Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

In Search of Novel SGLT2 Inhibitors by High-throughput Virtual Screening

Author(s): Abhijit Debnath*, Shalini Sharma, Rupa Mazumder, Avijit Mazumder, Rajesh Singh, Ankit Kumar, Arpita Dua, Priya Singhal, Arvind Kumar and Gurvinder Singh

Volume 21, Issue 3, 2024

Published on: 01 December, 2023

Article ID: e011223224135 Pages: 12

DOI: 10.2174/0115701638267615231123160650

Price: $65

Abstract

Background: Type 2 diabetes mellitus constitutes approximately 90% of all reported forms of diabetes mellitus. Insulin resistance characterizes this manifestation of diabetes. The prevalence of this condition is commonly observed in patients aged 45 and above; however, there is an emerging pattern of younger cohorts receiving diagnoses primarily attributed to lifestyle-related variables, including obesity, sedentary behavior, and poor dietary choices. The enzyme SGLT2 exerts a negative regulatory effect on insulin signaling pathways, resulting in the development of insulin resistance and subsequent elevation of blood glucose levels. The maintenance of glucose homeostasis relies on the proper functioning of insulin signaling pathways, while disruptions in insulin signaling can contribute to the development of type 2 diabetes.

Objective: Our study aimed to identify novel SGLT2 inhibitors by high-throughput virtual Screening.

Methods: We screened the May bridge Hit Discover database to identify potent hits followed by druglikeness, synthetic accessibility, PAINS alert, toxicity estimation, ADME assessment, and consensus molecular docking.

Results: The screening process led to the identification of three molecules that demonstrated significant binding affinity, favorable drug-like properties, effective ADME, and minimal toxicity.

Conclusion: The identified molecules could manage T2DM effectively by inhibiting SGLT2, providing a promising avenue for future therapeutic strategies.

