Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Activation of the Complement Lectin Pathway by Iron Oxide Nanoparticles and Induction of Pro-inflammatory Immune Response by Macrophages

In Press, (this is not the final "Version of Record"). Available online 27 November, 2023
Author(s): Haseeb A. Khan*, Uday Kishore, Salman H. Alrokayan and Khalid E. Ibrahim
Published on: 27 November, 2023

DOI: 10.2174/0115734137270924231117112124

open access plus

Abstract

Aims: Nanoparticles are important agents for targeted drug delivery to tissues or organs, or even solid tumour in certain instances. However, their surface charge distribution makes them amenable to recognition by the host immune mechanisms, especially the innate immune system, which interferes with their intended targeting, circulation life, and eventual fate in the body. We aimed to study the immunological response of iron oxide nanoparticles (Fe-NPs) and the role of the complement system in inducing an inflammatory cascade.

Background: The complement system is an important component of the innate immune system that can recognise molecular patterns on the pathogens (non-self), altered self (apoptotic and necrotic cells, and aggregated proteins such as beta-amyloid peptides), and cancer cells. It is no surprise that clusters of charge on nanoparticles are recognised by complement subcomponents, thus activating the three complement pathways: classical, alternative, and lectin.

Objective: This study aimed to examine the ability of Fe-NPs to activate the complement system and interact with macrophages in vitro.

Methods: Complement activation following exposure of macrophage-like cell line (THP-1) to Fe-NPs or positive control was analysed by standard protocol. Real-time PCR was used for mRNA-level gene expression analysis, whereas multiplex cytokine array was used for proteinlevel expression analysis of cytokines and chemokines.

Results: Fe-NPs activated all three pathways to a certain extent; however, the activation of the lectin pathway was the most pronounced, suggesting that Fe-NPs bind mannan-binding lectin (MBL), a pattern recognition soluble receptor (humoral factor). MBL-mediated complement activation on the surface of Fe-NPs enhanced their uptake by THP-1 cells, in addition to dampening inflammatory cytokines, chemokines, growth factors, and soluble immune ligands.

Conclusion: Selective complement deposition (via the lectin pathway in this study) can make pro-inflammatory nanoparticles biocompatible and render them anti-inflammatory properties.

[1]
Daldrup-Link, H.E.; Golovko, D.; Ruffell, B.; DeNardo, D.G.; Castaneda, R.; Ansari, C.; Rao, J.; Tikhomirov, G.A.; Wendland, M.F.; Corot, C.; Coussens, L.M. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res., 2011, 17(17), 5695-5704.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3420] [PMID: 21791632]
[2]
Singh, A.; Patel, T.; Hertel, J.; Bernardo, M.; Kausz, A.; Brenner, L. Safety of ferumoxytol in patients with anemia and CKD. Am. J. Kidney Dis., 2008, 52(5), 907-915.
[http://dx.doi.org/10.1053/j.ajkd.2008.08.001] [PMID: 18824288]
[3]
Auerbach, M.; Ballard, H. Clinical use of intravenous iron: Administration, efficacy, and safety. Hematology, 2010, 2010(1), 338-347.
[http://dx.doi.org/10.1182/asheducation-2010.1.338] [PMID: 21239816]
[4]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11(11), 986-994.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[5]
Pondman, K.; Le Gac, S.; Kishore, U. Nanoparticle-induced immune response: Health risk versus treatment opportunity. Immunobiology, 2023, 228 (2), 152317.
[6]
Mahmoudi, M.; Laurent, S.; Shokrgozar, M.A.; Hosseinkhani, M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell “vision” versus physicochemical properties of nanoparticles. ACS Nano, 2011, 5(9), 7263-7276.
[http://dx.doi.org/10.1021/nn2021088] [PMID: 21838310]
[7]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[8]
Haroon, H.B.; Hunter, A.C.; Farhangrazi, Z.S.; Moghimi, S.M. A brief history of long circulating nanoparticles. Adv. Drug Deliv. Rev., 2022, 188, 114396.
[9]
Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J.M.; Nienhaus, G.U.; Parak, W.J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano, 2015, 9(7), 6996-7008.
[http://dx.doi.org/10.1021/acsnano.5b01326] [PMID: 26079146]
[10]
Vroman, L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature, 1962, 196(4853), 476-477.
[http://dx.doi.org/10.1038/196476a0] [PMID: 13998030]
[11]
Pondman, K.M.; Sobik, M.; Nayak, A.; Tsolaki, A.G.; Jäkel, A.; Flahaut, E.; Hampel, S.; ten Haken, B.; Sim, R.B.; Kishore, U. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine, 2014, 10(6), 1287-1299.
[http://dx.doi.org/10.1016/j.nano.2014.02.010] [PMID: 24607938]
[12]
Vu, V.P.; Gifford, G.B.; Chen, F. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol., 2019, 14(3), 260-268.
[http://dx.doi.org/10.1021/ja107583h] [PMID: 21288025]
[13]
Lesniak, A.; Fenaroli, F.; Monopoli, M.P.; Åberg, C.; Dawson, K.A.; Salvati, A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano, 2012, 6(7), 5845-5857.
[http://dx.doi.org/10.1021/nn300223w] [PMID: 22721453]
[14]
Deng, Z.J.; Liang, M.; Monteiro, M.; Toth, I.; Minchin, R.F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol., 2011, 6(1), 39-44.
[http://dx.doi.org/10.1038/nnano.2010.250] [PMID: 21170037]
[15]
Pondman, K.M.; Pednekar, L.; Paudyal, B.; Tsolaki, A.G.; Kouser, L.; Khan, H.A.; Shamji, M.H.; ten Haken, B.; Stenbeck, G.; Sim, R.B.; Kishore, U. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes. Nanomedicine, 2015, 11(8), 2109-2118.
[http://dx.doi.org/10.1016/j.nano.2015.06.009] [PMID: 26169151]
[16]
Sim, R.B.; Kishore, U.; Villiers, C.L.; Marche, P.N.; Mitchell, D.A. C1q binding and complement activation by prions and amyloids. Immunobiology, 2007, 212(4-5), 355-362.
[17]
Alcorlo, M.; Tortajada, A.; de Córdoba, R.S.; Llorca, O. Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proc. Natl. Acad. Sci., 2013, 110(33), 13504-13509.
[http://dx.doi.org/10.1073/pnas.1309618110] [PMID: 23901101]
[18]
Marcus, M.; Karni, M.; Baranes, K.; Levy, I.; Alon, N.; Margel, S.; Shefi, O. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J. Nanobiotechnology, 2016, 14(1), 37.
[http://dx.doi.org/10.1186/s12951-016-0190-0] [PMID: 27179923]
[19]
Bexborn, F.; Andersson, P.O.; Chen, H.; Nilsson, B.; Ekdahl, K.N. The tick-over theory revisited: Formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb). Mol. Immunol., 2008, 45, 2370-2379.
[20]
Kouser, L.; Paudyal, B.; Kaur, A.; Stenbeck, G.; Jones, L.A.; Abozaid, S.M.; Stover, C.M.; Flahaut, E.; Sim, R.B.; Kishore, U. Human properdin opsonizes nanoparticles and triggers a potent pro-inflammatory response by macrophages without Involving complement activation. Front. Immunol., 2018, 9, 131.
[21]
Nilsson, U.R.; Storm, K.E.; Elwing, H.; Nilsson, B. Conformational epitopes of C3 reflecting its mode of binding to an artificial polymer surface. Mol. Immunol., 1993, 30(3), 211-219.
[http://dx.doi.org/10.1016/0161-5890(93)90050-L] [PMID: 7679465]
[22]
Gobel, R.J.; Janatova, J.; Googe, J.M.; Apple, D.J. Activation of complement in human serum by some synthetic polymers used for intraocular lenses. Biomaterials, 1987, 8(4), 285-288.
[http://dx.doi.org/10.1016/0142-9612(87)90116-5] [PMID: 3663806]
[23]
Simberg, D.; Park, J.H.; Karmali, P.P.; Zhang, W.M.; Merkulov, S.; McCrae, K.; Bhatia, S.N.; Sailor, M.; Ruoslahti, E. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials, 2009, 30(23-24), 3926-3933.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.056] [PMID: 19394687]
[24]
Fujita, T.; Matsushita, M.; Endo, Y. The lectin-complement pathway - its role in innate immunity and evolution. Immunol. Rev., 2004, 198(1), 185-202.
[http://dx.doi.org/10.1111/j.0105-2896.2004.0123.x] [PMID: 15199963]
[25]
Peng, Q.; Li, K.; Sacks, S.; Zhou, W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm. Allergy Drug Targets, 2009, 8(3), 236-246.
[http://dx.doi.org/10.2174/187152809788681038] [PMID: 19601884]
[26]
Markiewski, M.M.; DeAngelis, R.A.; Benencia, F.; Ricklin-Lichtsteiner, S.K.; Koutoulaki, A.; Gerard, C.; Coukos, G.; Lambris, J.D. Modulation of the antitumor immune response by complement. Nat. Immunol., 2008, 9(11), 1225-1235.
[http://dx.doi.org/10.1038/ni.1655] [PMID: 18820683]
[27]
Moghimi, S.M. Farhangrazi, ZS Just so stories: The random acts of anti-cancer nanomedicine performance. Nanomedicine, 2014, 10, 1661-1666.
[http://dx.doi.org/10.1016/j.nano.2014.04.011]
[28]
Wang, G.; Chen, F.; Banda, N.K.; Holers, V.M.; Wu, L.; Moghimi, S.M.; Simberg, D. Activation of human complement system by dextran-coated iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking. Front. Immunol., 2016, 7, 418.
[http://dx.doi.org/10.3389/fimmu.2016.00418] [PMID: 27777575]
[29]
Khan, H.A.; Ibrahim, K.E.; Alrashood, S.T.; Alamery, S.; Alrokayan, S.H.; Al-Harbi, N.; Al-Mutary, M.G.; Sobki, S.H.; Khan, I. Immunohistochemistry of IL-1β, IL-6 and TNF-α in spleens of mice treated with gold nanoparticles. Saudi J. Biol. Sci., 2020, 27(4), 1163-1168.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.025] [PMID: 32256179]
[30]
Ibrahim, K.; Al-Mutary, M.; Bakhiet, A.; Khan, H. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules, 2018, 23(8), 1848.
[http://dx.doi.org/10.3390/molecules23081848] [PMID: 30044410]
[31]
Khan, H.A.; Ibrahim, K.E.; Khan, A.; Alrokayan, S.H.; Alhomida, A.S.; Lee, Y. Comparative evaluation of immunohistochemistry and real-time PCR for measuring proinflammatory cytokines gene expression in livers of rats treated with gold nanoparticles. Exp. Toxicol. Pathol., 2016, 68(7), 381-390.
[http://dx.doi.org/10.1016/j.etp.2016.05.006] [PMID: 27287986]
[32]
Khan, H.A.; Ibrahim, K.E.; Khan, A.; Alrokayan, S.H.; Alhomida, A.S. Immunostaining of proinflammatory cytokines in renal cortex and medulla of rats exposed to gold nanoparticles. Histol. Histopathol., 2017, 32(6), 597-607.
[PMID: 27678417]
[33]
Al-Harbi, N.S.; Alrashood, S.T.; Siddiqi, N.J.; Arafah, M.M.; Ekhzaimy, A.; Khan, H.A. Effect of naked and PEG-coated gold nanoparticles on histopathology and cytokines expression in rat liver and kidneys. Nanomedicine, 2020, 15(3), 289-302.
[http://dx.doi.org/10.2217/nnm-2019-0220] [PMID: 31774720]
[34]
Ibrahim, K.E.; Bakhiet, A.O.; Awadalla, M.E.; Khan, H.A. A priming dose protects against gold nanoparticles-induced proinflammatory cytokines mRNA expression in mice. Nanomedicine, 2018, 13(3), 313-323.
[http://dx.doi.org/10.2217/nnm-2017-0332] [PMID: 29231780]
[35]
Brown, D.M.; Johnston, H.; Gubbins, E.; Stone, V. Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: A comparison of serum to lung lining fluid and albumin dispersions. J. Appl. Toxicol., 2014, 34(11), 1177-1187.
[http://dx.doi.org/10.1002/jat.2998] [PMID: 24737200]
[36]
Pai, A.B.; Conner, T.; McQuade, C.R.; Olp, J.; Hicks, P. Non-transferrin bound iron, cytokine activation and intracellular reactive oxygen species generation in hemodialysis patients receiving intravenous iron dextran or iron sucrose. Biometals, 2011, 24(4), 603-613.
[http://dx.doi.org/10.1007/s10534-011-9409-6] [PMID: 21229380]
[37]
Fell, L.H.; Zawada, A.M.; Rogacev, K.S.; Seiler, S.; Fliser, D.; Heine, G.H. Distinct immunologic effects of different intravenous iron preparations on monocytes. Nephrol. Dial. Transplant., 2014, 29(4), 809-822.
[http://dx.doi.org/10.1093/ndt/gft524] [PMID: 24523357]
[38]
Pondman, K.M.; Salvador-Morales, C.; Paudyal, B.; Sim, R.B.; Kishore, U. Interactions of the innate immune system with carbon nanotubes. Nanoscale Horiz., 2017, 2(4), 174-186.
[39]
Pondman, K.M.; Tsolaki, A.G.; Paudyal, B.; Shamji, M.H.; Switzer, A.; Pathan, A.A.; Abozaid, S.M.; Haken, B.T.; Stenbeck, G.; Sim, R.B.; Kishore, U. Complement deposition on nanoparticles can modulate immune responses by macrophage, B and T cells. J. Biomed. Nanotechnol., 2016, 12(1), 197-216.
[http://dx.doi.org/10.1166/jbn.2016.2124] [PMID: 27301184]
[40]
Chen, P.; Kanehira, K.; Taniguchi, A. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles. Sci. Technol. Adv. Mater., 2013, 14(1), 015008.
[http://dx.doi.org/10.1088/1468-6996/14/1/015008] [PMID: 27877566]
[41]
Verhoef, J.J.F.; de Groot, A.M.; van Moorsel, M.; Ritsema, J.; Beztsinna, N.; Maas, C. Iron nanomedicines induce toll-like receptor activation, cytokine production and complement activation. Biomaterials, 2017, 119, 68-77.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.025]
[42]
Elsabahy, M.; Wooley, K.L. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev., 2013, 42(12), 5552-5576.
[http://dx.doi.org/10.1039/c3cs60064e] [PMID: 23549679]
[43]
Osugi, Y.; Hara, J.; Tagawa, S.; Takai, K.; Hosoi, G.; Matsuda, Y.; Ohta, H.; Fujisaki, H.; Kobayashi, M.; Sakata, N.; Kawa-Ha, K.; Okada, S.; Tawa, A. Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood, 1997, 89(11), 4100-4103.
[http://dx.doi.org/10.1182/blood.V89.11.4100] [PMID: 9166851]
[44]
Rajananthanan, P.; Attard, G.S.; Sheikh, N.A.; Morrow, W.J.W. Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice. Vaccine, 1999, 18(1-2), 140-152.
[http://dx.doi.org/10.1016/S0264-410X(99)00213-3] [PMID: 10501244]
[45]
Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol., 1999, 17(1), 593-623.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.593] [PMID: 10358769]
[46]
Artursson, P.; Johansson, D.; Sjöholm, I. Receptor-mediated uptake of starch and mannan microparticles by macrophages: relative contribution of receptors for complement, immunoglobulins and carbohydrates. Biomaterials, 1988, 9(3), 241-246.
[http://dx.doi.org/10.1016/0142-9612(88)90091-9] [PMID: 3408795]
[47]
Fleit, H.B.; Kobasiuk, C.D. The human monocyte-like cell line THP-1 expresses Fc gamma RI and Fc gamma RII. J. Leukoc. Biol., 1991, 49(6), 556-565.
[http://dx.doi.org/10.1002/jlb.49.6.556] [PMID: 1709200]
[48]
Raynal, I.; Prigent, P.; Peyramaure, S.; Najid, A.; Rebuzzi, C.; Corot, C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: Mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol., 2004, 39(1), 56-63.
[http://dx.doi.org/10.1097/01.rli.0000101027.57021.28] [PMID: 14701989]
[49]
Basudev, P. Investigation of nanoparticles induced cell responses in the presence of innate immune factors. PhD thesis, Kingston University, 2018.
[50]
Mahmoudi, M.; Hofmann, H.; Rothen-Rutishauser, B.; Petri-Fink, A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev., 2012, 112(4), 2323-2338.
[http://dx.doi.org/10.1021/cr2002596] [PMID: 22216932]
[51]
Kim, J.A.; Lee, N.; Kim, B.H.; Rhee, W.J.; Yoon, S.; Hyeon, T.; Park, T.H. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 2011, 32(11), 2871-2877.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.019] [PMID: 21288566]

© 2025 Bentham Science Publishers | Privacy Policy