Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

A Concise Review on Magnetic Nanoparticles: Their Properties, Types, Synthetic Methods, and Current Trending Applications

In Press, (this is not the final "Version of Record"). Available online 22 November, 2023
Author(s): M. Meenakshi, R. Bhaskar, S.K. Ashok Kumar* and R. Selva Kumar*
Published on: 22 November, 2023

DOI: 10.2174/0115734137271993231109174718

open access plus

Abstract

In recent years, there has been significant research on developing magnetic nanoparticles (MNPs) with multifunctional characteristics. This review focuses on the properties and various types of MNPs, methods of their synthesis, and biomedical, clinical, and other applications. These syntheses of MNPs were achieved by various methods, like precipitation, thermal, pyrolysis, vapor deposition, and sonochemical. MNPs are nano-sized materials with diameters ranging from 1 to 100 nm. The MNPs have been used for various applications in biomedical, cancer theranostic, imaging, drug delivery, biosensing, environment, and agriculture. MNPs have been extensively researched for molecular diagnosis, treatment, and therapeutic outcome monitoring in a range of illnesses. They are perfect for biological applications, including cancer therapy, thrombolysis, and molecular imaging, because of their nanoscale size, surface area, and absence of side effects. In particular, MNPs can be used to conjugate chemotherapeutic medicines (or) target ligands/proteins, making them beneficial for drug delivery. However, up until that time, some ongoing issues and developments in MNPs include toxicity and biocompatibility, targeting accuracy, regulation and safety, clinical translation, hyperthermia therapy, immunomodulatory effects, multifunctionality, and nanoparticle aggregation.

[1]
Nalwa, H.S. Encyclopedia of nanoscience and nanotechnology; American scientific publishers, 2004, 1.
[2]
Müller, R.; Steinmetz, H.; Hiergeist, R.; Gawalek, W. Magnetic particles for medical applications by glass crystallisation. J. Magn. Magn. Mater., 2004, 272-276, 1539-1541.
[http://dx.doi.org/10.1016/j.jmmm.2003.12.250]
[3]
Häfeli, U.O.; Pauer, G.J. In vitro and in vivo toxicity of magnetic microspheres. J. Magn. Magn. Mater., 1999, 194(1-3), 76-82.
[http://dx.doi.org/10.1016/S0304-8853(98)00560-5]
[4]
Vadala, M.L.; Zalich, M.A.; Fulks, D.B.; Pierre, T.G.S.; Dailey, J.P.; Riffle, J.S. Cobalt-silica magnetic nanoparticles with functional surfaces. J. Magn. Magn. Mater., 2005, 293, 162-170.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.056]
[5]
Gu, H.; Xu, K.; Xu, C.; Xu, B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 2006, (9), 941-949.
[http://dx.doi.org/10.1039/b514130c] [PMID: 16491171]
[6]
Ahmadi, A.; Shirazi, H.; Pourbagher, N.; Akbarzadeh, A.; Omidfar, K. An electrochemical immunosensor for digoxin using core-shell gold coated magnetic nanoparticles as labels. Mol. Biol. Rep., 2014, 41(3), 1659-1668.
[http://dx.doi.org/10.1007/s11033-013-3014-4] [PMID: 24395297]
[7]
Roger, J.; Pons, J.N.; Massart, R.; Halbreich, A.; Bacri, J.C. Some biomedical applications of ferrofluids. Eur. Phys. J. Appl. Phys., 1999, 5, 321-325.
[8]
Kim, J.H.; Kim, S.M.; Kim, Y.I. Properties of magnetic nanoparticles prepared by co-precipitation. J. Nanosci. Nanotechnol., 2014, 14(11), 8739-8744.
[http://dx.doi.org/10.1166/jnn.2014.9993] [PMID: 25958595]
[9]
Manohar, A.; Vijayakanth, V.; Prabhakar Vattikuti, S.V.; Kim, K.H. Electrochemical investigation on nickel-doped spinel magnesium ferrite nanoparticles for supercapacitor applications. Mater. Chem. Phys., 2023, 301, 127601.
[http://dx.doi.org/10.1016/j.matchemphys.2023.127601]
[10]
Nurmi, J.T.; Tratnyek, P.G.; Sarathy, V.; Baer, D.R.; Amonette, J.E.; Pecher, K.; Wang, C.; Linehan, J.C.; Matson, D.W.; Penn, R.L.; Driessen, M.D. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol., 2005, 39(5), 1221-1230.
[http://dx.doi.org/10.1021/es049190u] [PMID: 15787360]
[11]
Yean, S.; Cong, L.; Yavuz, C.T.; Mayo, J.T.; Yu, W.W.; Kan, A.T.; Colvin, V.L.; Tomson, M.B. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res., 2005, 20(12), 3255-3264.
[http://dx.doi.org/10.1557/jmr.2005.0403]
[12]
Mahdavi, M.; Namvar, F.; Ahmad, M.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[13]
Indira, T.K.; Lakshmi, P.K. Magnetic nanoparticles-a review. Int. J. Pharm. Sci. Nanotechnol., 2010, 3, 1035-1042.
[14]
Simsek, E.; Akif Kilic, M. Magic ferritin: A novel chemotherapeutic encapsulation bullet. J. Magn. Magn. Mater., 2005, 293(1), 509-513.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.066]
[15]
Manohar, A.; Vijayakanth, V.; Vinodhini, V.; Chintagumpala, K.; Manivasagan, P.; Jang, E-S.; Kim, K.H. ESR, magnetic hyperthermia and cytotoxicity studies of Zn-doped NiFe2O4 nanoparticles. J. Alloys Compd., 2023, 170780.
[http://dx.doi.org/10.1016/j.jallcom.2023.170780]
[16]
Manohar, A.; Vijayakanth, V.; Vattikuti, S.V.P.; Reddy, G.R.; Kim, K.H. A brief review on Zn - based materials and nanocomposites for supercapacitor applications. J. Energy Storage, 2023, 68, 107674.
[http://dx.doi.org/10.1016/j.est.2023.107674]
[17]
Manohar, A.; Vijayakanth, V.; Prabhakar Vattikuti, S.V.; Kim, K.H. Electrochemical energy storage and photoelectrochemical performance of Ni1-XZnXFe2O4 nanoparticles. Mater. Sci. Semicond. Process., 2023, 157, 107338.
[http://dx.doi.org/10.1016/j.mssp.2023.107338]
[18]
Guo, T.; Lin, M.; Huang, J.; Zhou, C.; Tian, W.; Yu, H.; Jiang, X.; Ye, J.; Shi, Y.; Xiao, Y.; Bian, X.; Feng, X. The recent advances of magnetic nanoparticles in medicine. J. Nanomater., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/7805147]
[19]
Vatta, L.L.; Sanderson, R.D.; Koch, K.R. Magnetic nanoparticles: Properties and potential applications. Pure Appl. Chem., 2006, 78(9), 1793-1801.
[http://dx.doi.org/10.1351/pac200678091793]
[20]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[21]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[22]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G.; MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.027] [PMID: 23434696]
[23]
Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2003, 36(13), R167-R181.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[24]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7(1), 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[25]
Manohar, A.; Vijayakanth, V.; Vattikuti, S.V.P.; Kim, K.H. A mini-review on AFe2O4 (A = Zn, Mg, Mn, Co, Cu, and Ni) nanoparticles: Photocatalytic, magnetic hyperthermia and cytotoxicity study. Mater. Chem. Phys., 2022, 286, 126117.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126117]
[26]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[27]
Manohar, A.; Vijayakanth, V.; Vattikuti, S.V.P.; Kim, K.H. Structural and electrochemical properties of mixed calcium-zinc spinel ferrites nanoparticles. Ceram. Int., 2023, 49(3), 4365-4371.
[http://dx.doi.org/10.1016/j.ceramint.2022.09.322]
[28]
Manohar, A.; Vijayakanth, V.; Prabhakar Vattikuti, S.V.; Kim, K.H. Synthesis and characterization of Mg2+ substituted MnFe2O4 nanoparticles for supercapacitor applications. Ceram. Int., 2022, 48(20), 30695-30703.
[http://dx.doi.org/10.1016/j.ceramint.2022.07.018]
[29]
Manohar, A.; Vijayakanth, V.; Manivasagan, P.; Jang, E.S.; Hari, B.; Gu, M.; Kim, K.H. Investigation on the physico-chemical properties, hyperthermia and cytotoxicity study of magnesium doped manganese ferrite nanoparticles. Mater. Chem. Phys., 2022, 287, 126295.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126295]
[30]
Nemati, Z.; Alonso, J.; Khurshid, H.; Phan, M.H.; Srikanth, H. Core/shell iron/iron oxide nanoparticles: Are they promising for magnetic hyperthermia? RSC Adv., 2016, 6(45), 38697-38702.
[http://dx.doi.org/10.1039/C6RA05064F]
[31]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[32]
Sun, C.; Lee, J.S.H.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11), 1252-1265.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[33]
Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61(6), 467-477.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[34]
Andrade, Â.L.; Souza, D.M.; Pereira, M.C.; Fabris, J.D.; Domingues, R.Z. pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method. Quim. Nova, 2010, 33(3), 524-527.
[http://dx.doi.org/10.1590/S0100-40422010000300006]
[35]
Khalil, M.I. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab. J. Chem., 2015, 8(2), 279-284.
[http://dx.doi.org/10.1016/j.arabjc.2015.02.008]
[36]
Liu, Z.L.; Wang, X.; Yao, K.L.; Du, G.H.; Lu, Q.H.; Ding, Z.H.; Tao, J.; Ning, Q.; Luo, X.P.; Tian, D.Y.; Xi, D. Synthesis of magnetite nanoparticles in W/O microemulsion. J. Mater. Sci., 2004, 39(7), 2633-2636.
[http://dx.doi.org/10.1023/B:JMSC.0000020046.68106.22]
[37]
Maity, D.; Choo, S.G.; Yi, J.; Ding, J.; Xue, J.M. Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater., 2009, 321(9), 1256-1259.
[http://dx.doi.org/10.1016/j.jmmm.2008.11.013]
[38]
Cai, W.; Wan, J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci., 2007, 305(2), 366-370.
[http://dx.doi.org/10.1016/j.jcis.2006.10.023] [PMID: 17084856]
[39]
Haw, C.Y.; Mohamed, F.; Chia, C.H.; Radiman, S.; Zakaria, S.; Huang, N.M.; Lim, H.N. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram. Int., 2010, 36(4), 1417-1422.
[http://dx.doi.org/10.1016/j.ceramint.2010.02.005]
[40]
Zhao, X.; Wei, C.; Gai, Z.; Yu, S.; Ren, X. Chemical vapor deposition and its application in surface modification of nanoparticles. Chem. Pap., 2020, 74(3), 767-778.
[http://dx.doi.org/10.1007/s11696-019-00963-y]
[41]
Sutens, B.; Swusten, T.; Zhong, K.; Jochum, J.; Van Bael, M.; Van der Eycken, E.; Brullot, W.; Bloemen, M.; Verbiest, T. Tunability of size and magnetic moment of iron oxide nanoparticles synthesized by forced hydrolysis. Materials, 2016, 9(7), 554.
[http://dx.doi.org/10.3390/ma9070554] [PMID: 28773675]
[42]
Morel, A.L.; Nikitenko, S.I.; Gionnet, K.; Wattiaux, A.; Lai-Kee-Him, J.; Labrugere, C.; Chevalier, B.; Deleris, G.; Petibois, C.; Brisson, A.; Simonoff, M. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties. ACS Nano, 2008, 2(5), 847-856.
[http://dx.doi.org/10.1021/nn800091q] [PMID: 19206481]
[43]
Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Voicu, I.; Fleaca, C.; Albu, L.; Savoiu, M.; Sandu, I.; Popovici, E.; Soare, I. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Appl. Surf. Sci., 2005, 247(1-4), 25-31.
[http://dx.doi.org/10.1016/j.apsusc.2005.01.037]
[44]
Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater., 2007, 309(2), 307-311.
[http://dx.doi.org/10.1016/j.jmmm.2006.07.037]
[45]
Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceram. Int., 2016, 42(1), 9-34.
[http://dx.doi.org/10.1016/j.ceramint.2015.08.144]
[46]
Zamani Kouhpanji, M.R.; Stadler, B.J.H. A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: A review. Sensors, 2020, 20(9), 2554.
[http://dx.doi.org/10.3390/s20092554] [PMID: 32365832]
[47]
Lodhia, J.; Mandarano, G.; Ferris, N.J.; Eu, P.; Cowell, S.F. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI. BIIJ, 2010, 6(2), e12.
[http://dx.doi.org/10.2349/biij.6.2.e12] [PMID: 21611034]
[48]
Freitas, J.C.; Branco, R.M.; Lisboa, I.G.O.; Costa, T.P.; Campos, M.G.N.; Jafelicci Júnior, M.; Marques, R.F.C. Magnetic nanoparticles obtained by homogeneous coprecipitation sonochemically assisted. Mater. Res., 2015, 18(Suppl. 2), 220-224.
[http://dx.doi.org/10.1590/1516-1439.366114]
[49]
Boyer, C.; Whittaker, M.R.; Bulmus, V.; Liu, J.; Davis, T.P. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater., 2010, 2(1), 23-30.
[http://dx.doi.org/10.1038/asiamat.2010.6]
[50]
Wulandari, I.O.; Santjojo, D.; Shobirin, R.A.; Sabarudin, A. Characteristics and magnetic properties of chitosan-coated Fe3O4 nanoparticles prepared by ex-situ co-precipitation method. Rasayan J. Chem., 2017, 10, 1348-1358.
[51]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[52]
Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Indian Chem. Soc., 2010, 7(1), 1-37.
[http://dx.doi.org/10.1007/BF03245856]
[53]
Amara, D.; Felner, I.; Nowik, I.; Margel, S. Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloids Surf. A Physicochem. Eng. Asp., 2009, 339(1-3), 106-110.
[http://dx.doi.org/10.1016/j.colsurfa.2009.02.003]
[54]
Mylkie, K.; Nowak, P.; Rybczynski, P.; Ziegler-Borowska, M. Polymer-coated magnetite nanoparticles for protein immobilization. Materials, 2021, 14(2), 248.
[http://dx.doi.org/10.3390/ma14020248] [PMID: 33419055]
[55]
Malo de Molina, P.; Zhang, M.; Bayles, A.V.; Helgeson, M.E. Oil-in-water-in-oil multinanoemulsions for templating complex nanoparticles. Nano Lett., 2016, 16(12), 7325-7332.
[http://dx.doi.org/10.1021/acs.nanolett.6b02073] [PMID: 27455402]
[56]
Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces, 2013, 5(5), 1722-1731.
[http://dx.doi.org/10.1021/am302883m] [PMID: 23388099]
[57]
Ai, T.; Wang, F.; Feng, X.; Ruan, M. Microstructural and mechanical properties of dual Ti3AlC2-Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceram. Int., 2014, 40(7), 9947-9953.
[http://dx.doi.org/10.1016/j.ceramint.2014.02.092]
[58]
Bhavani, P.; Rajababu, C.H.; Arif, M.D.; Reddy, I.V.S.; Reddy, N.R. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. J. Magn. Magn. Mater., 2017, 426, 459-466.
[http://dx.doi.org/10.1016/j.jmmm.2016.09.049]
[59]
Williams, M.J.; Sánchez, E.; Aluri, E.R.; Douglas, F.J.; MacLaren, D.A.; Collins, O.M.; Cussen, E.J.; Budge, J.D.; Sanders, L.C.; Michaelis, M.; Smales, C.M.; Cinatl, J.; Lorrio, S.; Krueger, D.; de Rosales, R.T.M.; Corr, S.A. Microwave-assisted synthesis of highly crystalline, multifunctional iron oxide nanocomposites for imaging applications. RSC Adv., 2016, 6(87), 83520-83528.
[http://dx.doi.org/10.1039/C6RA11819D]
[60]
Drozdov, A.S.; Ivanovski, V.; Avnir, D.; Vinogradov, V.V. A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH. J. Colloid Interface Sci., 2016, 468, 307-312.
[http://dx.doi.org/10.1016/j.jcis.2016.01.061] [PMID: 26852355]
[61]
Hasany, S.; Abdurahman, N.; Sunarti, A.; Jose, R. Magnetic iron oxide nanoparticles: Chemical synthesis and applications review. Curr. Nanosci., 2013, 9(5), 561-575.
[http://dx.doi.org/10.2174/15734137113099990085]
[62]
Sanchez-Dominguez, M.; Aubery, C.; Solans, C. New trends on the synthesis of inorganic nanoparticles using microemulsions as confined reaction media. In: Smart Nanoparticles Technology; InTech, 2012; pp. 195-220.
[http://dx.doi.org/10.5772/33010]
[63]
Tartaj, P.; Morales, M.P.; Veintemillas-Verdaguer, S.; Gonz lez-Carre o, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36(13), R182-R197.
[http://dx.doi.org/10.1088/0022-3727/36/13/202]
[64]
Deshmukh, R.; Niederberger, M. Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chemistry, 2017, 23(36), 8542-8570.
[http://dx.doi.org/10.1002/chem.201605957] [PMID: 28376243]
[65]
Chow, G.M.; Kurihara, L.K.; Kemner, K.M.; Schoen, P.E.; Elam, W.T.; Ervin, A.; Keller, S.; Zhang, Y.D.; Budnick, J.; Ambrose, T. Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. J. Mater. Res., 1995, 10(6), 1546-1554.
[http://dx.doi.org/10.1557/JMR.1995.1546]
[66]
Dong, H.; Chen, Y.C.; Feldmann, C. Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem., 2015, 17(8), 4107-4132.
[http://dx.doi.org/10.1039/C5GC00943J]
[67]
Swihart, M.T. Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci., 2003, 8(1), 127-133.
[http://dx.doi.org/10.1016/S1359-0294(03)00007-4]
[68]
Wegner, K.; Walker, B.; Tsantilis, S.; Pratsinis, S.E. Design of metal nanoparticle synthesis by vapor flow condensation. Chem. Eng. Sci., 2002, 57(10), 1753-1762.
[http://dx.doi.org/10.1016/S0009-2509(02)00064-7]
[69]
Zhang, Q.; Sando, D.; Nagarajan, V. Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(19), 4092-4124.
[http://dx.doi.org/10.1039/C6TC00243A]
[70]
Veintemillas-Verdaguer, S.; Bomatí-Miguel, O.; Morales, M.P. Effect of the process conditions on the structural and magnetic properties of γ-Fe2O3 nanoparticles produced by laser pyrolysis. Scr. Mater., 2002, 47(9), 589-593.
[http://dx.doi.org/10.1016/S1359-6462(02)00198-7]
[71]
Veintemillas-Verdaguer, S.; Morales, M.P.; Bomati-Miguel, O.; Bautista, C.; Zhao, X.; Bonville, P.; Alejo, R.P.; Ruiz-Cabello, J.; Santos, M.; Tendillo-Cortijo, F.J.; Ferreirós, J. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents. J. Phys. D Appl. Phys., 2004, 37(15), 2054-2059.
[http://dx.doi.org/10.1088/0022-3727/37/15/002]
[72]
Veintemillas-Verdaguer, S.; Leconte, Y.; Costo, R.; Bomati-Miguel, O.; Bouchet-Fabre, B.; Morales, M.P.; Bonville, P.; Pérez-Rial, S.; Rodriguez, I.; Herlin-Boime, N. Continuous production of inorganic magnetic nanocomposites for biomedical applications by laser pyrolysis. J. Magn. Magn. Mater., 2007, 311(1), 120-124.
[http://dx.doi.org/10.1016/j.jmmm.2006.10.1200]
[73]
Messing, G.L.; Zhang, S.C.; Jayanthi, G.V. Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc., 1993, 76(11), 2707-2726.
[http://dx.doi.org/10.1111/j.1151-2916.1993.tb04007.x]
[74]
Pecharromán, C.; Gonzalez-Carreno, T.; Iglesias, J.E. The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys. Chem. Miner., 1995, 22, 21-29.
[http://dx.doi.org/10.1007/BF00202677]
[75]
Carreño, T.G.; Mifsud, A.; Serna, C.J.; Palacios, J.M. Preparation of homogeneous mixed oxides by spray pyrolysis. Mater. Chem. Phys., 1991, 27(3), 287-296.
[http://dx.doi.org/10.1016/0254-0584(91)90125-E]
[76]
Willard, M.A.; Kurihara, L.K.; Carpenter, E.E.; Calvin, S.; Harris, V.G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev., 2004, 49(3-4), 125-170.
[http://dx.doi.org/10.1179/095066004225021882]
[77]
Suslick, K.S.; Fang, M.; Hyeon, T. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc., 1996, 118(47), 11960-11961.
[http://dx.doi.org/10.1021/ja961807n]
[78]
Baker, I. Magnetic nanoparticle synthesis. In: Nanobiomaterials; Elsevier, 2018; pp. 197-229.
[http://dx.doi.org/10.1016/B978-0-08-100716-7.00009-X]
[79]
Sandler, S.E.; Fellows, B.; Mefford, O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal. Chem., 2019, 91(22), 14159-14169.
[http://dx.doi.org/10.1021/acs.analchem.9b03518] [PMID: 31566353]
[80]
Faraji, M.; Yamini, Y.; Salehi, N. Characterization of magnetic nanomaterials. In: Magnetic Nanomaterials in Analytical Chemistry; Elsevier, 2021; pp. 39-60.
[http://dx.doi.org/10.1016/B978-0-12-822131-0.00014-5]
[81]
Shukla, S.; