Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Letter Article

Bioactive Secondary Metabolites Produced by the Hadal Actinomycete Streptomyces sp. SY1414 Isolated from the Mariana Trench-derived Sediment

Author(s): Di Zhang, Yao Feng, Huifang Li* and Zhizhen Zhang*

Volume 14, Issue 4, 2024

Published on: 28 November, 2023

Article ID: e281123223928 Pages: 11

DOI: 10.2174/0122103155281050231123050658

Price: $65

Abstract

Background: Accumulated investigations have demonstrated that the Mariana Trench is enriched in microorganisms. However, the diversity of structures and bioactivities of the secondary metabolites produced by the Mariana Trench-associated microorganisms is poorly known, which needs to be intensively investigated.

Objective: This study aimed to investigate the bioactive secondary metabolites produced by a Mariana Trench-derived actinomycete Streptomyces sp. SY1414 that was cultured in BY medium, which was chosen from four different media based on the diversity of secondary metabolites.

Methods: A combination of different column chromatographs and HPLC was applied for the separation and purification of the secondary metabolites. The structures of the isolated compounds were determined mainly based on their NMR data, optical rotation values, and the comparison with the reference data, and the Sulforhodamine B (SRB) method was used to evaluate their anti-glioma activities.

Results: Four different types of compounds were isolated from the large culture of strain Streptomyces sp. SY1414 in BY medium, including a benzoquinoline alkaloid, actinophenanthroline C (1), a benzamide, (2E,4E)-5-(3-hydroxyphenyl)-penta-2,4-dienamide (2), a cyclopeptide, valinomycin (3), and four macrolides of bafilomycin D (4), bafilomycin A2 (5), bafilomycin W (6), and C(19), C(21)- O-methyl-bafilomycin A1 (7). Actinophenanthroline C (1), bafilomycin D (4), bafilomycin A2 (5), and bafilomycin W (6) displayed significant anti-glioma activities with IC50 values ranging from 1.62 to 8.20 μM for U87MG cells and 2.45 to 3.89 μM for U251. The anti-gliomas of actinophenanthroline C (1) was reported for the first time.

Conclusion: The hadal actinomycete Streptomyces sp. SY1414 in BY medium produced four different types of secondary metabolites with significant anti-glioma activity, which enriched the diversity of structures and bioactivities of the Mariana Trench-associated natural products.