Graphical Abstract

[1]
Kumar A, Negi AS, Chauhan A, et al. Formulation and evaluation of SGLT2 inhibitory effect of a polyherbal mixture inspired from Ayurvedic system of medicine. J Tradit Complement Med 2022; 12(5): 477-87.
[http://dx.doi.org/10.1016/j.jtcme.2022.03.003] [PMID: 36081821]
[2]
Michel MC, Mayoux E, Vallon V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(8): 801-16.
[http://dx.doi.org/10.1007/s00210-015-1134-1] [PMID: 26108304]
[3]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[4]
Williams R, Karuranga S, Malanda B, et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2020; 162: 108072.
[http://dx.doi.org/10.1016/j.diabres.2020.108072] [PMID: 32061820]
[5]
Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: A predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 2015; 38(9): 1638-42.
[http://dx.doi.org/10.2337/dc15-1380] [PMID: 26294774]
[6]
Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24(1): 73-9.
[http://dx.doi.org/10.1097/MED.0000000000000311] [PMID: 27898586]
[7]
Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75(1): 33-59.
[http://dx.doi.org/10.1007/s40265-014-0337-y] [PMID: 25488697]
[8]
Shubrook J, Baradar-Bokaie B, Adkins S. Empagliflozin in the treatment of type 2 diabetes: Evidence to date. Drug Des Devel Ther 2015; 9: 5793-803.
[http://dx.doi.org/10.2147/DDDT.S69926] [PMID: 26586935]
[9]
Triplitt C, Cornell S. Canagliflozin treatment in patients with type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 2015; S31526.
[10]
Fioretto P, Giaccari A, Sesti G. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus. Cardiovasc Diabetol 2015; 14(1): 142.
[http://dx.doi.org/10.1186/s12933-015-0297-x] [PMID: 26474563]
[11]
Basile J. A new approach to glucose control in type 2 diabetes: The role of kidney sodium-glucose co-transporter 2 inhibition. Postgrad Med 2011; 123(4): 38-45.
[http://dx.doi.org/10.3810/pgm.2011.07.2302] [PMID: 21680987]
[12]
Mirabelli M, Chiefari E, Caroleo P, Vero R, Brunetti FS, Corigliano DM. Long-Term Effectiveness and Safety of SGLT-2 Inhibitors in an Italian Cohort of Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2019; pp. 1-8.
[13]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 2011; 22(1): 104-12.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[14]
Moses R, Colagiuri S, Pollock C. SGLT2 inhibitors: New medicines for addressing unmet needs in type 2 diabetes. Australas Med J 2014; 7(10): 405-15.
[http://dx.doi.org/10.4066/AMJ.2014.2181] [PMID: 25379062]
[15]
Desouza CV, Gupta N, Patel A. Cardiometabolic effects of a new class of antidiabetic agents. Clin Ther 2015; 37(6): 1178-94.
[http://dx.doi.org/10.1016/j.clinthera.2015.02.016] [PMID: 25754876]
[16]
Santer R, Kinner M, Lassen CL, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 2003; 14(11): 2873-82.
[http://dx.doi.org/10.1097/01.ASN.0000092790.89332.D2] [PMID: 14569097]
[17]
Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2016; 101(1): 157-66.
[http://dx.doi.org/10.1210/jc.2015-3167] [PMID: 26580237]
[18]
Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 2022; 400(10354): 757-67.
[http://dx.doi.org/10.1016/S0140-6736(22)01429-5] [PMID: 36041474]
[19]
Yau K, Dharia A, Alrowiyti I, Cherney DZI. Prescribing SGLT2 Inhibitors in Patients With CKD: Expanding indications and practical considerations. Kidney Int Rep 2022; 7(7): 1463-76.
[http://dx.doi.org/10.1016/j.ekir.2022.04.094] [PMID: 35812300]
[20]
Cefalu WT, Leiter LA, de Bruin TWA, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin’s Effects on Glycemia and Cardiovascular Risk Factors in High-Risk Patients With Type 2 Diabetes: A 24-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study With a 28-Week Extension. Diabetes Care 2015; 38(7): 1218-27.
[http://dx.doi.org/10.2337/dc14-0315] [PMID: 25852208]
[21]
McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes. JAMA Cardiol 2021; 6(2): 148-58.
[http://dx.doi.org/10.1001/jamacardio.2020.4511] [PMID: 33031522]
[22]
Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect. Cardiovasc Diabetol 2020; 19(1): 98.
[http://dx.doi.org/10.1186/s12933-020-01071-y] [PMID: 32590982]
[23]
Domon A, Katayama K, Sato T, Tochigi Y, Tazaki H, Suzuki H. Empagliflozin ameliorates symptoms of diabetes and renal tubular dysfunction in a rat model of diabetes with enlarged kidney. In: Bader M, Ed. PLoS One 2021; 16: (5)e0251135.
[24]
Wilding J, Fernando K, Milne N, et al. SGLT2 Inhibitors in Type 2 diabetes management: Key evidence and implications for clinical practice. Diabetes Ther 2018; 9(5): 1757-73.
[http://dx.doi.org/10.1007/s13300-018-0471-8] [PMID: 30039249]
[25]
Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. JAMA 2018; 319(15): 1580-91.
[http://dx.doi.org/10.1001/jama.2018.3024] [PMID: 29677303]
[26]
Kim KH, Kim ND, Seong BL. Pharmacophore-based virtual screening: a review of recent applications. Expert Opin Drug Discov 2010; 5(3): 205-22.
