Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Design, Synthesis, and in vitro Evaluation of Derivatives of Quinoxaline-2- One as a Myeloperoxidase Modulator Using in silico Methods

Author(s): Dakshinesh Parameswaran, Saravanan Thangavelu, Jubie Selvaraj, Selvinthanuja Chellappa, Lalitha Vivekanandan, Ravichandran Veerasamy and Prabha Thangavelu*

Volume 20, Issue 8, 2024

Published on: 22 November, 2023

Article ID: e221123223712 Pages: 11

DOI: 10.2174/0115734072272382231108064229

Price: $65

Abstract

Background: In some pathological situations, the overproduction of oxidising agents also results in oxidative damage to host cell proteins and DNA, which induces abnormal expression of inflammatory cytokines and chemokines. A recently discovered biomarker of inflammation is myeloperoxidase. Various inflammatory conditions cause the release of this enzyme into the extracellular environment.

Objective: Our study aimed to design, synthesize, and in vitro evaluate derivatives of quinoxaline- 2-one as a myeloperoxidase modulator using in silico methods.

Methods: A series of quinoxaline-2-one derivatives was synthesized and characterized by various analytical techniques. Further, to confirm and explore the molecular mechanism, an in silico docking study against the myeloperoxidase enzyme was performed (PDB ID: 1DNU).

Results: The compounds Q1, Q2, and Q5 showed better antioxidant activity in the DPPH assay, whereas the nitric oxide scavenging assay showed the compounds Q2, Q4, and Q5 had significant activity when compared to the standard IC50 value (28.8 μg/ml). Besides, the anti-inflammatory studies showed the compounds Q1, Q3, and Q5 had better inhibition (89.79%) when compared to the standard drug aceclofenac (85.37%) at 1000 μg/ml concentration. The top three ligands for myeloperoxidase (PDB ID: 1DNU) with the highest scores in activity were found as Q2, Q1, and Q5, with scores of -13.2838, -12.5841, and -11.6906 Kcal/mol, respectively. The compounds were efficiently bound to the myeloperoxidase active site with arene-arene, arene-cation, and hydrogen bonding interactions.

Conclusion: By introducing the various heterocyclic rings and deactivating and activating groups, we may produce a newer class of candidates for many infectious diseases. Thus, from the computational studies carried out, we may obtain hints for optimising the molecular selectivity of the quinoxaline-2-one derivatives to provide help in the design of new compounds for effective myeloperoxidase enzyme modulators. However, further pharmacokinetics, pharmacodynamics, preclinical, and clinical studies permit the design of the new agents without undesirable interactions.

Graphical Abstract

[1]
Khan, A.A.; Rahmani, A.H.; Aldebasi, Y.H.; Aly, S.M. Biochemical and pathological studies on peroxidases-an updated review. Glob. J. Health Sci., 2014, 6(5), 87-98.
[http://dx.doi.org/10.5539/gjhs.v6n5p87] [PMID: 25168993]
[2]
Epstein, F.H.; Weiss, S.J. Tissue destruction by neutrophils. N. Engl. J. Med., 1989, 320(6), 365-376.
[http://dx.doi.org/10.1056/NEJM198902093200606] [PMID: 2536474]
[3]
Panasenko, O.M.; Gorudko, I.V.; Sokolov, A.V. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry, 2013, 78(13), 1466-1489.
[http://dx.doi.org/10.1134/S0006297913130075] [PMID: 24490735]
[4]
Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol., 2005, 77(5), 598-625.
[http://dx.doi.org/10.1189/jlb.1204697] [PMID: 15689384]
[5]
Wilhelm, D.L. Mechanisms responsible for increased vascular permeability in acute inflammation. Agents Actions, 1973, 3(5), 297-306.
[http://dx.doi.org/10.1007/BF01986484] [PMID: 4785028]
[6]
Phillipson, M.; Kubes, P. The neutrophil in vascular inflammation. Nat. Med., 2011, 17(11), 1381-1390.
[http://dx.doi.org/10.1038/nm.2514] [PMID: 22064428]
[7]
Selders, G.S.; Fetz, A.E.; Radic, M.Z.; Bowlin, G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater., 2017, 4(1), 55-68.
[http://dx.doi.org/10.1093/rb/rbw041] [PMID: 28149530]
[8]
Butterfield, T.A.; Best, T.M.; Merrick, M.A. The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair. J. Athl. Train., 2006, 41(4), 457-465.
[PMID: 17273473]
[9]
Zhang, R.; Brennan, M.L.; Shen, Z.; MacPherson, J.C.; Schmitt, D.; Molenda, C.E.; Hazen, S.L. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem., 2002, 277(48), 46116-46122.
[http://dx.doi.org/10.1074/jbc.M209124200] [PMID: 12359714]
[10]
Bensalem, S.; Soubhye, J.; Aldib, I.; Bournine, L.; Nguyen, A.T.; Vanhaeverbeek, M.; Rousseau, A.; Boudjeltia, K.Z.; Sarakbi, A.; Kauffmann, J.M.; Nève, J.; Prévost, M.; Stévigny, C.; Maiza-Benabdesselam, F.; Bedjou, F.; Van Antwerpen, P.; Duez, P. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). J. Ethnopharmacol., 2014, 154(2), 361-369.
[http://dx.doi.org/10.1016/j.jep.2014.03.070] [PMID: 24746482]
[11]
Huang, J.; Smith, F.; Panizzi, J.R.; Goodwin, D.C.; Panizzi, P. Inactivation of myeloperoxidase by benzoic acid hydrazide. Arch. Biochem. Biophys., 2015, 570, 14-22.
[http://dx.doi.org/10.1016/j.abb.2015.01.028] [PMID: 25688920]
[12]
Segelmark, M.; Persson, B.; Hellmark, T.; Wieslander, J. Binding and inhibition of myeloperoxidase (MPO): A major function of ceruloplasmin? Clin. Exp. Immunol., 2003, 108(1), 167-174.
[http://dx.doi.org/10.1046/j.1365-2249.1997.d01-992.x] [PMID: 9097926]
[13]
Ganji, S.H.; Qin, S.; Zhang, L.; Kamanna, V.S.; Kashyap, M.L. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis, 2009, 202(1), 68-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.04.044] [PMID: 18550065]
[14]
Deepika, Y. PN, Sachin K, Shewta S. International Journal of Current Pharmaceutical Review and Research., 2011, 1(3), 33.e46.
[15]
Mohammed, M.A.; Hazem, A.M.; Nawaf, A.A.; Ahmad, J.; Obaidullah, H.M.; Alkahtani, A.A.; Sultan, M.; Mohammed, A.D.; Ibrahim, H.E. New bis([1,2,4]triazolo)[4,3-a:3′,4′-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anti-cancer evaluation. Bioorg. Chem., 2021, 112, 104949.
[16]
Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys., 2018, 640, 47-52.
[http://dx.doi.org/10.1016/j.abb.2018.01.004] [PMID: 29336940]
[17]
Thangavelu, P.; Thangavel, S. Design, synthesis, and docking of sulfadiazine Schiff base scaffold for their potential claim as Inhaenoyl-(acyl-carrier-protein) reductase inhibitors. Asian J. Pharm. Clin. Res., 2018, 11(10), 233.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i10.27179]
[18]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[19]
Patidar, K.; Deshmukh, A.; Bandaru, S.; Lakkaraju, C.; Girdhar, A.; Gutlapalli, V.R.; Banerjee, T.; Nayarisseri, A.; Singh, S.K. Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer. Asian Pac. J. Cancer Prev., 2016, 17(4), 2291-2295.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.2291] [PMID: 27221932]
[20]
Sakata, G.; Makino, K.; Kurasawa, Y. Regent progress in the quinoxaline chemistry. synthesis and biological activity. Heterocycles (Sendai), 1988, 27(10), 2481-2515.
[http://dx.doi.org/10.3987/REV-88-397]
[21]
Mohan Kumar, M.; Joshi, M.C.; Prabha, T.; Dorababu, M.; Goel, R.K. Effect of plantain banana on gastric ulceration in NIDDM rats: role of gastric mucosal glycoproteins, cell proliferation, antioxidants and free radicals. Indian J. Exp. Biol., 2006, 44(4), 292-299.
[PMID: 16629371]
[22]
Marcocci, L.; Maguire, J.J.; Droylefaix, M.T.; Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun., 1994, 201(2), 748-755.
[http://dx.doi.org/10.1006/bbrc.1994.1764] [PMID: 8003011]
[23]
Singh, S.K.; Prabha, T.; Kavitha, B.; Chouhan, H.S.; Bharti, S.K. Anti-inflammatory and hepatoprotective activities of ethanolic extract of Euphorbia thymifolia Linn. Pharmacologyonline, 2009, 1, 986-4.
[24]
Khatale, P.N.; Bhajipale, N.S.; Thangavel, S.; Thangavelu, P.; Mahajan, N.S. Synthesis, anti-inflammatory evaluation and docking analysis of some novel 1, 3, 4-oxadiazole derivatives. Indian J. Chem., 2022, 61(6), 607-616.
[25]
Li, Y.; Ganesh, T.; Diebold, B.A.; Zhu, Y.; McCoy, J.W.; Smith, S.M.E.; Sun, A.; Lambeth, J.D. Thioxo-dihydroquinazolin-one Compounds as Novel Inhibitors of Myeloperoxidase. ACS Med. Chem. Lett., 2015, 6(10), 1047-1052.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00287] [PMID: 26487910]
[26]
Lin, F.Y.; MacKerell, A.D. Jr Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding? J. Phys. Chem. B, 2017, 121(28), 6813-6821.
[http://dx.doi.org/10.1021/acs.jpcb.7b04198] [PMID: 28657759]
[27]
da Silva Júnior, O.S.; Franco, C.J.P.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; do Nascimento, L.D.; Andrade, E.H.A. In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon, 2021, 195, 111-118.
[http://dx.doi.org/10.1016/j.toxicon.2021.02.015] [PMID: 33667485]
[28]
Arshad, M.; Shoeb Khan, M.; Asghar Nami, S.A.; Ahmad, D. AsgharNami SA, Ahmad D. Synthesis, characterization, computational, antimicrobial screening, and MTT assay of thiazolidinone derivatives containing the indole and pyridine moieties. Russ. J. Gen. Chem., 2018, 88(10), 2154-2162.
[http://dx.doi.org/10.1134/S1070363218100213]
[29]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21(2), 143-152.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[30]
Syam, Y.M.; Anwar, M.M.; Abd El-Karim, S.S.; Elseginy, S.A.; Essa, B.M.; Sakr, T.M. New quinoxaline compounds as DPP-4 inhibitors and hypoglycemics: design, synthesis, computational and bio-distribution studies. RSC Advances, 2021, 11(58), 36989-37010.
[http://dx.doi.org/10.1039/D1RA06799K] [PMID: 35494381]
[31]
Nagmoti, D.M.; Khatri, D.K.; Juvekar, P.R.; Juvekar, A.R. Antioxidant activity free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Radic. Antioxid., 2012, 2(2), 37-43.
[http://dx.doi.org/10.5530/ax.2012.2.2.7]
[32]
Taylor, B.S.; Kim, Y.M.; Wang, Q.; Shapiro, R.A.; Billiar, T.R.; Geller, D.A. Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression. Arch. Surg., 1997, 132(11), 1177-1183.
[http://dx.doi.org/10.1001/archsurg.1997.01430350027005] [PMID: 9366709]
[33]
Turkoglu, A.; Duru, M.E.; Mercan, N.; Kivrak, I.; Gezer, K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.). Murrill. Food Chem., 2007, 101(1), 267-273.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.025]
[34]
Thangavelu Prabha,; Selvaraj Jubie,; Palanisamy Selvamani,; Subbiah Latha,; Thangavel Sivakumar, Dual evaluation of some novel chalcone annulated pyrazolines as anti-inflammatory and antimicrobial agents via in-silico target study on cyclooxygenase-2. International Journal of Research in Pharmaceutical Sciences, 2019, 10(4), 3159-3169.
[http://dx.doi.org/10.26452/ijrps.v10i4.1615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy