Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Blood Biomarkers Discriminate Cerebral Amyloid Status and Cognitive Diagnosis when Collected with ACD-A Anticoagulant

Author(s): Zachary D. Green, Paul J. Kueck, Casey S. John, Jeffrey M. Burns and Jill K. Morris*

Volume 20, Issue 8, 2023

Published on: 01 December, 2023

Page: [557 - 566] Pages: 10

DOI: 10.2174/0115672050271523231111192725

Price: $65

Abstract

Background: The development of biomarkers that are easy to collect, process, and store is a major goal of research on current Alzheimer’s Disease (AD) and underlies the growing interest in plasma biomarkers. Biomarkers with these qualities will improve diagnosis and allow for better monitoring of therapeutic interventions. However, blood collection strategies have historically differed between studies. We examined the ability of various ultrasensitive plasma biomarkers to predict cerebral amyloid status in cognitively unimpaired individuals when collected using acid citrate dextrose (ACD). We then examined the ability of these biomarkers to predict cognitive impairment independent of amyloid status.

Methods: Using a cross-sectional study design, we measured amyloid beta 42/40 ratio, pTau-181, neurofilament-light, and glial fibrillary acidic protein using the Quanterix Simoa® HD-X platform. To evaluate the discriminative accuracy of these biomarkers in determining cerebral amyloid status, we used both banked plasma and 18F-AV45 PET cerebral amyloid neuroimaging data from 140 cognitively unimpaired participants. We further examined their ability to discriminate cognitive status by leveraging data from 42 cognitively impaired older adults. This study is the first, as per our knowledge, to examine these specific tests using plasma collected using acid citrate dextrose (ACD), as well as the relationship with amyloid PET status.

Results: Plasma AB42/40 had the highest AUC (0.833, 95% C.I. 0.767-0.899) at a cut-point of 0.0706 for discriminating between the two cerebral amyloid groups (sensitivity 76%, specificity 78.5%). Plasma NFL at a cut-point of 20.58pg/mL had the highest AUC (0.908, 95% CI 0.851- 0.966) for discriminating cognitive impairment (sensitivity 84.8%, specificity 89.9%). The addition of age and apolipoprotein e4 status did not improve the discriminative accuracy of these biomarkers.

Conclusion: Our results suggest that the Aβ42/40 ratio is useful in discriminating clinician-rated elevated cerebral amyloid status and that NFL is useful for discriminating cognitive impairment status. These findings reinforce the growing body of evidence regarding the general utility of these biomarkers and extend their utility to plasma collected in a non-traditional anticoagulant.