[http://dx.doi.org/10.1517/17460441003592072] [PMID: 22823018]
[27]
Clark DE. What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 2008; 3(8): 841-51.
[http://dx.doi.org/10.1517/17460441.3.8.841] [PMID: 23484962]
[28]
Suay-García B, Bueso-Bordils JI, Falcó A, Antón-Fos GM, Alemán-López PA. Virtual combinatorial chemistry and pharmacological screening: A short guide to drug design. Int J Mol Sci 2022; 23(3): 1620.
[http://dx.doi.org/10.3390/ijms23031620] [PMID: 35163543]
[29]
Krüger DM, Evers A. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 2010; 5(1): 148-58.
[http://dx.doi.org/10.1002/cmdc.200900314] [PMID: 19908272]
[30]
Stumpfe D, Ripphausen P, Bajorath J. Virtual compound screening in drug discovery. Future Med Chem 2012; 4(5): 593-602.
[http://dx.doi.org/10.4155/fmc.12.19] [PMID: 22458679]
[31]
Mukherjee G, Jayaram B. A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Phys Chem Chem Phys 2013; 15(23): 9107-16.
[http://dx.doi.org/10.1039/c3cp44697b] [PMID: 23646352]
[32]
Landrum G. Open-source cheminformatics software 2016. Available from: https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
[33]
Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J. Jupyter Notebooks -- a publishing format for reproducible computational workflows. In: Loizides F, Schmidt B, Eds. Positioning and Power in Academic Publishing: Players. Agents and Agendas 2016; pp. 87-90.
[34]
McKinney W. others. Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference 2010; pp.51-56.
[35]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[36]
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45(12): 2615-23.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[37]
Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem 2000; 43(21): 3867-77.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[38]
Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem 2001; 44(12): 1841-6.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[39]
Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 2009; 1(1): 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]
[40]
Yu J, Wang J, Zhao H, et al. Organic compound synthetic accessibility prediction based on the graph attention mechanism. J Chem Inf Model 2022; 62(12): 2973-86.
[http://dx.doi.org/10.1021/acs.jcim.2c00038] [PMID: 35675668]
[41]
Skoraczyński G, Kitlas M, Miasojedow B, Gambin A. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning. J Cheminform 2023; 15(1): 6.
[http://dx.doi.org/10.1186/s13321-023-00678-z] [PMID: 36641473]
[42]
Stork C, Kirchmair J. PAIN(S) relievers for medicinal chemists: How computational methods can assist in hit evaluation. Future Med Chem 2018; 10(13): 1533-5.
[http://dx.doi.org/10.4155/fmc-2018-0116] [PMID: 29956552]
[43]
Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010; 53(7): 2719-40.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[44]
Erlanson DA. Learning from painful lessons. J Med Chem 2015; 58(5): 2088-90.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00294] [PMID: 25710486]
[45]
Capuzzi SJ, Muratov EN, Tropsha A. Phantom PAINS: Problems with the Utility of Alerts for P an- A ssay IN terference Compound S. J Chem Inf Model 2017; 57(3): 417-27.
[http://dx.doi.org/10.1021/acs.jcim.6b00465] [PMID: 28165734]
[46]
Baell JB, Ferrins L, Falk H, Nikolakopoulos G. PAINS: Relevance to tool compound discovery and fragment-based screening. Aust J Chem 2013; 66(12): 1483. [Internet].
[http://dx.doi.org/10.1071/CH13551]
[47]
Saubern S, Guha R, Baell JB. KNIME Workflow to Assess PAINS Filters in SMARTS Format. Comparison of RDKit and Indigo Cheminformatics Libraries. Mol Inform 2011; 30(10): 847-50.
[http://dx.doi.org/10.1002/minf.201100076] [PMID: 27468104]
[48]
Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 2022; 12(7): 3049-62.
[http://dx.doi.org/10.1016/j.apsb.2022.02.002] [PMID: 35865092]
[49]
Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 2015; 55(2): 460-73.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[50]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[51]
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4(1): 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[52]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[53]
Berman HM, Battistuz T, Bhat TN, et al. The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 2002; 58(6): 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[54]
Niu Y, Liu R, Guan C, et al. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 2022; 601(7892): 280-4.
[http://dx.doi.org/10.1038/s41586-021-04212-9] [PMID: 34880493]
[55]
Singh T, Biswas D, Jayaram B. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 2011; 51(10): 2515-27.
[http://dx.doi.org/10.1021/ci200193z] [PMID: 21877713]
[56]
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model 2021; 61(8): 3891-8.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[57]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2009. https://onlinelibrary.wiley.com/doi/10.1002/jcc.21334
[58]
Alhossary A, Handoko SD, Mu Y, Kwoh CK. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 2015; 31(13): 2214-6.
[http://dx.doi.org/10.1093/bioinformatics/btv082] [PMID: 25717194]
[59]
Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 2013; 53(8): 1893-904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[60]
Korb O, Stützle T, Exner TE. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 2009; 49(1): 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[61]
Exner TE, Korb O, ten Brink T. New and improved features of the docking software PLANTS. Chem Cent J 2009; 3(S1): P16.
[http://dx.doi.org/10.1186/1752-153X-3-S1-P16]
[62]
Houston DR, Walkinshaw MD. Consensus docking: Improving the reliability of docking in a virtual screening context. J Chem Inf Model 2013; 53(2): 384-90.
[http://dx.doi.org/10.1021/ci300399w] [PMID: 23351099]
[63]
Debnath A, Mazumder R, Mazumder A, Singh R, Srivastava S. In silico identification of hdac inhibitors for multiple myeloma: A structure-based virtual screening, drug likeness, admet profiling, molecular docking, and molecular dynamics simulation study. Lett Drug Des Discov 2023; 20: 1.
[http://dx.doi.org/10.2174/1570180820666230125102954]
[64]
Higgins J, Cartwright ME, Templeton AC. Progressing preclinical drug candidates: Strategies on preclinical safety studies and the quest for adequate exposure. Drug Discov Today 2012; 17(15-16): 828-36.
[http://dx.doi.org/10.1016/j.drudis.2012.03.016] [PMID: 22546604]
[65]
Khojasteh SC, Wong H, Hop CECA. ADME properties and their dependence on physicochemical properties. In: Drug Metabolism and Pharmacokinetics Quick Guide. New York, NY: Springer New York 2011; pp. 165-81. Internet
[http://dx.doi.org/10.1007/978-1-4419-5629-3_9]
[66]
Scardino V, Bollini M, Cavasotto CN. Combination of pose and rank consensus in docking-based virtual screening: The best of both worlds. RSC Advances 2021; 11(56): 35383-91.
[http://dx.doi.org/10.1039/D1RA05785E] [PMID: 35424265]
[67]
Palacio-Rodríguez K, Lans I, Cavasotto CN, Cossio P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci Rep 2019; 9(1): 5142.
[http://dx.doi.org/10.1038/s41598-019-41594-3] [PMID: 30914702]
[68]
Kukol A. Consensus virtual screening approaches to predict protein ligands. Eur J Med Chem 2011; 46(9): 4661-4.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.026] [PMID: 21640444]
[69]
Ochoa R, Palacio-Rodriguez K, Clemente CM, Adler NS. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules. J Mol Graph Model 2021; 109(August): 108023.
[http://dx.doi.org/10.1016/j.jmgm.2021.108023] [PMID: 34555725]
[70]
Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J Chem Inf Model 2006; 46(1): 380-91.
[http://dx.doi.org/10.1021/ci050283k] [PMID: 16426072]
[71]
Wang R, Wang S. How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 2001; 41(5): 1422-6.
[http://dx.doi.org/10.1021/ci010025x] [PMID: 11604043]
[72]
Kumar S, Khatik GL, Mittal A. In silico molecular docking study to search new sglt2 inhibitor based on dioxabicyclo[3.2.1] Octane Scaffold. Curr Computeraided Drug Des 2020; 16(2): 145-54.
[http://dx.doi.org/10.2174/1573409914666181019165821] [PMID: 30345926]
[73]
Feng R, Dong L, Wang L, Xu Y, Lu H, Zhang J. Development of sodium glucose co-transporter 2 (SGLT2) inhibitors with novel structure by molecular docking and dynamics simulation. J Mol Model 2019; 25(6): 175.
[http://dx.doi.org/10.1007/s00894-019-4067-7] [PMID: 31154518]
[74]
Bhattacharya S, Asati V, Mishra M, Das R, Kashaw V, Kashaw SK. Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents. J Mol Struct 2021; 1227: 129511.
[http://dx.doi.org/10.1016/j.molstruc.2020.129511]
[75]
Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. J Ethnopharmacol 2020; 248: 112268.
[http://dx.doi.org/10.1016/j.jep.2019.112268] [PMID: 31593813]
[76]
Halimi S, Vergès B. Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab 2014; 40(6): S28-34.
[http://dx.doi.org/10.1016/S1262-3636(14)72693-X] [PMID: 25554069]
[77]
Jain R, Bhavatharini N, Saravanan T, Seshiah V, Jain N III. Use of sodium-glucose transport protein 2 (SGLT2) inhibitor remogliflozin and possibility of acute kidney injury in type-2 diabetes. Cureus 2022; 14(12): e32573.
[http://dx.doi.org/10.7759/cureus.32573] [PMID: 36654590]
[78]
Chipayo Gonzales DA, Salinas P, Fuentes M, Vergara C, Espejo-Paeres C, McInerney A. Impact of SGLT2 inhibitor on mortality and cardiovascular outcomes in patients with type 2 diabetes mellitus with left main or multivessel coronary artery disease. Eur Heart J 2022; 43(2)
[http://dx.doi.org/10.1093/eurheartj/ehac544.2690]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy