Abstract
In this paper, the interface polariton (IP), the confined (CF) modes in nanostructures made with wide bandgap semiconductors, as well as their contributions to the carrier scattering mechanism have been investigated. An asymmetric quantum well (AQW) made with ZnSe/CdSe/ZnS has been studied. More specifically, the dielectric continuum (DC) model has been employed to describe both the IP and the CF modes. Additionally, the Fermi golden rule has been used to estimate the electron transition rate within the asymmetric structure. Our numerical results show that the scattering rate for an electron which is localized at the bottom of the first subband above the well and drops within the quantum well, is characterized by regular peaks with an almost linear increase as the size of the QW increases. The emerge peaks are related to two different physical characteristics of the AQW system. These peaks are related to electron resonances and the threshold phonon emission (both CF and IP) called phonon resonances. The scattering rate of an electron which is localized at the bottom of the second subband above the well and makes transitions to all possible states within the quantum well gives only rise to phonon resonances. The research highlights the importance of the CF and IP modes on transition rates and their dependence on both the size of the quantum well and the asymmetry of the barrier materials.
[http://dx.doi.org/10.1103/PhysRevE.94.043310];
(b) Tikhonova, O.V.; Voronina, E.N. Transfer of correlations from photons to electron excitations and currents induced in semiconductor quantum wells by non-classical twisted light. J. Phys: Condens. Matter., 2022, 34, 065302.;
(c) Alekseev, P.S.; Kipa, M.S.; Perel, V.I.; Yassievich, I. Cascade theory of electron capture in quantum wells. J. Exp. Theor. Phys., 2008, 106, 806-818.;
(d) Iorsh, I V; Kibis, O V Optically induced Kondo effect in semiconductor quantum wells. J Phys Condens Matter., 2021, 33(49)
[http://dx.doi.org/10.1088/1361-648X/ac28c2]
[http://dx.doi.org/10.3390/ma7053758] [PMID: 28788647]
[http://dx.doi.org/10.1088/1674-4926/38/11/114006]
[http://dx.doi.org/10.1016/j.physleta.2019.125983]
[http://dx.doi.org/10.1016/j.cjph.2019.02.021]
[http://dx.doi.org/10.1038/s41598-019-39085-6] [PMID: 30796302]
[http://dx.doi.org/10.1088/1742-6596/213/1/012033]
[http://dx.doi.org/10.1103/PhysRevB.44.11315] [PMID: 9999255]
[http://dx.doi.org/10.1016/j.cplett.2020.137129]
[http://dx.doi.org/10.1063/1.4948331]
[http://dx.doi.org/10.1063/1.4902109]
[http://dx.doi.org/10.1103/PhysRevB.82.045317]
[http://dx.doi.org/10.1021/ic051598k] [PMID: 16780313]
[http://dx.doi.org/10.1021/cm900248b]
[http://dx.doi.org/10.1016/j.mssp.2020.105631]
[http://dx.doi.org/10.1038/s41467-020-16529-6];
(b) Wagner, V.; Geurts, J. Raman and modulation spectroscopy at II-VI semiconductor interfaces. Phys. Status Solidi, A Appl. Res., 2001, 184(1), 29-39.
[http://dx.doi.org/10.1002/1521-396X(200103)184:1<29::AID-PSSA29>3.0.CO;2-L];
(c) Watt, M.; Smart, A.P.; Foad, M.A.; Wilkinson, C.D.W.; Arnot, H.E.G.; Torres, C.M.S. Raman scattering of III-V and II-VI semiconductor microstructures. In: Light Scattering in Semiconductor Structures and Superlattices; , 1991; pp. 247-255.
[http://dx.doi.org/10.1007/978-1-4899-3695-0_17];
(d) Eunsoon, O.; Parks, C.; Miotkowski, I.; Sciacca, M.D.; Mayur, A.J.; Ramdas, A.K. Optical properties of Mg-based II-VI ternaries and quaternaries: Cd1 − x Mgx Te and Cd1 − x − y Mgx MnyTe. Phys. Rev. B Condens. Matter, 1993, 48, 15040.
[http://dx.doi.org/10.1103/PhysRevB.48.15040] [PMID: 10008035]
[http://dx.doi.org/10.1006/spmi.1993.1022];
(b) Tang, H.; Zhu, B.; Huang, K. Raman scattering in a superlattice under an electric field. Phys. Rev. B Condens. Matter, 1990, 42(5), 3082-3086.
[http://dx.doi.org/10.1103/PhysRevB.42.3082] [PMID: 9995804];
(c) Ren, S.F.; Chang, Y.C.; Chu, H. Theory of nonresonant Raman scattering of GaAs/AlAs superlattices. Phys. Rev. B Condens. Matter, 1993, 47(3), 1489-1499.
[http://dx.doi.org/10.1103/PhysRevB.47.1489] [PMID: 10006164]
[http://dx.doi.org/10.1103/PhysRevB.72.245201];
(b) Amanda, J.; Hyeon-Deuk, K.; Prezhdo, O.V. Time-domain ab initio modeling of excitation dynamics in quantum dots. Coord. Chem. Rev., 2014, 263–264, 161-181.
[http://dx.doi.org/10.1103/PhysRevLett.96.196101];
(b) Deb, J.; Paul, D.; Sarkar, U. Density functional theory investigation of nonlinear optical properties of T-Graphene quantum dots. J. Phys. Chem. A, 2020, 124(7), 1312-1320.
[http://dx.doi.org/10.1021/acs.jpca.9b10241] [PMID: 31978308]
[http://dx.doi.org/10.1103/PhysRevB.50.8875] [PMID: 9974915];
(b) Jaskólski, W.; Zieliński, M.; Bryant, G.W.; Aizpurua, J. Strain effects on the electronic structure of strongly coupled self-assembled InAs ⁄ GaAs quantum dots: Tight-binding approach. Phys. Rev. B Condens. Matter Mater. Phys., 2006, 74(19), 195339.
[http://dx.doi.org/10.1103/PhysRevB.74.195339]
[http://dx.doi.org/10.1103/PhysRevLett.92.166104] [PMID: 15169246];
(b) Gladysiewicz, M.; Kudrawiec, R.; Wartak, M.S. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates. J. Appl. Phys., 2015, 118(5), 055702.
[http://dx.doi.org/10.1063/1.4927922]
(b) Altaisky, M.V.; Zolnikova, N.N.; Kaputkina, N.E.; Krylov, V.A.; Lozovik, Y.E.; Dattani, N.S. Towards a feasible implementation of quantum neural networks using quantum dots. Appl. Phys. Lett., 2016, 108, 103108.
[http://dx.doi.org/10.1063/1.4886337] [PMID: 25084941];
(b) Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput., 2016, 274, 292-305.;
(c) Venkatraman, S.; Yen, G.G. A generic framework for constrained optimization using genetic algorithms. IEEE Trans. Evol. Comput., 2005, 9, 424-435.
[http://dx.doi.org/10.1103/PhysRevLett.89.196803]
[http://dx.doi.org/10.1103/PhysRev.140.A2076]
[http://dx.doi.org/10.1103/PhysRev.144.495]
[http://dx.doi.org/10.1103/PhysRevB.40.6175] [PMID: 9992686]
[http://dx.doi.org/10.1088/0953-8984/13/30/304]
[http://dx.doi.org/10.1103/PhysRevB.50.1717] [PMID: 9976361];
(b) Constantinou, N.C.; Ridley, B.K. Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire. Phys. Rev. B Condens. Matter, 1990, 41(15), 10622-10626.
[http://dx.doi.org/10.1103/PhysRevB.41.10622] [PMID: 9993470]