[1]
Knopman DS, Haeberlein SB, Carrillo MC, et al. The national institute on aging and the alzheimer’s association research framework for alzheimer’s disease: Perspectives from the research roundtable. Alzheimers Dement 2018; 14(4): 563-75.
[http://dx.doi.org/10.1016/j.jalz.2018.03.002] [PMID: 29653607]
[2]
Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: A prospective cohort study. Lancet Neurol 2012; 11(8): 669-78.
[http://dx.doi.org/10.1016/S1474-4422(12)70142-4] [PMID: 22749065]
[3]
Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J Intern Med 2018; 284(6): 643-63.
[http://dx.doi.org/10.1111/joim.12816] [PMID: 30051512]
[4]
Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010; 6(3): 131-44.
[http://dx.doi.org/10.1038/nrneurol.2010.4] [PMID: 20157306]
[5]
Doecke JD, Pérez-Grijalba V, Fandos N, et al. Total Aβ 42 /Aβ 40 ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology 2020; 94(15): e1580-91.
[http://dx.doi.org/10.1212/WNL.0000000000009240] [PMID: 32179698]
[6]
Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018; 554(7691): 249-54.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[7]
Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019; 93(17): e1647-59.
[http://dx.doi.org/10.1212/WNL.0000000000008081] [PMID: 31371569]
[8]
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for alzheimer disease vs other neurodegenerative disorders. JAMA 2020; 324(8): 772-81.
[http://dx.doi.org/10.1001/jama.2020.12134] [PMID: 32722745]
[9]
Janelidze S, Teunissen CE, Zetterberg H, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in alzheimer disease. JAMA Neurol 2021; 78(11): 1375-82.
[http://dx.doi.org/10.1001/jamaneurol.2021.3180] [PMID: 34542571]
[10]
Thijssen EH, Verberk IMW, Vanbrabant J, et al. Highly specific and ultrasensitive plasma test detects Abeta(1–42) and Abeta(1–40) in Alzheimer’s disease. Sci Rep 2021; 11(1): 9736.
[http://dx.doi.org/10.1038/s41598-021-89004-x] [PMID: 33958661]
[11]
Vergallo A, Mégret L, Lista S, et al. Plasma amyloid β 40/42 ratio predicts cerebral amyloidosis in cognitively normal individuals at risk for Alzheimer’s disease. Alzheimers Dement 2019; 15(6): 764-75.
[http://dx.doi.org/10.1016/j.jalz.2019.03.009] [PMID: 31113759]
[12]
Li WW, Shen YY, Tian DY, et al. Brain amyloid-β deposition and blood biomarkers in patients with clinically diagnosed alzheimer’s disease. J Alzheimers Dis 2019; 69(1): 169-78.
[http://dx.doi.org/10.3233/JAD-190056] [PMID: 30958377]
[13]
De Meyer S, Schaeverbeke JM, Verberk IMW, et al. Comparison of ELISA- and SIMOA-based quantification of plasma Aβ ratios for early detection of cerebral amyloidosis. Alzheimers Res Ther 2020; 12(1): 162.
[http://dx.doi.org/10.1186/s13195-020-00728-w] [PMID: 33278904]
[14]
Janelidze S, Stomrud E, Palmqvist S, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep 2016; 6(1): 26801.
[http://dx.doi.org/10.1038/srep26801] [PMID: 27241045]
[15]
Rózga M, Bittner T, Batrla R, Karl J. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement 2019; 11(1): 291-300.
[http://dx.doi.org/10.1016/j.dadm.2019.02.002] [PMID: 30984815]
[16]
Jonaitis EM, Zetterberg H, Koscik RL, et al. Crosswalk study on blood collection‐tube types for Alzheimer’s disease biomarkers. Alzheimers Dement 2022; 14(1): e12266.
[http://dx.doi.org/10.1002/dad2.12266] [PMID: 35155728]
[17]
György B, Pálóczi K, Kovács A, et al. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res 2014; 133(2): 285-92.
[http://dx.doi.org/10.1016/j.thromres.2013.11.010] [PMID: 24360116]
[18]
Bettin B, Gasecka A, Li B, et al. Removal of platelets from blood plasma to improve the quality of extracellular vesicle research. J Thromb Haemost 2022; 20(11): 2679-85.
[http://dx.doi.org/10.1111/jth.15867] [PMID: 36043239]
[19]
Ozawa T, Ijichi T, Shiraishi M. Measurement of canine blood microparticles by flow cytometry: Effect of anticoagulants and staining reagents. J Vet Med Sci 2021; 83(11): 1786-9.
[http://dx.doi.org/10.1292/jvms.21-0448] [PMID: 34615844]
[20]
Marx RE. Platelet-rich plasma (PRP): What is PRP and what is not PRP? Implant Dent 2001; 10(4): 225-8.
[http://dx.doi.org/10.1097/00008505-200110000-00002] [PMID: 11813662]
[21]
Aizawa H, Kawabata H, Sato A, et al. A comparative study of the effects of anticoagulants on pure platelet-rich plasma quality and potency. Biomedicines 2020; 8(3): 42.
[http://dx.doi.org/10.3390/biomedicines8030042] [PMID: 32106422]
[22]
Pignatelli P, Pulcinelli FM, Ciatti F, et al. Acid citrate dextrose (acd) formula a as a new anticoagulant in the measurement of in vitro platelet aggregation. J Clin Lab Anal 1995; 9(2): 138-40.
[http://dx.doi.org/10.1002/jcla.1860090211] [PMID: 7714666]
[23]
Swerdlow RH, Parks JK, Cassarino DS, et al. Cybrids in Alzheimer’s disease: A cellular model of the disease? Neurology 1997; 49(4): 918-25.
[http://dx.doi.org/10.1212/WNL.49.4.918] [PMID: 9339668]
[24]
Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 1996; 40(4): 663-71.
[http://dx.doi.org/10.1002/ana.410400417] [PMID: 8871587]
[25]
Weintraub S, Salmon D, Mercaldo N, et al. The alzheimer’s disease centers’ uniform data set (UDS). Alzheimer Dis Assoc Disord 2009; 23(2): 91-101.
[http://dx.doi.org/10.1097/WAD.0b013e318191c7dd] [PMID: 19474567]
[26]
Morris JC. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993; 43(11): 2412.2--a.
[http://dx.doi.org/10.1212/WNL.43.11.2412-a] [PMID: 8232972]
[27]
Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJC, et al. A practical guide to immunoassay method validation. Front Neurol 2015; 6: 179.
[http://dx.doi.org/10.3389/fneur.2015.00179] [PMID: 26347708]
[28]
Mattsson N, Zetterberg H, Janelidze S, et al. Plasma tau in Alzheimer disease. Neurology 2016; 87(17): 1827-35.
[http://dx.doi.org/10.1212/WNL.0000000000003246] [PMID: 27694257]
[29]
Gonzalez-Ortiz F, Turton M, Kac PR, et al. Brain-derived tau: A novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain 2023; 146(3): 1152-65.
[http://dx.doi.org/10.1093/brain/awac407] [PMID: 36572122]
[30]
Harn NR, Hunt SL, Hill J, Vidoni E, Perry M, Burns JM. Augmenting amyloid PET interpretations with quantitative information improves consistency of early amyloid detection. Clin Nucl Med 2017; 42(8): 577-81.
[http://dx.doi.org/10.1097/RLU.0000000000001693] [PMID: 28574875]
[31]
Taylor MK, Sullivan DK, Swerdlow RH, et al. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr 2017; 106(6): 1463-70.
[http://dx.doi.org/10.3945/ajcn.117.162263] [PMID: 29070566]
[32]
Joshi AD, Pontecorvo MJ, Clark CM, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. J Nucl Med 2012; 53(3): 378-84.
[http://dx.doi.org/10.2967/jnumed.111.090340] [PMID: 22331215]
[33]
Baldeiras I, Santana I, Leitão MJ, et al. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alzheimers Res Ther 2018; 10(1): 33.
[http://dx.doi.org/10.1186/s13195-018-0362-2] [PMID: 29558986]
[34]
Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma amyloid as prescreener for the earliest A lzheimer pathological changes. Ann Neurol 2018; 84(5): 648-58.
[http://dx.doi.org/10.1002/ana.25334] [PMID: 30196548]
[35]
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 2020; 19(5): 422-33.
[http://dx.doi.org/10.1016/S1474-4422(20)30071-5] [PMID: 32333900]
[36]
Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med 2020; 26(3): 379-86.
[http://dx.doi.org/10.1038/s41591-020-0755-1] [PMID: 32123385]
[37]
Pereira JB, Janelidze S, Stomrud E, et al. Plasma markers predict changes in amyloid, tau, atrophy and cognition in non-demented subjects. Brain 2021; 144(9): 2826-36.
[http://dx.doi.org/10.1093/brain/awab163] [PMID: 34077494]
[38]
Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 2021; 141(5): 709-24.
[http://dx.doi.org/10.1007/s00401-021-02275-6] [PMID: 33585983]
[39]
Barthélemy NR, Li Y, Joseph-Mathurin N, et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat Med 2020; 26(3): 398-407.
[http://dx.doi.org/10.1038/s41591-020-0781-z] [PMID: 32161412]
[40]
Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14(10): 577-89.
[http://dx.doi.org/10.1038/s41582-018-0058-z] [PMID: 30171200]
[41]
Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with alzheimer disease. JAMA Neurol 2019; 76(7): 791-9.
[http://dx.doi.org/10.1001/jamaneurol.2019.0765] [PMID: 31009028]
[42]
Bridel C, van Wieringen WN, Zetterberg H, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology. JAMA Neurol 2019; 76(9): 1035-48.
[http://dx.doi.org/10.1001/jamaneurol.2019.1534] [PMID: 31206160]
[43]
Oeckl P, Halbgebauer S, Anderl-Straub S, et al. Glial fibrillary acidic protein in serum is increased in alzheimer’s disease and correlates with cognitive impairment. J Alzheimers Dis 2019; 67(2): 481-8.
[http://dx.doi.org/10.3233/JAD-180325] [PMID: 30594925]
[44]
Escartin C, Guillemaud O, Carrillo-de SMA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67(12): 2221-47.
[http://dx.doi.org/10.1002/glia.23687] [PMID: 31429127]
[45]
Liddelow SA, Barres BA. Reactive astrocytes: Production, function, and therapeutic potential. Immunity 2017; 46(6): 957-67.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[46]
Verberk IMW, Thijssen E, Koelewijn J, et al. Combination of plasma amyloid beta((1-42/1-40)) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimers Res Ther 2020; 12: 118.
[http://dx.doi.org/10.1186/s13195-020-00682-7] [PMID: 32988409]
[47]
Benedet AL, Milà-Alomà M, Vrillon A, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the alzheimer disease continuum. JAMA Neurol 2021; 78(12): 1471-83.
[http://dx.doi.org/10.1001/jamaneurol.2021.3671] [PMID: 34661615]
[48]
Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 2011; 10(3): 241-52.
[http://dx.doi.org/10.1016/S1474-4422(10)70325-2] [PMID: 21349439]
[49]
Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 2012; 375(1-2): 207-14.
[http://dx.doi.org/10.1016/j.jim.2011.10.012] [PMID: 22075275]
[50]
O’Bryant SE, Zhang F, Petersen M, et al. Neurodegeneration from the AT(N) framework is different among Mexican Americans compared to non‐Hispanic Whites: A Health & Aging Brain among Latino Elders (HABLE) Study. Alzheimers Dement 2022; 14(1)e12267
[http://dx.doi.org/10.1002/dad2.12267] [PMID: 35155729]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy