.; Deng, S.; Xin, X.; Dai, G. Comparative investigation of surge current capabilities of Si IGBT and SiC MOSFET for pulsed power application. IEEE Trans. Plasma Sci., 2018, 46(8), 2979-2984.
[http://dx.doi.org/10.1109/TPS.2018.2849778]
[30]
Shu, L.; Zhang, J.; Peng, F.; Chen, Z. Active current source IGBT gate drive with closed-loop di/dt and dv/dt control. IEEE Trans. Power Electron., 2017, 32(5), 3787-3796.
[http://dx.doi.org/10.1109/TPEL.2016.2587340]
[31]
Górecki, P.; Górecki, K. Measurements and computations of internal temperatures of the IGBT and the diode situated in the common case. Electronics (Basel), 2021, 10(2), 210.
[http://dx.doi.org/10.3390/electronics10020210]
[32]
Gonzalez, J.O.; Wu, R.; Jahdi, S.; Alatise, O. Performance and reliability review of 650 V and 900 V silicon and SiC devices: MOSFETs, cascode JFETs and IGBTs. IEEE Trans. Ind. Electron., 2020, 67(9), 7375-7385.
[http://dx.doi.org/10.1109/TIE.2019.2945299]
[33]
Jahdi, S.; Alatise, O.; Ortiz Gonzalez, J.A.; Bonyadi, R.; Ran, L.; Mawby, P. Philip, Mawby. Temperature and switching rate dependence of crosstalk in Si-IGBT and SiC power modules. IEEE Trans. Ind. Electron., 2016, 63(2), 849-863.
[http://dx.doi.org/10.1109/TIE.2015.2491880]
[34]
Imaizumi, M.; Miura, N.; Naruhisa, M. Characteristics of 600, 1200, and 3300 V planar SiC-MOSFETs for energy conversion applications. IEEE Trans. Electron Dev., 2015, 62(2), 390-395.
[http://dx.doi.org/10.1109/TED.2014.2358581]
[35]
Zhang, L.; Yuan, X.; Wu, X.; Shi, C.; Zhang, J.; Zhang, Y.; Xibo, Y.; Xiaojie, W.; Congcong, S.; Jiahang, Z.; Yonglei, Z. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Trans. Power Electron., 2019, 34(2), 1181-1196.
[http://dx.doi.org/10.1109/TPEL.2018.2834345]
[36]
Yuan, X.; Laird, I.; Walder, S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters. IEEE Trans. Power Electron., 2021, 36(4), 3925-3945.
[http://dx.doi.org/10.1109/TPEL.2020.3024862]
[37]
Kimoto, T.; Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Appl. Phys. Express, 2020, 13(12), 120101.
[http://dx.doi.org/10.35848/1882-0786/abc787]
[38]
Li, X.; Liqi, Z.; Suxuan, G.; Yang, L.; Alex, Q.; Zhang, B. Understanding switching losses in SiC MOSFET: Toward lossless switching; IEEE Wi Ban Pow Dev and App, 2015, pp. 257-262.
[39]
Xing, Y.; Deng, X.; Wu, H.; Xu, X.; Li, X.; Li, X.; Wen, Y. An enhanced high frequency performance SiC MOSFET with self-adjusting P-shield region potential. Semicond. Sci. Technol., 2022, 37(8), 085019.
[http://dx.doi.org/10.1088/1361-6641/ac7d04]
[40]
Tominaga, T.; Shiro, H.; Yohei, M.; Junichi, N.; Koutarou, K.; Shingo, T. Superior switching characteristics of SiC-MOSFET embedding SBD. 2019 31st Intern Symp on Pow Semi Dev and ICs, 2019, pp. 27-30.
[41]
She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron., 2017, 64(10), 8193-8205.
[http://dx.doi.org/10.1109/TIE.2017.2652401]
[42]
Golosov, M.A.; Lozanov, V.V.; Titov, A.T.; Baklanova, N.I. Toward understanding the reaction between silicon carbide and iridium in a broad temperature range. J. Am. Ceram. Soc., 2021, 104(12), 6653-6669.
[http://dx.doi.org/10.1111/jace.17978]
[43]
Sung, W.A.H.; Jayant, B. A novel 4H-SiC IGBT structure with improved trade-off between short circuit capability and on-state voltage drop. 22nd Inter. Symp. Pow. Semic. Dev., 2010, pp. 217-220.
[44]
Yin, S.; Tseng, K.J.; Simanjorang, R.; Liu, Y.; Pou, J.; Tseng, K.; Rejeki, S.; Yong, L.; Josep, P. A 50-kW high-frequency and high-efficiency SiC voltage source inverter for more electric aircraft. IEEE Trans. Ind. Electron., 2017, 64(11), 9124-9134.
[http://dx.doi.org/10.1109/TIE.2017.2696490]
[45]
Zhang, C.; Srdja, S.; Srdjan, L.; Yonghan, K.; Edward, C.; Ehsan, T.A. SiC-based 100 kW high-power-density (34 kW/L) electric vehicle traction inverter; IEEE Ener Conv Cong and Expos, 2018, pp. 3880-3885.
[http://dx.doi.org/10.1109/ECCE.2018.8558373]
[46]
Li, X.; Zeng, G.; Lei, X. The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application. Sol. Energy Mater. Sol. Cells, 2020, 206, 110323.
[http://dx.doi.org/10.1016/j.solmat.2019.110323]
[47]
Hussein, A.; Castellazzi, A.; Wheeler, P.; Christian, K. Performance benchmark of Si IGBTs vs. SiC MOSFETs in small-scale wind energy conversion systems. IEEE Inter. Pow. Elect. Mot. Cont. Conf., 2016, pp. 963-968.
[48]
Narayanasamy, B.; Sathyanarayanan, A.S.; Luo, F.; Chen, C.; Fang, L.; Cai, C. Reflected wave phenomenon in SiC motor drives: Consequences, boundaries, and mitigation. IEEE Trans. Power Electron., 2020, 35(10), 10629-10642.
[http://dx.doi.org/10.1109/TPEL.2020.2975217]
[49]
Hamada, K.; Nagao, M.; Ajioka, M.; Kawai, F.; Masaru, N.; Masaki, A.; Fumiaki, K. SiC—Emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Trans. Electron Dev., 2015, 62(2), 278-285.
[http://dx.doi.org/10.1109/TED.2014.2359240]
[50]
Galloway, K.; Witulski, A.; Schrimpf, R.; Sternberg, A.; Ball, D.; Javanainen, A.; Reed, R.; Sierawski, B.; Lauenstein, J-M. Failure estimates for SiC power MOSFETs in space electronics. Aerospace, 2018, 5(3), 67-71.
[http://dx.doi.org/10.3390/aerospace5030067]
[51]
Puschkarsky, K.; Grasser, T.; Aichinger, T.; Gustin, W.; Reisinger, H. Review on SiC MOSFETs high-voltage device reliability focusing on threshold voltage instability. IEEE Trans. Electron Dev., 2019, 66(11), 4604-4616.
[http://dx.doi.org/10.1109/TED.2019.2938262]
[52]
Lelis, A.J.; Green, R.; Habersat, D.B.; El, M.; Habersat; Mooro, E. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs. IEEE Trans. Electron Dev., 2015, 62(2), 316-323.
[http://dx.doi.org/10.1109/TED.2014.2356172]
[53]
Lelis, A.; Green, R.; Habersat, D.; Goldsman, N. Effect of threshold-voltage instability on SiC DMOSFET reliability. IEEE Intern Integ Reliab Work Fin Rep, 2008, 5, 72-76.
[54]
Zhang, Z.; Xiutao, L. A review of WBG and Si devices hybrid applications. Chin. J. Elect. Eng., 2021, 2, 1-20.
[55]
Pensl, G.; Florin, C.; Thomas, F.; Michael, K.; Sergey, R.; Frank, S.; Michael, S.W. SiC material properties. Inter Jou of Hi Sp Elect and Sys., 2005, 15, 705-745.
[http://dx.doi.org/10.1142/S0129156405003405]
[56]
Dong, S.M.; Chollon, G.; Labrugère, C.; Lahaye, M.; Guette, A.; Bruneel, J.L.; Couzi, M.; Naslain, R.; Jiang, D.L. Characterization of nearly stoichiometric SiC ceramic fibres. J. Mater. Sci., 2001, 36(10), 2371-2381.
[http://dx.doi.org/10.1023/A:1017988827616]
[57]
Hassan, J.J.; Mahdi, M.A.; Ramizy, A.; Abu Hassan, H.; Hassan, Z. Fabrication and characterization of ZnO nanorods/p-6H-SiC heterojunction LED by microwave-assisted chemical bath deposition. Superlattices Microstruct., 2013, 53, 31-38.
[http://dx.doi.org/10.1016/j.spmi.2012.09.013]
[58]
Capan, I. 4H-SiC schottky barrier diodes as radiation detectors: A review. Electronics, 2022, 11(4), 532.
[http://dx.doi.org/10.3390/electronics11040532]
[59]
Xiaohong, F.; Dingrong, D.; Yi, L.; Qi-Hui, W. Recent progress in sic nanostructures as anode materials for lithium ion batterie. Curr. Mat. Sci., 2023, 16, 18-29.
[60]
Wu, T.; Jifeng, C.; Saijun, M.; Michael, J. 1200 V SiC MOSFETS for high voltage power conversion; IEEE Ener Conv Con and Expos, 2012, pp. 2921-2926.
[61]
Soler, V.; Cabello, M.; Berthou, M.; Montserrat, J.; Rebollo, J.; Godignon, P.; Mihaila, A.; Rogina, M.R.; Rodriguez, A.; Sebastian, J. High-voltage 4H-SiC power MOSFETs with Boron-doped gate oxide. IEEE Trans. Ind. Electron., 2017, 64(11), 8962-8970.
[http://dx.doi.org/10.1109/TIE.2017.2723865]
[62]
Han, K.; Baliga, B.J.; Sung, W. A novel 1.2 kV 4H-SiC buffered-gate (BG) MOSFET: Analysis and experimental results. IEEE Electron Device Lett., 2018, 39(2), 248-251.
[http://dx.doi.org/10.1109/LED.2017.2785771]
[63]
Han, K.; Baliga, B.J. Analysis and experimental quantification of 1.2-kV 4H-SiC split-gate octagonal MOSFET. IEEE Electron Device Lett., 2019, 40(7), 1163-1166.
[http://dx.doi.org/10.1109/LED.2019.2917637]
[64]
Aiba, R.; Matsui, K.; Baba, M.; Harada, S.; Yano, H.; Iwamuro, N. Demonstration of superior electrical characteristics for 1.2 kV SiC Schottky barrier diode-wall integrated trench MOSFET with higher Schottky barrier height metal. IEEE Electron Device Lett., 2020, 41(12), 1810-1813.
[http://dx.doi.org/10.1109/LED.2020.3031598]
[65]
Ni, W.; Wang, X.; Xu, M.; Li, M.; Feng, C.; Xiao, H.; Jiang, L.; Li, W.; Wang, Q. Comparative Study of SiC Planar MOSFETs With Different p-Body Designs. IEEE Trans. Electron Dev., 2020, 67(3), 1071-1076.
[http://dx.doi.org/10.1109/TED.2020.2966775]
[66]
Ni, Z.; Lyu, X.; Yadav, O.P.; Singh, B.N.; Zheng, S.; Cao, D.; Prakash, O.; Brij, N.; Sheng, Z. Overview of real-time lifetime prediction and extension for SiC power converters. IEEE Trans. Power Electron., 2020, 35(8), 7765-7794.
[http://dx.doi.org/10.1109/TPEL.2019.2962503]
[67]
Vudumula, P.; Kotamraju, S. Design and optimization of SiC super-junction MOSFET using vertical variation doping profile. IEEE Trans. Electron Dev., 2019, 66(3), 1402-1408.
[http://dx.doi.org/10.1109/TED.2019.2894650]
[68]
Song, Q.; Shuai, Y.; Guannan, T.; Chao, H.; Yimeng, Z. 4H-SiC trench MOSFET with L-shaped gate. IEEE Elect. Dev. Let., 2016, 37, 463-466.
[69]
Song, Q.; Tang, X.; Tian, R.; Zhang, Y.; Guo, T.; Tang, G.; Yang, S.; Yuan, H.; He, Y. Investigation of the novel 4H SiC trench MOSFET with non-uniform doping floating islands. Superlattices Microstruct., 2016, 99, 62-66.
[http://dx.doi.org/10.1016/j.spmi.2016.05.032]
[70]
Han, K.; Baliga, B.J. 1.2-kV 4H-SiC SenseFET with monolithically integrated sensing resistor. IEEE Electron Device Lett., 2020, 41(3), 437-440.
[http://dx.doi.org/10.1109/LED.2020.2964773]
[71]
Sabui, G.; Shen, Z.J. Analytical calculation of breakdown voltage for dielectric RESURF power devices. IEEE Electron Device Lett., 2017, 38(6), 767-770.
[http://dx.doi.org/10.1109/LED.2017.2690964]
[72]
Ramamurthy, R.P.; Islam, N.; Sampath, M.; Morisette, D.T.; Cooper, J.A. The tri-gate MOSFET: A new vertical power transistor in 4H-SiC. IEEE Electron Device Lett., 2021, 42(1), 90-93.
[http://dx.doi.org/10.1109/LED.2020.3040239]
[73]
Wang, Y.; Xu, W.; Han, G.; You, T.; Mu, F.; Hu, H.; Liu, Y.; Zhang, X.; Huang, H.; Suga, T.; Ou, X.; Ma, X.; Hao, Y. Channel properties of Ga2O3-on-SiC MOSFETs. IEEE Trans. Electron Dev., 2021, 68(3), 1185-1189.
[http://dx.doi.org/10.1109/TED.2021.3051135]
[74]
Liu, S.; Tong, X.; Wei, J.; Sun, W. Single-pulse avalanche failure investigations of Si-SJ-mosfet and SiC-mosfet by step-control infrared thermography method. IEEE Trans. Power Electron., 2020, 35(5), 5180-5189.
[http://dx.doi.org/10.1109/TPEL.2019.2946792]
[75]
Ye, H.; Haldar, P. Optimization of the porous-silicon-based superjunction power MOSFET. IEEE Trans. Electron Dev., 2008, 55(8), 2246-2251.
[http://dx.doi.org/10.1109/TED.2008.926280]
[76]
Wang, Y.; Hehe, G.; Xiaole, J.; Genquan, H.; Jiandong, Y.; Yan, L.; Haodong, H.; Xin, O.; Xiaohua, M.; Yue, H. First demonstration of RESURF and superjunction ß-Ga2O3 MOSFETs with p-NiO/n-Ga2O3 junctions. IEEE Inter Elect Dev Meet., 2021, 36, pp. 6-10.
[77]
Wataru, I.O.; Satoshi, A.; Shigeo, K.; Masaru, I.; Tsuneo, O. 600V semi-superconjunction MOSFET. Intern. Sym. Pow. Semicon. Dev. ICs., 2003, 45-48.
[78]
Matocha, K. Challenges in SiC power MOSFET design. Solid-State Electron., 2008, 52(10), 1631-1635.
[http://dx.doi.org/10.1016/j.sse.2008.06.034]
[79]
Minamisawa, R.; Bartolf, H. Simulations and fabrication of novel 4H-SiC nano trench MOSFET devices. Project A9 7., 2013, 1-3.
[80]
Furuhashi, M.; Tomohisa, S.; Kuroiwa, T.; Yamakawa, S. Practical applications of SiC-MOSFETs and further developments. Semicond. Sci. Technol., 2016, 31(3), 034003.
[http://dx.doi.org/10.1088/0268-1242/31/3/034003]
[81]
Wei, J.; Liu, S.; Yang, L.; Tang, L.; Lou, R.; Li, T.; Fang, J.; Li, S.; Zhang, C.; Sun, W.; Siyang, L.; Lanlan, Y.; Lizhi, T.; Rongcheng, L.; Ting, L.; Jiong, F.; Sheng, L.; Chi, Z.; Weifeng, S. Investigations on the degradations of double-trench SiC power MOSFETs under repetitive avalanche stress. IEEE Trans. Electron Dev., 2019, 66(1), 546-552.
[http://dx.doi.org/10.1109/TED.2018.2875080]
[82]
Sung, W.; Jayant Baliga, B.; Huang, A.Q. Area-efficient bevel-edge termination techniques for SiC high-voltage devices. IEEE Trans. Electron Dev., 2016, 63(4), 1630-1636.
[http://dx.doi.org/10.1109/TED.2016.2532602]
[83]
Sung, W.; Baliga, B.J. A comparative study 4500-V edge termination techniques for SiC devices. IEEE Trans. Electron Dev., 2017, 64(4), 1647-1652.
[http://dx.doi.org/10.1109/TED.2017.2664051]
[84]
Jiang, J.Y.; Tu, C-X.; Hu, J-W.; Chao, D-S.; Huang, C-F. 3.3 kV class 4 H-SiC double-implanted MOSFET with excellent radiation hardness against gamma rays using counter-doped junction termination extension. IEEE Electron Device Lett., 2021, 42(5), 727-730.
[http://dx.doi.org/10.1109/LED.2021.3067039]
[85]
Khosa, R.Y.; Chen, J.T.; Winters, M.; Pálsson, K.; Karhu, R.; Hassan, J.; Rorsman, N.; Sveinbjӧrnsson, E.Ö. Electrical characterization of high k-dielectrics for 4H-SiC MIS devices. Mater. Sci. Semicond. Process., 2019, 98, 55-58.
[http://dx.doi.org/10.1016/j.mssp.2019.03.025]
[86]
Zhao, P.; Rusli; Lok, B.K.; Lai, F.K.; Tin, C.C.; Zhao, J.H.; Yar, R.M. Investigation of Ta2O5/SiO2/4H-SiC MIS capacitors. Microelectron. Eng., 2006, 83(1), 58-60.
[http://dx.doi.org/10.1016/j.mee.2005.10.025]
[87]
Khosa, R.Y.; Thorsteinsson, M.; Winters, N.; Rorsman, R.K.; Hassan, J.; Sveinbjörnsson, O. Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC. AIP Adv., 2018, 025304.
[88]
Nawaz, M. On the evaluation of gate dielectrics for 4H-SiC based power MOSFETs; Act and Pas Elect Comp, 2015, pp. 1-12.
[89]
Yang, X.; Lee, B.; Misra, V. Investigation of lanthanum silicate conditions on 4H-SiC MOSFET characteristics. IEEE Trans. Electron Dev., 2015, 62(11), 3781-3785.
[http://dx.doi.org/10.1109/TED.2015.2480047]
[90]
Pavan Kumar Reddy, V.; Kotamraju, S.; Siva, K. Improved device characteristics obtained in 4H-SiC MOSFET using high-k dielectric stack with ultrathin SiO2-AlN as interfacial layers. Mater. Sci. Semicond. Process., 2018, 80, 24-30.
[http://dx.doi.org/10.1016/j.mssp.2018.02.012]
[91]
Huang, L.; Liu, Y.; Peng, X.; Onozawa, Y.; Tsuji, T.; Fujishima, N.; Sin, J.K.O. Static performance and threshold voltage stability improvement of Al2O3/LaAlO3/SiO2 gate-stack for SiC power MOSFETs. IEEE Trans. Electron Dev., 2022, 69(2), 690-695.
[http://dx.doi.org/10.1109/TED.2021.3138378]
[92]
Wang, Q.; Cheng, X.; Zheng, L.; Shen, L.; Zhang, D.; Gu, Z.; Qian, R.; Cao, D.; Yu, Y. Influence of LaSiOx passivation interlayer on band alignment between PEALD-Al2O3 and 4H-SiC determined by X-ray photoelectron spectroscopy. Appl. Surf. Sci., 2018, 428, 1-6.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.099]
[93]
Wang, Z.; Zhang, Z.; shao, C.; Robertson, J.; Liu, S.; Guo, Y. Tuning the high-κ oxide (HfO2, ZrO2)/4H-SiC interface properties with a SiO2 interlayer for power device applications. Appl. Surf. Sci., 2020, 527, 146843.
[http://dx.doi.org/10.1016/j.apsusc.2020.146843]
[94]
Linnarsson, M.K.; Hallén, A.; Khartsev, S.; Suvanam, S.S.; Usman, M. Interface between Al2O3 and 4H-SiC investigated by time-of-flight medium energy ion scattering. J. Phys. D Appl. Phys., 2017, 50(49), 495111.
[http://dx.doi.org/10.1088/1361-6463/aa9431]
[95]
Robertson, J.; Wallace, R.M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. Rep., 2015, 88, 1-41.
[http://dx.doi.org/10.1016/j.mser.2014.11.001]
[96]
Wang, Y.; Jia, R.; Li, C.; Zhang, Y. Electric properties of La2O3/SiO2/4H-SiC MOS capacitors with different annealing temperatures. AIP Adv., 2015, 5(8), 087166.
[http://dx.doi.org/10.1063/1.4929720]
[97]
Tanner, C.M.; Choi, J.; Chang, J.P. Electronic structure and band alignment at the HfO2⁄4H-SiC interface. J. Appl. Phys., 2007, 101(3), 034108.
[http://dx.doi.org/10.1063/1.2432402]
[98]
Cheong, K.Y.; Moon, J.H.; Kim, H.J.; Bahng, W.; Kim, N-K. Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbide. J. Appl. Phys., 2008, 103(8), 084113.
[http://dx.doi.org/10.1063/1.2908870]
[99]
Wolborski, M.; Rooth, M.; Bakowski, M.; Hallén, A. Characterization of HfO2 films deposited on 4H-SiC by atomic layer deposition. J. Appl. Phys., 2007, 101(12), 124105.
[http://dx.doi.org/10.1063/1.2734956]
[100]
Huang, L.; Yong, L.; Chao, X.; Yixiao, D.; Xin, P.; Yuichi, O.; Takashi, T.; Naoto, F.; Johnny, S. Characterization of Al2O3/LaAlO3/SiO2 gate stack on 4H-SiC after post-deposition annealing. IEEE Trans. Electron Dev., 2021, 68, 2133-2137.
[http://dx.doi.org/10.1109/TED.2021.3056024]
[101]
hinthavali, M.; Ozpineci, B.; Tolbert, L. High-temperature and high frequency performance evaluation of 4H-SiC unipolar power devices. Proc. App. Pow. Elect. Conf., 2005, 322-328.
[102]
(a) Zhu, P.; Wang, L.; Ruan, G. Temperature effects on performance of SiC power transistors (SiC JFET and SiC MOSFET). Proc. EPE’15 Ener Conv Cong and Exp, 2015, 449-454.;
(b) Lelis, A.J.; Habersat, D.; Green, R.; Ogunniyi, A.; Gurfinkel, M.; Suehle, J.; Goldsman, N. Time dependence of bias-stressinduced SiC MOSFET threshold voltage instability measurements. IEEE Trans. Electron Dev., 2008, 55(8), 1835-1840.
[http://dx.doi.org/10.1109/TED.2008.926672]
[103]
Gurfinkel, M.; Xiong, H.D.; Cheung, K.P.; Suehle, J.S.; Bernstein, J.B.; Shapira, Y.; Lelis, A.J.; Habersat, D.; Goldsman, N. Characterization of transient gate oxide trapping in SiC MOSFETs using fast I–V techniques. IEEE Trans. Electron Dev., 2008, 55(8), 2004-2012.
[http://dx.doi.org/10.1109/TED.2008.926626]
[104]
Chen, Z.; Boroyevich, D.; Burgos, R. Characterization and modeling of 1.2 kV, 20 A SiC MOSFETs. Proc. Ener Conv Cong., 2009, pp. 1480-1487.
[105]
Hull, B.; Das, M.; Husna, F. 20 A, 1200 V 4H-SiC DMOSFETs for energy conversion systems; Proc. Ener Conv Con and Exp, 2009, pp. 112-119.
[http://dx.doi.org/10.1109/ECCE.2009.5316036]
[106]
DiMarino, C.; Chen, Z.; Danilovic, M. High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs. Proc. Ener Conv Cong and Expos, 2013, pp. 3235-3242.
[http://dx.doi.org/10.1109/ECCE.2013.6647125]
[107]
Chen, Z.; Yao, Y.; Boroyevich, D.; Ngo, K.D.T.; Mattavelli, P.; Rajashekara, K. A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications. IEEE Trans. Power Electron., 2014, 29(5), 2307-2320.
[http://dx.doi.org/10.1109/TPEL.2013.2283245]
[108]
Othman, D.; Berkani, M.; Lefebvre, S. Comparison study on performances and robustness between SiC MOSFET & JFET devices – abilities for aeronautics application, Microelect. Rel., 2012, 52, 1859-1864.
[109]
Takao, K.; Harada, S.; Shinohe, T. Performance evaluation of all SiC power converters for realizing high power density of 50W/cm3. Proc. Int Pow Elect Conf., 2010, pp. 2128-2134.
[110]
Gonzalez, J.O.; Alatise, O.; Hu, J.; Ran, L.; Mawby, P.A. An investigation of temperature sensitive electrical parameters for SiC power MOSFETs. IEEE Trans. Power Electron., 2017, 32(10), 7954-7966.
[http://dx.doi.org/10.1109/TPEL.2016.2631447]
[111]
Chen, Z.; Yao, Y.; Boroyevich, D.; Ngo, K.D.T.; Mattavelli, P.; Rajashekara, K. 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications. IEEE Trans. Power Electron., 2014, 29(5), 2307-2320.
[http://dx.doi.org/10.1109/TPEL.2013.2283245]
[112]
Severino, A.; Piluso, N.; di Stefano, M.A.; Cordiano, F.; Camalleri, M.; Arena, G. Study of the Post-Oxidation-Annealing (POA) process on deposited high-temperature oxide (HTO) layers as gate dielectric in SiC MOSFET. Mater. Sci. Forum, 2019, 963, 456-459.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.963.456]
[113]
Nanen, Y.; Kato, M.; Suda, J.; Kimoto, T. Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces. IEEE Trans. Electron Dev., 2013, 60(3), 1260-1262.
[http://dx.doi.org/10.1109/TED.2012.2236333]
[114]
Noguchi, M.; Watanabe, T.; Watanabe, H.; Kita, K.; Miura, N. Comparative study of hall effect mobility in inversion layer of 4H-SiC MOSFETs with nitrided and phosphorus-doped gate oxides. IEEE Trans. Electron Dev., 2021, 68(12), 6321-6329.
[http://dx.doi.org/10.1109/TED.2021.3125284]
[115]
Peters, D.; Schörner, R.; Friedrichs, P.; Stephani, D. SiC Power MOSFETs-status, trends and challenges. Mater. Sci. Forum, 2006, 527-529, 1255-1260.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.527-529.1255]
[116]
Modic, A.; Gang Liu; Ahyi, A.C.; Yuming Zhou; Pingye Xu; Hamilton, M.C.; Williams, J.R.; Feldman, L.C.; Dhar, S. High channel mobility 4H-SiC MOSFETs by antimony counter-doping. IEEE Electron Device Lett., 2014, 35(9), 894-896.
[http://dx.doi.org/10.1109/LED.2014.2336592]
[117]
Thomas, S.; Sharma, Y.; Crouch, M.; Fisher, C.; Perez, T.; Jennings, M.; Mawby, P. Enhanced field effect mobility on 4H-SiC by oxidation at 1500 C. IEEE J. Elect. Dev. Soc., 2014, 2, 114-117.
[118]
Yang, X.; Lee, B.; Misra, V. High mobility 4H-SiC lateral MOSFETs using lanthanum silicate and atomic layer deposited SiO2. IEEE Electron Device Lett., 2015, 36(4), 312-314.
[http://dx.doi.org/10.1109/LED.2015.2399891]
[119]
Fei, C.; Bai, S.; Wang, Q.; Huang, R.; He, Z.; Liu, H.; Liu, Q. Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETs. J. Cryst. Growth, 2020, 531, 125338.
[http://dx.doi.org/10.1016/j.jcrysgro.2019.125338]
[120]
Chung, G.Y.; Tin, C.C.; Williams, J.R.; McDonald, K.; Chanana, R.K.; Weller, R.A.; Pantelides, S.T.; Feldman, L.C.; Holland, O.W.; Das, M.K.; Palmour, J.W. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide. IEEE Electron Device Lett., 2001, 22(4), 176-178.
[http://dx.doi.org/10.1109/55.915604]
[121]
Tachiki, K.; Kaneko, M.; Kimoto, T. Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. Appl. Phys. Express, 2021, 14(3), 031001.
[http://dx.doi.org/10.35848/1882-0786/abdcd9]
[122]
Nakazawa, S.; Takafumi, O.; Jun, S.; Takashi, N.; Tsunenobu, K. Interface properties of 4H-SiC (1120) and (1100) MOS structures annealed in NO. IEEE Trans. Electron Dev., 2014, 62, 309-315.
[http://dx.doi.org/10.1109/TED.2014.2352117]
[123]
Soler, V.; Maria, C.; Josep, M.; Jose, R.; Jose, M. 4.5 kV SiC MOSFET with boron doped gate dielectric. 28th Inter Sym on Pow Semicon Dev and ICs, 2016, 283-286.
[124]
Sveinbjornsson, E.; Fredrik, A.; Halldor, O.; Gudjon, G.; Dimitar, D.; Thomas, R.; Rik, J. Sodium enhanced oxidation of Si-face 4H-SiC: A method to remove near interface traps. Mat. Sci. Forum, 2007, 556, 487-492.
[125]
Xiangyu, Y.; Bongmook, L.; Veena, M. Improvement of threshold voltage reliability of 4H-SiC MOSFETs with lanthanum silicate by high temperature forming gas anneal. IEEE Elect. Dev. Lett., 2017, 39, 244-247.
[126]
Urresti, J.; Arith, S.; Olsen, N.; O’Neill, W. Design and analysis of high mobility enhancement-mode 4H-SiC MOSFETs using a thin-SiO 2/Al2O3 gate-stack. IEEE Trans. Electron Dev., 2019, 66, 1710-1716.
[http://dx.doi.org/10.1109/TED.2019.2901310]
[127]
Zheng, Y.; Isaacs-Smith, T.; Ahyi, A.C.; Dhar, S. Ahyi; Dhar. 4H-SiC MOSFETs with borosilicate glass gate dielectric and antimony counter-doping. IEEE Electron Device Lett., 2017, 38(10), 1433-1436.
[http://dx.doi.org/10.1109/LED.2017.2743002]
[128]
Waskiewicz, R.J.; Anders, M.A.; Lenahan, P.M.; Lelis, A.J. Ionizing radiation effects in 4H-SiC nMOSFETs studied with electrically detected magnetic resonance. IEEE Trans. Nucl. Sci., 2017, 64(1), 197-203.
[http://dx.doi.org/10.1109/TNS.2016.2622159]
[129]
Hu, D.; Zhang, J.; Jia, Y.; Wu, Y.; Peng, L.; Tang, Y. Impact of different gate biases on irradiation and annealing responses of SiC MOSFETs. IEEE Trans. Electron Dev., 2018, 65(9), 3719-3724.
[http://dx.doi.org/10.1109/TED.2018.2858289]
[130]
Takeshi, O.; Masahito, Y.; Hisayoshi, I.; Yasushi, A. γ-Ray irradiation effects on 6H-SiC MOSFET. Mater. Sci. Eng. B, 1999, 62, 480-484.
[131]
Akturk, A.; McGarrity, J.M.; Potbhare, S.; Goldsman, N. Radiation effects in commercial 1200 V 24 a silicon carbide power MOSFETs. IEEE Trans. Nucl. Sci., 2012, 59(6), 3258-3264.
[http://dx.doi.org/10.1109/TNS.2012.2223763]
[132]
Alexandru, M.; Florentin, M.; Constant, A.; Schmidt, B.; Michel, P.; Godignon, P. 5 MeV proton and 15 MeV electron radiation effects study on 4H-SiC nMOSFET electrical parameters. IEEE Trans. Nucl. Sci., 2014, 61(4), 1732-1738.
[http://dx.doi.org/10.1109/TNS.2014.2316372]
[133]
Abbate, C.; Busatto, G.; Tedesco, D.; Sanseverino, A.; Velardi, F.; Wyss, J. Gate damages induced in SiC power MOSFETs during heavy-ion irradiation—part II. IEEE Trans. Electron Dev., 2019, 66(10), 4243-4250.
[http://dx.doi.org/10.1109/TED.2019.2931078]
[134]
Martinella, C.; Stark, R.; Ziemann, T.; Alia, R.G.; Kadi, Y.; Grossner, U.; Javanainen, A. Current transport mechanism for heavy-ion degraded SiC MOSFETs. IEEE Trans. Nucl. Sci., 2019, 66(7), 1702-1709.
[http://dx.doi.org/10.1109/TNS.2019.2907669]
[135]
Peng, C.; Lei, Z.; Zhang, Z.; Chen, Y.; He, Y.; Yao, B.; En, Y. Influence of drain bias and flux on heavy ion-induced leakage currents in SiC power MOSFETs. IEEE Trans. Nucl. Sci., 2022, 69(5), 1037-1043.
[http://dx.doi.org/10.1109/TNS.2022.3166521]
[136]
Yue, S.; Chen, Z.; Zhang, Z.; Hong, Z.; Zhu, T.; Peng, C.; Zheng, X.; Lei, Z. Synergistic effect of electrical stress and neutron irradiation on silicon carbide power MOSFETs. IEEE Trans. Electron Dev., 2022, 69(6), 3341-3346.
[http://dx.doi.org/10.1109/TED.2022.3170539]
[137]
Zhou, X.; Pang, H.; Jia, Y.; Hu, D.; Wu, Y.; Zhang, S.; Li, Y.; Li, X.; Wang, L.; Fang, X.; Zhao, Y. Gate oxide damage of SiC MOSFETs induced by heavy-ion strike. IEEE Trans. Electron Dev., 2021, 68(8), 4010-4015.
[http://dx.doi.org/10.1109/TED.2021.3091951]
[138]
Martinella, C.; Alia, R.G.; Stark, R.; Coronetti, A.; Cazzaniga, C.; Kastriotou, M.; Kadi, Y.; Gaillard, R.; Grossner, U.; Javanainen, A. Impact of terrestrial neutrons on the reliability of SiC VD-MOSFET technologies. IEEE Trans. Nucl. Sci., 2021, 68(5), 634-641.
[http://dx.doi.org/10.1109/TNS.2021.3065122]
[139]
Ciappa, M.; Pocaterra, M. On the use of soft gamma radiation to characterize the pre-breakdown carrier multiplication in SiC power MOSFETs and its correlation to the TCR failure rate as measured by neutron irradiation. Microelectron. Reliab., 2020, 114, 113838.
[http://dx.doi.org/10.1016/j.microrel.2020.113838]
[140]
Busatto, G.; Di Pasquale, A.; Marciano, D.; Palazzo, S.; Sanseverino, A.; Velardi, F. Physical mechanisms for gate damage induced by heavy ions in SiC power MOSFET. Microelectron. Reliab., 2020, 114, 113903.
[http://dx.doi.org/10.1016/j.microrel.2020.113903]
[141]
Lebedev, A.A.; Kozlovski, V.V.; Levinshtein, M.E.; Ivanov, A.E.; Strel’chuk, A.M.; Zubov, A.V.; Fursin, L. Impact of 0.9 MeV electron irradiation on main properties of high voltage vertical power 4H-SiC MOSFETs. Radiat. Phys. Chem., 2020, 177, 109200.
[http://dx.doi.org/10.1016/j.radphyschem.2020.109200]
[142]
Li, D.; Zhang, Y.; Tang, X.; He, Y.; Song, Q.; Zhang, Y. Effects of 5 MeV proton irradiation on 1200 V 4H-SiC VDMOSFETs on-state characteristics. IEEE Access, 2020, 8, 104503-104510.
[http://dx.doi.org/10.1109/ACCESS.2020.2999642]
[143]
Niskanen, K.; Touboul, A.D.; Germanicus, R.C.; Michez, A.; Javanainen, A.; Wrobel, F.; Boch, J.; Pouget, V.; Saigne, F. Impact of electrical stress and neutron irradiation on reliability of silicon carbide power MOSFET. IEEE Trans. Nucl. Sci., 2020, 67(7), 1365-1373.
[http://dx.doi.org/10.1109/TNS.2020.2983599]

© 2025 Bentham Science Publishers | Privacy Policy