Graphical Abstract

[1]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2023, 40(2), 275-325.
[http://dx.doi.org/10.1039/D2NP00083K] [PMID: 36786022]
[2]
Shaik, B.B.; Katari, N.K.; Jonnalagadda, S.B. Role of natural products in developing novel anticancer agents: A perspective. Chem. Biodivers., 2022, 19(11), e202200535.
[http://dx.doi.org/10.1002/cbdv.202200535] [PMID: 36347633]
[3]
Haque, N.; Parveen, S.; Tang, T.; Wei, J.; Huang, Z. Marine natural products in clinical use. Mar. Drugs, 2022, 20(8), 528.
[http://dx.doi.org/10.3390/md20080528] [PMID: 36005531]
[4]
Hai, Y.; Cai, Z.M.; Li, P.J.; Wei, M.Y.; Wang, C.Y.; Gu, Y.C.; Shao, C.L. Trends of antimalarial marine natural products: Progresses, challenges and opportunities. Nat. Prod. Rep., 2022, 39(5), 969-990.
[http://dx.doi.org/10.1039/D1NP00075F] [PMID: 35156111]
[5]
Lee, H.S.; Jeong, G.S. Salinosporamide A, a marine-derived proteasome inhibitor, inhibits T cell activation through regulating proliferation and the cell cycle. Molecules, 2020, 25(21), 5031.
[http://dx.doi.org/10.3390/molecules25215031] [PMID: 33138297]
[6]
Jiménez, C. Marine natural products in medicinal chemistry. ACS Med. Chem. Lett., 2018, 9(10), 959-961.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00368] [PMID: 30344898]
[7]
Kishore, N.; Twilley, D.; Blom van Staden, A.; Verma, P.; Singh, B.; Cardinali, G.; Kovacs, D.; Picardo, M.; Kumar, V.; Lall, N. Isolation of flavonoids and flavonoid glycosides from Myrsine africana and their inhibitory activities against mushroom tyrosinase. J. Nat. Prod., 2018, 81(1), 49-56.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00564] [PMID: 29300477]
[8]
Bala, M.; Verma, P.K.; Awasthi, S.; Kumar, N.; Lal, B.; Singh, B. Chemical prospection of important ayurvedic plant Tinospora cordifolia by UPLC-DAD-ESI-QTOF-MS/MS and NMR. Nat. Prod. Commun., 2015, 10(1), 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000113] [PMID: 25920217]
[9]
Bharate, S.B.; Sawant, S.D.; Singh, P.P.; Vishwakarma, R.A. Kinase inhibitors of marine origin. Chem. Rev., 2013, 113(8), 6761-6815.
[http://dx.doi.org/10.1021/cr300410v] [PMID: 23679846]
[10]
Kumar Verma, P.; Bala, M.; Kumar, N.; Singh, B. Therapeutic potential of natural products from terrestrial plants as TNF-α antagonist. Curr. Top. Med. Chem., 2012, 12(13), 1422-1435.
[http://dx.doi.org/10.2174/156802612801784425] [PMID: 22650375]
[11]
Aggarwal, V.; Bala, E.; Kumar, P.; Raizada, P.; Singh, P.; Verma, P.K. Natural products as potential therapeutic agents for SARS-CoV-2: A medicinal chemistry perspective. Curr. Top. Med. Chem., 2023, 23(17), 1664-1698.
[http://dx.doi.org/10.2174/1568026623666230327125918] [PMID: 36974409]
[12]
Hosseini, H.; Al-Jabri, H.M.; Moheimani, N.R.; Siddiqui, S.A.; Saadaoui, I. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications—a review. J. Basic Microbiol., 2022, 62(9), 1030-1043.
[http://dx.doi.org/10.1002/jobm.202100504] [PMID: 35467037]
[13]
Fenical, W. Marine microbial natural products: The evolution of a new field of science. J. Antibiot., 2020, 73(8), 481-487.
[http://dx.doi.org/10.1038/s41429-020-0331-4] [PMID: 32713942]
[14]
Li, K.; Cai, J.; Su, Z.; Yang, B.; Liu, Y.; Zhou, X.; Huang, J.; Tao, H. Glycosylated natural products from marine microbes. Front Chem., 2020, 7, 879.
[http://dx.doi.org/10.3389/fchem.2019.00879] [PMID: 31998682]
[15]
Romano, G.; Costantini, M.; Sansone, C.; Lauritano, C.; Ruocco, N.; Ianora, A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar. Environ. Res., 2017, 128, 58-69.
[http://dx.doi.org/10.1016/j.marenvres.2016.05.002] [PMID: 27160988]
[16]
Wang, F.; Li, M.; Huang, L.; Zhang, X.H. Cultivation of uncultured marine microorganisms. Mar. Life Sci. Technol., 2021, 3(2), 117-120.
[http://dx.doi.org/10.1007/s42995-021-00093-z] [PMID: 37073343]
[17]
Abida, H.; Ruchaud, S.; Rios, L.; Humeau, A.; Probert, I.; De Vargas, C.; Bach, S.; Bowler, C. Bioprospecting marine plankton. Mar. Drugs, 2013, 11(11), 4594-4611.
[http://dx.doi.org/10.3390/md11114594] [PMID: 24240981]
[18]
Kaari, M.; Manikkam, R.; Baskaran, A. Exploring newer biosynthetic gene clusters in marine microbial prospecting. Mar. Biotechnol., 2022, 24(3), 448-467.
[http://dx.doi.org/10.1007/s10126-022-10118-y] [PMID: 35394575]
[19]
Birolli, W.G.; Lima, R.N.; Porto, A.L.M. Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotrans-formation, the underexplored potentials. Front. Microbiol., 2019, 10, 1453.
[http://dx.doi.org/10.3389/fmicb.2019.01453] [PMID: 31481935]
[20]
Collins, F.W.J.; Walsh, C.J.; Gomez-Sala, B.; Guijarro-García, E.; Stokes, D.; Jakobsdóttir, K.B.; Kristjánsson, K.; Burns, F.; Cotter, P.D.; Rea, M.C.; Hill, C.; Ross, R.P. The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut Microbes, 2021, 13(1), 1921924.
[http://dx.doi.org/10.1080/19490976.2021.1921924] [PMID: 33970781]
[21]
König, G.M.; Kehraus, S.; Seibert, S.F.; Abdel-Lateff, A.; Müller, D. Natural products from marine organisms and their associated microbes. ChemBioChem, 2006, 7(2), 229-238.
[http://dx.doi.org/10.1002/cbic.200500087] [PMID: 16247831]
[22]
Simmons, T.L.; Coates, R.C.; Clark, B.R.; Engene, N.; Gonzalez, D.; Esquenazi, E.; Dorrestein, P.C.; Gerwick, W.H. Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages. Proc. Natl. Acad. Sci., 2008, 105(12), 4587-4594.
[http://dx.doi.org/10.1073/pnas.0709851105] [PMID: 18250337]
[23]
Zhao, G.; Tang, W.; Zhang, J.; Shi, P.; Li, Y.; Wang, J.; Shen, Q.; Si, H.; Jiang, L.; Yu, X.; Zhu, H.; Chen, G.; Zhang, X.; Jia, H. Deep-sea-derived fungi as valuable producers of cytotoxic secondary metabolites and their leads potential. Front. Mar. Sci., 2022, 9, 929561.
[http://dx.doi.org/10.3389/fmars.2022.929561]
[24]
Siro, G.; Donald, L.; Pipite, A. The diversity of deep-sea actinobacteria and their natural products: An epitome of curiosity and drug discovery. Diversity, 2022, 15(1), 30.
[http://dx.doi.org/10.3390/d15010030]
[25]
Cong, M.; Pang, X.; Zhao, K.; Song, Y.; Liu, Y.; Wang, J. Deep-sea natural products from extreme environments: Cold seeps and hydrothermal vents. Mar. Drugs, 2022, 20(6), 404.
[http://dx.doi.org/10.3390/md20060404] [PMID: 35736207]
[26]
Guo, J.; Yang, J.; Wang, P.; Guo, B.; Li, H.; Zhang, D.; An, F.; Gao, S. Anti-vibriosis bioactive molecules from Arctic Penicillium sp. Z2230. Bioresour. Bioprocess., 2023, 10(1), 11.
[http://dx.doi.org/10.1186/s40643-023-00628-5]
[27]
Zhang, D.; Yi, W.; Ge, H.; Zhang, Z.; Wu, B. Bioactive streptoglutarimides A-J from the marine-derived Streptomyces sp. ZZ741. J. Nat. Prod., 2019, 82(10), 2800-2808.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00481] [PMID: 31584271]
[28]
Hong, Q.; Guo, M.M.; Yang, J.; Wei, X.; Liao, L.; Xin, X.J.; Zhang, D.; An, F.L. Four previously undescribed diketopiperazines from marine fungus Aspergillus puniceus FAHY0085 and their effects on liver X receptor α. Phytochemistry, 2023, 214, 113816.
[http://dx.doi.org/10.1016/j.phytochem.2023.113816] [PMID: 37536654]
[29]
Yong, K.; Kaleem, S.; Ma, M.; Lian, X.; Zhang, Z. Antiglioma natural products from the marine-associated fungus Penicillium sp. ZZ1750. Molecules, 2022, 27(20), 7099.
[http://dx.doi.org/10.3390/molecules27207099] [PMID: 36296693]
[30]
Ge, H.; Zhang, D.; Shi, M.; Lian, X.; Zhang, Z. Antiproliferative activity and potential mechanism of marine-sourced streptoglutarimide H against lung cancer cells. Mar. Drugs, 2021, 19(2), 79.
[http://dx.doi.org/10.3390/md19020079] [PMID: 33572615]
[31]
Nam, S.J.; Kauffman, C.A.; Jensen, P.R.; Moore, C.E.; Rheingold, A.L.; Fenical, W. Actinobenzoquinoline and actinophenanthrolines A-C, unprecedented alkaloids from a marine actinobacterium. Org. Lett., 2015, 17(13), 3240-3243.
[http://dx.doi.org/10.1021/acs.orglett.5b01387] [PMID: 26084575]
[32]
Zhou, H.; Zhao, L.X.; Li, W.; Yang, Y.B.; Xu, L.H.; Ding, Z.T. Anti-mycobacterium tuberculosis active metabolites from an endophytic Streptomyces sp. YIM65484. Rec. Nat. Prod., 2015, 9(2), 196-200.
[33]
Wibowo, J.T.; Kellermann, M.Y.; Köck, M.; Putra, M.Y.; Murniasih, T.; Mohr, K.I.; Wink, J.; Praditya, D.F.; Steinmann, E.; Schupp, P.J. Anti-infective and antiviral activity of valinomycin and its analogues from a sea cucumber-associated bacterium, Streptomyces sp. SV 21. Mar. Drugs, 2021, 19(2), 81.
[http://dx.doi.org/10.3390/md19020081] [PMID: 33540548]
[34]
Pettit, G.R.; Tan, R.; Melody, N.; Kielty, J.M.; Pettit, R.K.; Herald, D.L.; Tucker, B.E.; Mallavia, L.P.; Doubek, D.L.; Schmidt, J.M. Antineoplastic agents. Part 409: Isolation and structure of montanastatin from a terrestrial actinomycete[1]1Dedicated to the memory of Professor Sir Derek H. R. Barton (1918–1998), a great chemist and friend.1. Bioorg. Med. Chem., 1999, 7(5), 895-899.
[http://dx.doi.org/10.1016/S0968-0896(99)00024-3] [PMID: 10400343]
[35]
Zhang, X.; Chen, L.; Chai, W.; Lian, X.Y.; Zhang, Z. A unique indolizinium alkaloid streptopertusacin A and bioactive bafilomycins from marine-derived Streptomyces sp. HZP-2216E. Phytochemistry, 2017, 144, 119-126.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.010] [PMID: 28923323]
[36]
O’Shea, M.G.; Rickards, R.W.; Rothschild, J.M.; Lacey, E. Absolute configurations of macrolide antibiotics of the bafilomycin and leucanicidin groups. J. Antibiot., 1997, 50(12), 1073-1077.
[http://dx.doi.org/10.7164/antibiotics.50.1073] [PMID: 9510919]
[37]
Scheidt, K.A.; Bannister, T.D.; Tasaka, A.; Wendt, M.D.; Savall, B.M.; Fegley, G.J.; Roush, W.R. Total synthesis of (-)-bafilomycin A(1). J. Am. Chem. Soc., 2002, 124(24), 6981-6990.
[http://dx.doi.org/10.1021/ja017885e] [PMID: 12059221]
[38]
Deeg, M.; Hagenmaier, H.; Kretschmer, A. Chemical modifications of bafilomycin-type 16-membered dienlactone macrolides. J. Antibiot., 1987, 40(3), 320-328.
[http://dx.doi.org/10.7164/antibiotics.40.320] [PMID: 3570985]
[39]
Carr, G.; Williams, D.E.; Díaz-Marrero, A.R.; Patrick, B.O.; Bottriell, H.; Balgi, A.D.; Donohue, E.; Roberge, M.; Andersen, R.J. Bafilomycins produced in culture by Streptomyces spp. isolated from marine habitats are potent inhibitors of autophagy. J. Nat. Prod., 2010, 73(3), 422-427.
[http://dx.doi.org/10.1021/np900632r] [PMID: 20028134]
[40]
Wang, Z.; Qader, M.; Wang, Y.; Kong, F.; Wang, Q.; Wang, C. Progress in the discovery of new bioactive substances from deep-sea associated fungi during 2020-2022. Front. Mar. Sci., 2023, 10, 1232891.
[http://dx.doi.org/10.3389/fmars.2023.1232891]
[41]
Wang, Y.N.; Meng, L.H.; Wang, B.G. Progress in research on bioactive secondary metabolites from deep-sea derived microorganisms. Mar. Drugs, 2020, 18(12), 614.
[http://dx.doi.org/10.3390/md18120614] [PMID: 33276592]
[42]
Sun, C.; Mudassir, S.; Zhang, Z.; Feng, Y.; Chang, Y.; Che, Q.; Gu, Q.; Zhu, T.; Zhang, G.; Li, D. Secondary metabolites from deep-sea derived microorganisms. Curr. Med. Chem., 2020, 27(36), 6244-6273.
[http://dx.doi.org/10.2174/0929867326666190618153950] [PMID: 31250751]
[43]
Chen, J.; Wu, Q.; Hawas, U.W.; Wang, H. Genetic regulation and manipulation for natural product discovery. Appl. Microbiol. Biotechnol., 2016, 100(7), 2953-2965.
[http://dx.doi.org/10.1007/s00253-016-7357-3] [PMID: 26860941]
[44]
Deekshit, V.K.; Srikumar, S. ‘To be, or not to be’—The dilemma of ‘silent’ antimicrobial resistance genes in bacteria. J. Appl. Microbiol., 2022, 133(5), 2902-2914.
[http://dx.doi.org/10.1111/jam.15738] [PMID: 35882476]
[45]
Huang, R.; Wang, Y.; Liu, D.; Wang, S.; Lv, H.; Yan, Z. Long-read metagenomics of marine microbes reveals diversely expressed second-ary metabolites. Microbiol. Spectr., 2023, 11(4), e01501-e01523.
[http://dx.doi.org/10.1128/spectrum.01501-23] [PMID: 37409950]
[46]
Pinedo-Rivilla, C.; Aleu, J.; Durán-Patrón, R. Cryptic metabolites from marine-derived microorganisms using OSMAC and epigenetic approaches. Mar. Drugs, 2022, 20(2), 84.
[http://dx.doi.org/10.3390/md20020084] [PMID: 35200614]
[47]
Afreen; Salahuddin; Mazumder, A.; Joshi, S.; Kumar, R.; Yar, M.S.; Ahsan, M.J. Insight into the isolation, synthesis, and structure-activity relationship of piperine derivatives for the development of new compounds: Recent updates. Curr. Top. Med. Chem., 2021, 21(30), 2715-2751.
[http://dx.doi.org/10.2174/1568026621666210917085449] [PMID: 34530714]
[48]
Paula, V.F.; Barbosa, L.C.A.; Demuner, A.J.; Piló-Veloso, D.; Picanço, M.C. Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Manag. Sci., 2000, 56(2), 168-174.
[http://dx.doi.org/10.1002/(SICI)1526-4998(200002)56:2<168:AID-PS110>3.0.CO;2-H]
[49]
Wang, L.; Cai, X.; Shi, M.; Xue, L.; Kuang, S.; Xu, R.; Qi, W.; Li, Y.; Ma, X.; Zhang, R.; Hong, F.; Ye, H.; Chen, L. Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson’s disease via the activation of Nrf2/keap1 pathway. Eur. J. Med. Chem., 2020, 199, 112385.
[http://dx.doi.org/10.1016/j.ejmech.2020.112385] [PMID: 32402936]
[50]
Brockmann, H.; Schmidt-Kastner, G.; Valinomycin, I. XXVII. Mitteil. über antibiotica aus actinomyceten. Chem. Ber., 1955, 88(1), 57-61.
[http://dx.doi.org/10.1002/cber.19550880111]
[51]
Brockmann, H.; Geeren, H.; Valinomycin, I.I. Antibiotika aus actinomyceten XXXVII. Die konstitution des valinomycins. Justus Liebigs Ann. Chem., 1957, 603(1), 216-232.
[http://dx.doi.org/10.1002/jlac.19576030123]
[52]
Brockmann, H.; Springorum, M.; Träxler, G.; Höfer, I. Molekulargewicht des valinomycins. Naturwissenschaften, 1963, 50, 689.
[http://dx.doi.org/10.1007/BF00631727]
[53]
Shemyakin, M.M.; Aldanova, N.A.; Vinogradova, E.I.; Feigina, M.Y. The structure and total synthesis of valinomycin. Tetrahedron Lett., 1963, 4(28), 1921-1925.
[http://dx.doi.org/10.1016/S0040-4039(01)90943-8]
[54]
Seshachalam, D.; Frahm, D.H.; Ferraro, F.M. Cation reversal of inhibition of growth by valinomycin in Streptococcus pyogenes and Clostridium sporogenes. Antimicrob. Agents Chemother., 1973, 3(1), 63-67.
[http://dx.doi.org/10.1128/AAC.3.1.63] [PMID: 4208280]
[55]
Lim, T.H.; Oh, H.C.; Kwon, S.Y.; Kim, J.H.; Seo, H.W.; Lee, J.H.; Kim, J.C.; Lim, C.H.; Cha, B.J.; Min, B.S. Antifungal activity of valinomycin, a cyclodepsipeptide from Streptomyces padanus TH-04. Nat. Prod. Sci., 2007, 13, 144-147.
[56]
Park, C.N.; Lee, J.M.; Lee, D.; Kim, B.S. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea. J. Microbiol. Biotechnol., 2008, 18(5), 880-884.
[PMID: 18633285]
[57]
Wu, C.Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.E.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci., 2004, 101(27), 10012-10017.
[http://dx.doi.org/10.1073/pnas.0403596101] [PMID: 15226499]
[58]
Karuppannan, A.K.; Wu, K.X.; Qiang, J.; Chu, J.J.H.; Kwang, J. Natural compounds inhibiting the replication of Porcine reproductive and respiratory syndrome virus. Antiviral Res., 2012, 94(2), 188-194.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.008] [PMID: 22487208]
[59]
Pansa, M.C.; Natalizi, G.M.; Bettini, S. Toxicity of valinomycin on insects. J. Invertebr. Pathol., 1973, 22(2), 148-152.
[http://dx.doi.org/10.1016/0022-2011(73)90126-2] [PMID: 4784762]
[60]
Yamasaki, M.; Nakamura, K.; Tamura, N.; Hwang, S.J.; Yoshikawa, M.; Sasaki, N.; Ohta, H.; Yamato, O.; Maede, Y.; Takiguchi, M. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro. J. Parasitol., 2009, 95(6), 1532-1538.
[http://dx.doi.org/10.1645/GE-2036.1] [PMID: 20929429]
[61]
Daoud, S.S.; Forde, N.H. Synergistic cytotoxic actions of cisplatin and liposomal valinomycin on human ovarian carcinoma cells. Cancer Chemother. Pharmacol., 1991, 28(5), 370-376.
[http://dx.doi.org/10.1007/BF00685692] [PMID: 1914081]
[62]
Iacobazzi, R.M.; Annese, C.; Azzariti, A.; D’Accolti, L.; Franco, M.; Fusco, C.; La Piana, G.; Laquintana, V.; Denora, N. Antitumor potential of conjugable valinomycins bearing hydroxyl sites: In vitro studies. ACS Med. Chem. Lett., 2013, 4(12), 1189-1192.
[http://dx.doi.org/10.1021/ml400300q] [PMID: 24900628]
[63]
Rakovic, A.; Ziegler, J.; Mårtensson, C.U.; Prasuhn, J.; Shurkewitsch, K.; König, P.; Paulson, H.L.; Klein, C. PINK1-dependent mitophagy is driven by the UPS and can occur independently of LC3 conversion. Cell Death Differ., 2019, 26(8), 1428-1441.
[http://dx.doi.org/10.1038/s41418-018-0219-z] [PMID: 30375512]
[64]
Wang, R.; Bao, Y.; Dong, Y.; Dong, Y.; Li, H. Genome-directed discovery of antiproliferative bafilomycins from a deepsea-derived Streptomyces samsunensis. Bioorg. Chem., 2023, 138, 106599.
[http://dx.doi.org/10.1016/j.bioorg.2023.106599] [PMID: 37320913]
[65]
Werner, G.; Hagenmaier, H.; Drautz, H.; Baumgartner, A.; Zähner, H. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J. Antibiot. (Tokyo), 1984, 37(2), 110-117.
[http://dx.doi.org/10.7164/antibiotics.37.110] [PMID: 6423597]
[66]
Tchize Ndejouong, B.L.S.; Sattler, I.; Maier, A.; Kelter, G.; Menzel, K.D.; Fiebig, H.H.; Hertweck, C. Hygrobafilomycin, a cytotoxic and antifungal macrolide bearing a unique monoalkylmaleic anhydride moiety, from Streptomyces varsoviensis. J. Antibiot. (Tokyo), 2010, 63(7), 359-363.
[http://dx.doi.org/10.1038/ja.2010.52] [PMID: 20551984]
[67]
Zhang, C.; Wei, B.; Liu, Z.; Yao, W.; Li, Y.; Lu, J.; Ge, C.; Yu, X.; Li, D.; Zhu, Y.; Shang, C.; Jin, N.; Li, X. Bafilomycin A1 inhibits SARS-CoV-2 infection in a human lung xenograft mouse model. Virol. J., 2023, 20(1), 18.
[http://dx.doi.org/10.1186/s12985-023-01971-x] [PMID: 36721152]
[68]
Pérez-Sayáns, M.; Somoza-Martín, J.M.; Barros-Angueira, F.; Rey, J.M.G.; García-García, A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev., 2009, 35(8), 707-713.
[http://dx.doi.org/10.1016/j.ctrv.2009.08.003] [PMID: 19758758]
[69]
Heinle, S.; Stünkel, K.; Zähner, H.; Drautz, H.; Bessler, W.G. Immunosuppressive effects of the macrolide antibiotic bafilomycin towards lymphocytes and lymphoid cell lines. Arzneimittelforschung, 1988, 38(8), 1130-1133.
[PMID: 3264168]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy