Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Self-Assembled Nanoparticle-Forming Derivatives of Dextrin-Conjugated Polyethylenimine Containing Urethane Bonds for Enhanced Delivery of Interleukin-12 Plasmid

In Press, (this is not the final "Version of Record"). Available online 22 November, 2023
Author(s): Valiollah Keshavarz, Maryam Kazemi, Bahman Khalvati, Ali Dehshahri* and Hossein Sadeghpour*
Published on: 22 November, 2023

DOI: 10.2174/0115734137275215231113100147

open access plus

Abstract

Background and Objective: In the present investigation, low molecular weight polyethylenimine (LMW PEI, 1.8 kDa PEI) was conjugated to dextrin via urethane units and tested to transfer plasmid encoding interleukin-12 (IL-12) plasmid. Although high molecular weight PEI (HMW PEI, 25 kDa PEI) has shown substantial transfection efficiency, its wide application has been hampered due to considerable cytotoxicity. Therefore, LMW PEI with low toxic effects was used as the core of our gene transfer construct.

Methods: LMW PEI was conjugated to dextrin via urethane units to improve its biophysical characteristics as well as cytotoxic effects. The conjugates were characterized in terms of buffering capacity, plasmid DNA condensation ability, particle size, and zeta potential as well as protection against enzymatic degradation. In Vitro experiments were carried out to evaluate the ability of these LMW PEI conjugates to transfer plasmid encoding human interleukin-12 (hIL- 12) to the cells. The MTT assay was performed to measure the cell-induced toxicity of the conjugates.

Results: The results of our study demonstrated that the PEI derivatives with higher amounts of amine content (i.e. higher conjugation degrees) have considerable buffering capacity and plasmid condensation ability. These conjugates could condense plasmid DNA at Carrier to Plasmid ratios (C/P) ≥2 and form polyplexes at the size range of 120-165 nm while their zeta potential was around 5.5-8.5 mV. The results of transfection efficiency demonstrated that the level of IL- 12 production increased by 2-3 folds compared with unmodified LMW PEI while the level of cytotoxicity was not higher than 20%.

Conclusion: The strategy used in this study shows a promising way to prepare gene carriers with high transfection efficiency and low toxicity.

[1]
Blanco, J.L.; Benito, J.M.; Mellet, C.; Fernández, J.M. Molecular nanoparticle-based gene delivery systems. J. Drug Deliv. Sci. Technol., 2017, 42, 18-37.
[http://dx.doi.org/10.1016/j.jddst.2017.03.012]
[2]
Sargazi, S.; Arshad, R.; Ghamari, R.; Rahdar, A.; Bakhshi, A.; Karkan, S.F.; Ajalli, N.; Bilal, M.; Díez-Pascual, A.M. siRNA‐based nanotherapeutics as emerging modalities for immune‐mediated diseases: A preliminary review. Cell Biol. Int., 2022, 46(9), 1320-1344.
[http://dx.doi.org/10.1002/cbin.11841] [PMID: 35830711]
[3]
Uddin, F.; Rudin, C.M.; Sen, T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol., 2020, 10, 1387.
[http://dx.doi.org/10.3389/fonc.2020.01387] [PMID: 32850447]
[4]
Liu, X.Y.; Zhang, X.; Yang, J.B.; Wu, C.Y.; Wang, Q.; Lu, Z.L.; Tang, Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf. B Biointerfaces, 2022, 217, 112651.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112651] [PMID: 35759892]
[5]
Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643.
[http://dx.doi.org/10.1038/s41565-021-00898-0] [PMID: 34059811]
[6]
Chen, J.; Wang, K.; Wu, J.; Tian, H.; Chen, X. Polycations for gene delivery: Dilemmas and solutions. Bioconjug. Chem., 2019, 30(2), 338-349.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00688] [PMID: 30383373]
[7]
Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350.
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[8]
Nabel, G.J. Genetic, cellular and immune approaches to disease therapy: Past and future. Nat. Med., 2004, 10(2), 135-141.
[http://dx.doi.org/10.1038/nm990] [PMID: 14760423]
[9]
Thomas, T.J.; Tajmir-Riahi, H.A.; Pillai, C.K.S. Biodegradable polymers for gene delivery. Molecules, 2019, 24(20), 3744.
[http://dx.doi.org/10.3390/molecules24203744] [PMID: 31627389]
[10]
Park, T.; Jeong, J.; Kim, S. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev., 2006, 58(4), 467-486.
[http://dx.doi.org/10.1016/j.addr.2006.03.007] [PMID: 16781003]
[11]
Van Bruggen, C.; Hexum, J.K.; Tan, Z.; Dalal, R.J.; Reineke, T.M. Nonviral gene delivery with cationic glycopolymers. Acc. Chem. Res., 2019, 52(5), 1347-1358.
[http://dx.doi.org/10.1021/acs.accounts.8b00665] [PMID: 30993967]
[12]
Merdan, T.; Kopec̆ek, J.; Kissel, T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev., 2002, 54(5), 715-758.
[http://dx.doi.org/10.1016/S0169-409X(02)00046-7] [PMID: 12204600]
[13]
Akbari, A.; Rahimi, F.; Radmoghaddama, Z.A.; Honarmand, S.; Godarya, T.; Toudeshkchouei, M.G.; Akbari, S. β-Cyclodextrins-based nano carriers for cancer therapy. Nanosci, 2021, 2021, 1-11.
[14]
Lim, Y.; Kim, S.; Suh, H.; Park, J. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug. Chem., 2002, 13(5), 952-957.
[http://dx.doi.org/10.1021/bc025541n] [PMID: 12236776]
[15]
Marzbali, Y.M.; Khosroushahi, Y.A.; Movassaghpour, A.; Yeganeh, H. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection. Chem. Biol. Interact., 2016, 244, 27-36.
[http://dx.doi.org/10.1016/j.cbi.2015.11.028] [PMID: 26658031]
[16]
Zu, H.; Gao, D. Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J., 2021, 23(4), 78.
[http://dx.doi.org/10.1208/s12248-021-00608-7] [PMID: 34076797]
[17]
Patil, S.; Gao, Y-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W-J.; Jiang, S-F.; Qadir, A.; Qian, A-R. The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 2019, 20(21), 5491.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[18]
Akbarzadeh, M.; Oskuee, R.K.; Gholami, L.; Mahmoudi, A.; Malaekeh-Nikouei, B. BR2 cell penetrating peptide improved the transfection efficiency of modified polyethyleneimine. J. Drug Deliv. Sci. Technol., 2019, 53, 101154.
[http://dx.doi.org/10.1016/j.jddst.2019.101154]
[19]
Nouri, F.; Sadeghpour, H.; Heidari, R.; Dehshahri, A. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene. Int. J. Nanomedicine, 2017, 12, 5557-5569.
[http://dx.doi.org/10.2147/IJN.S140734] [PMID: 28831252]
[20]
Dehshahri, A.; Oskuee, R.K.; Ramezani, M. Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugar-conjugated polyethylenimine. Gene Ther. Mol. Biol., 2012, 14, 62-71.
[21]
Ibraheem, D.; Elaissari, A.; Fessi, H. Gene therapy and DNA delivery systems. Int. J. Pharm., 2014, 459(1-2), 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[22]
Toma, I.; Porfire, A.S.; Tefas, L.R.; Berindan-Neagoe, I.; Tomuță, I. A quality by design approach in pharmaceutical development of non-viral vectors with a focus on miRNA. Pharmaceutics, 2022, 14(7), 1482.
[http://dx.doi.org/10.3390/pharmaceutics14071482] [PMID: 35890377]
[23]
Ren, S.; Wang, M.; Wang, C.; Wang, Y.; Sun, C.; Zeng, Z.; Cui, H.; Zhao, X. Application of non-viral vectors in drug delivery and gene therapy. Polymers, 2021, 13(19), 3307.
[http://dx.doi.org/10.3390/polym13193307] [PMID: 34641123]
[24]
Kloeckner, J.; Bruzzano, S.; Ogris, M.; Wagner, E. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: Effect of chemical structure of polymer on biological properties. Bioconjug. Chem., 2006, 17(5), 1339-1345.
[http://dx.doi.org/10.1021/bc060133v] [PMID: 16984145]
[25]
Barrioni, B.R.; de Carvalho, S.M.; Oréfice, R.L.; de Oliveira, A.A.R.; Pereira, M.M. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Mater. Sci. Eng. C, 2015, 52, 22-30.
[http://dx.doi.org/10.1016/j.msec.2015.03.027] [PMID: 25953536]
[26]
Solanki, A.; Das, M.; Thakore, S. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr. Polym., 2018, 181, 1003-1016.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.049] [PMID: 29253925]
[27]
Yu, C.; Li, L.; Hu, P.; Yang, Y.; Wei, W.; Deng, X.; Wang, L.; Tay, F.R.; Ma, J. Recent advances in stimulus‐responsive nanocarriers for gene therapy. Adv. Sci., 2021, 8(14), 2100540.
[http://dx.doi.org/10.1002/advs.202100540] [PMID: 34306980]
[28]
Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater., 2021, 6(4), 1083-1106.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.002] [PMID: 33102948]
[29]
Bercea, M.; Gradinaru, L.M.; Mandru, M.; Tigau, D.L.; Ciobanu, C. Intermolecular interactions and self-assembling of polyurethane with poly(vinyl alcohol) in aqueous solutions. J. Mol. Liq., 2019, 274, 562-567.
[http://dx.doi.org/10.1016/j.molliq.2018.11.018]
[30]
Naureen, B.; Haseeb, A.S.M.A.; Basirun, W.J.; Muhamad, F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater. Sci. Eng. C, 2021, 118, 111228.
[http://dx.doi.org/10.1016/j.msec.2020.111228] [PMID: 33254956]
[31]
Park, S.Y.; Yun, Y.H.; Park, B.J.; Seo, H.I.; Chung, I. Fabrication and biological activities of plasmid DNA gene carrier nanoparticles based on biodegradable l-tyrosine polyurethane. Pharmaceuticals, 2021, 15(1), 17.
[http://dx.doi.org/10.3390/ph15010017] [PMID: 35056074]
[32]
Zhang, S.; Xu, Y.; Wang, B.; Qiao, W.; Liu, D.; Li, Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J. Control. Release, 2004, 100(2), 165-180.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.019] [PMID: 15544865]
[33]
Tseng, S.; Tang, S.; Shau, M.; Zeng, Y.; Cherng, J.; Shih, M. Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane. Bioconjug. Chem., 2005, 16(6), 1375-1381.
[http://dx.doi.org/10.1021/bc050005r] [PMID: 16287233]
[34]
Zheng, Q.; Lin, D.; Lei, L.; Li, X.; Shi, S. Engineered Non-viral gene vectors for combination cancer therapy: a review. J. Biomed. Nanotechnol., 2017, 13(12), 1565-1580.
[http://dx.doi.org/10.1166/jbn.2017.2489] [PMID: 29490748]
[35]
Syed, M.H.; Zahari, M.A.K.M.; Khan, M.M.R.; Beg, M.D.H.; Abdullah, N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J. Drug Deliv. Sci. Technol., 2022, 104121.
[36]
Zhang, W.; Hu, E.; Wang, Y.; Miao, S.; Liu, Y.; Hu, Y., III; Liu, J.; Xu, B.; Chen, D.; Shen, Y. Emerging antibacterial strategies with application of targeting drug delivery system and combined treatment. Int. J. Nanomedicine, 2021, 16, 6141-6156.
[http://dx.doi.org/10.2147/IJN.S311248] [PMID: 34511911]
[37]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[38]
Li, H.; Zhou, Z.; Zhang, F.; Guo, Y.; Yang, X.; Jiang, H.; Tan, F.; Oupicky, D.; Sun, M. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy. Nano Res., 2018, 11(9), 4627-4642.
[http://dx.doi.org/10.1007/s12274-018-2044-6]
[39]
Dumontel, B.; Conejo-Rodríguez, V.; Vallet-Regí, M.; Manzano, M. Natural biopolymers as smart coating materials of mesoporous silica nanoparticles for drug delivery. Pharmaceutics, 2023, 15(2), 447.
[http://dx.doi.org/10.3390/pharmaceutics15020447] [PMID: 36839771]
[40]
Mohamed, E.E.; Abdel-Moneim, A.; Ahmed, O.M.; Zoheir, K.M.A.; Eldin, Z.E.; El-Shahawy, A.A.G. Anticancer activity of a novel naringin‒dextrin nanoformula: Preparation, characterization, and in vitro induction of apoptosis in human hepatocellular carcinoma cells by inducing ROS generation, DNA fragmentation, and cell cycle arrest. J. Drug Deliv. Sci. Technol., 2022, 75, 103677.
[http://dx.doi.org/10.1016/j.jddst.2022.103677]
[41]
Pishavar, E.; Oroojalian, F.; Ramezani, M.; Hashemi, M. Cholesterol‐conjugated PEGylated PAMAM as an efficient nanocarrier for plasmid encoding interleukin‐12 immunogene delivery toward colon cancer cells. Biotechnol. Prog., 2020, 36(3), e2952.
[http://dx.doi.org/10.1002/btpr.2952] [PMID: 31846226]
[42]
Sabahi, Z.; Samani, S.M.; Dehshahri, A. Conjugation of poly(amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene. J. Biomater. Appl., 2015, 29(7), 941-953.
[http://dx.doi.org/10.1177/0885328214551010] [PMID: 25209882]
[43]
Choi, K-J.; Zhang, S-N.; Choi, I-K.; Kim, J-S.; Yun, C-O. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther., 2012, 19(7), 711-723.
[http://dx.doi.org/10.1038/gt.2011.125] [PMID: 21993173]
[44]
Nguyen, K.G.; Vrabel, M.R.; Mantooth, S.M.; Hopkins, J.J.; Wagner, E.S.; Gabaldon, T.A.; Zaharoff, D.A. Localized interleukin-12 for cancer immunotherapy. Front. Immunol., 2020, 11, 575597.
[http://dx.doi.org/10.3389/fimmu.2020.575597] [PMID: 33178203]
[45]
Dehshahri, A.; Alhashemi, S.H.; Jamshidzadeh, A.; Sabahi, Z.; Samani, S.M.; Sadeghpour, H.; Mohazabieh, E.; Fadaei, M. Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring plasmid encoding interleukin-12 gene into hepatocytes. Macromol. Res., 2013, 21(12), 1322-1330.
[http://dx.doi.org/10.1007/s13233-013-1180-9]
[46]
Alemzadeh, E.; Dehshahri, A.; Dehghanian, A.R.; Afsharifar, A.; Behjatnia, A.A.; Izadpanah, K.; Ahmadi, F. Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle. Colloids Surf. B Biointerfaces, 2019, 174, 80-86.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.008] [PMID: 30445253]
[47]
Sheikhsaran, F.; Sadeghpour, H.; Khalvati, B.; Entezar-Almahdi, E.; Dehshahri, A. Tetraiodothyroacetic acid-conjugated polyethylenimine for integrin receptor mediated delivery of the plasmid encoding IL-12 gene. Colloids Surf. B Biointerfaces, 2017, 150, 426-436.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.008] [PMID: 27847224]
[48]
Lotfipour, F.; Hallaj-Nezhadi, S.; Valizadeh, H.; Dastmalchi, S.; Baradaran, B.; Jalali, M.B.; Dobakhti, F. Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells. J. Pharm. Pharm. Sci., 2011, 14(2), 181-195.
[http://dx.doi.org/10.18433/J3TP4T] [PMID: 21733408]
[49]
Hao, F.; Li, Y.; Zhu, J.; Sun, J.; Marshall, B.; Lee, R.J.; Teng, L.; Yang, Z.; Xie, J. Polyethylenimine-based formulations for delivery of oligonucleotides. Curr. Med. Chem., 2019, 26(13), 2264-2284.
[http://dx.doi.org/10.2174/0929867325666181031094759] [PMID: 30378483]
[50]
Hajighahramani, N.; Eslami, M.; Negahdaripour, M.; Ghoshoon, M.B.; Dehshahri, A.; Erfani, N.; Heidari, R.; Gholami, A.; Nezafat, N.; Ghasemi, Y. Computational design of a chimeric epitope-based vaccine to protect against Staphylococcus aureus infections. Mol. Cell. Probes, 2019, 46, 101414.
[http://dx.doi.org/10.1016/j.mcp.2019.06.004] [PMID: 31233779]
[51]
Dowdy, S.F. Endosomal escape of RNA therapeutics: How do we solve this rate-limiting problem? RNA, 2023, 29(4), 396-401.
[http://dx.doi.org/10.1261/rna.079507.122] [PMID: 36669888]
[52]
Benjaminsen, R.V.; Mattebjerg, M.A.; Henriksen, J.R.; Moghimi, S.M.; Andresen, T.L. The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther., 2013, 21(1), 149-157.
[http://dx.doi.org/10.1038/mt.2012.185] [PMID: 23032976]
[53]
Madamsetty, V.S.; Tavakol, S.; Moghassemi, S.; Dadashzadeh, A.; Schneible, J.D.; Fatemi, I.; Shirvani, A.; Zarrabi, A.; Azedi, F.; Dehshahri, A.; Afshar, A.A.; Aghaabbasi, K.; Pardakhty, A.; Mohammadinejad, R.; Kesharwani, P. Chitosan: A versatile bio-platform for breast cancer theranostics. J. Control. Release, 2022, 341, 733-752.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.012] [PMID: 34906606]
[54]
Ho, W.; Gao, M.; Li, F.; Li, Z.; Zhang, X.Q.; Xu, X. Next‐generation vaccines: Nanoparticle‐mediated DNA and mRNA delivery. Adv. Healthc. Mater., 2021, 10(8), 2001812.
[http://dx.doi.org/10.1002/adhm.202001812] [PMID: 33458958]
[55]
Alipour, S.; Kalari, S.; Morowvat, M.H.; Sabahi, Z.; Dehshahri, A. Green synthesis of selenium nanoparticles by cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls. BioMed Res. Int., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6635297] [PMID: 34195275]
[56]
Tan, Z.; Jiang, Y.; Ganewatta, M.S.; Kumar, R.; Keith, A.; Twaroski, K.; Pengo, T.; Tolar, J.; Lodge, T.P.; Reineke, T.M. Block Polymer micelles enable CRISPR/Cas9 ribonucleoprotein delivery: Physicochemical properties affect packaging mechanisms and gene editing efficiency. Macromolecules, 2019, 52(21), 8197-8206.
[http://dx.doi.org/10.1021/acs.macromol.9b01645]
[57]
Uchida, S.; Itaka, K.; Chen, Q.; Osada, K.; Ishii, T.; Shibata, M.A.; Harada-Shiba, M.; Kataoka, K. PEGylated polyplex with optimized PEG shielding enhances gene introduction in lungs by minimizing inflammatory responses. Mol. Ther., 2012, 20(6), 1196-1203.
[http://dx.doi.org/10.1038/mt.2012.20] [PMID: 22334020]
[58]
Thomas, T.J.; Thomas, T. Collapse of DNA in packaging and cellular transport. Int. J. Biol. Macromol., 2018, 109, 36-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.076] [PMID: 29247730]
[59]
Forrest, M.L.; Meister, G.E.; Koerber, J.T.; Pack, D.W. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res., 2004, 21(2), 365-371.
[http://dx.doi.org/10.1023/B:PHAM.0000016251.42392.1e] [PMID: 15032320]
[60]
Yazdi, M.T.; Ghasemi, Y.; Ghasemian, A.; Shokravi, S.; Niknahad, H.; Amini, M.; Dehshahri, A.; Faramarzi, M.A. Bioconversion of hydrocortisone by cyanobacterium Fischerella ambigua PTCC 1635. World J. Microbiol. Biotechnol., 2005, 21(6-7), 811-814.
[http://dx.doi.org/10.1007/s11274-004-2238-9]
[61]
van den Berg, A.I.S.; Yun, C.O.; Schiffelers, R.M.; Hennink, W.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J. Control. Release, 2021, 331, 121-141.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.014] [PMID: 33453339]
[62]
Dehshahri, A.; Sadeghpour, H.; Kazemi Oskuee, R.; Fadaei, M.; Sabahi, Z.; Alhashemi, S.H.; Mohazabieh, E. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers. J. Nanopart. Res., 2014, 16(5), 2423.
[http://dx.doi.org/10.1007/s11051-014-2423-1]
[63]
Xiang, S.; Tong, H.; Shi, Q.; Fernandes, J.C.; Jin, T.; Dai, K.; Zhang, X. Uptake mechanisms of non-viral gene delivery. J. Control. Release, 2012, 158(3), 371-378.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.093] [PMID: 21982904]
[64]
Liu, N.; Tang, M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J. Appl. Toxicol., 2020, 40(1), 16-36.
[http://dx.doi.org/10.1002/jat.3817] [PMID: 31294482]
[65]
Parhamifar, L.; Larsen, A.K.; Hunter, A.C.; Andresen, T.L.; Moghimi, S.M. Polycation cytotoxicity: A delicate matter for nucleic acid therapy-focus on polyethylenimine. Soft Matter, 2010, 6(17), 4001-4009.
[http://dx.doi.org/10.1039/c000190b]
[66]
Shoaib, M.; ur Rahman, M.S.; Saeed, A.; Naseer, M.M. Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery. Colloids Surf. B Biointerfaces, 2018, 172, 806-811.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.030] [PMID: 30352378]
[67]
Ke, X.; Shelton, L.; Hu, Y.; Zhu, Y.; Chow, E.; Tang, H.; Santos, J.L.; Mao, H.Q. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl. Mater. Interfaces, 2020, 12(32), 35835-35844.
[http://dx.doi.org/10.1021/acsami.0c08268] [PMID: 32659078]
[68]
Hoti, G.; Matencio, A.; Rubin Pedrazzo, A.; Cecone, C.; Appleton, S.L.; Khazaei Monfared, Y.; Caldera, F.; Trotta, F. Nutraceutical concepts and dextrin-based delivery systems. Int. J. Mol. Sci., 2022, 23(8), 4102.
[http://dx.doi.org/10.3390/ijms23084102] [PMID: 35456919]
[69]
Dehshahri, A.; Kazemi Oskuee, R.; Thomas Shier, W.; Ramezani, M. β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity. Curr. Nanosci., 2012, 8(4), 548-555.
[http://dx.doi.org/10.2174/157341312801784339]
[70]
Chien, C.S.; Wang, C.Y.; Yang, Y.P.; Chou, S.J.; Ko, Y.L.; Tsai, F.T.; Yu, W.C.; Chang, C.C.; Cherng, J.Y.; Yang, M.Y. Using cationic polyurethane-short branch PEI as microRNA-driven nano-delivery system for stem cell differentiation. J. Chin. Med. Assoc., 2020, 83(4), 367-370.
[http://dx.doi.org/10.1097/JCMA.0000000000000272] [PMID: 32101899]
[71]
Chen, C.K.; Huang, P.K.; Law, W.C.; Chu, C.H.; Chen, N.T.; Lo, L.W. Biodegradable polymers for gene-delivery applications. Int. J. Nanomedicine, 2020, 15, 2131-2150.
[http://dx.doi.org/10.2147/IJN.S222419] [PMID: 32280211]
[72]
Cherng, J.Y.; Hou, T.Y.; Shih, M.F.; Talsma, H.; Hennink, W.E. Polyurethane-based drug delivery systems. Int. J. Pharm., 2013, 450(1-2), 145-162.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.063] [PMID: 23632262]

© 2025 Bentham Science Publishers | Privacy Policy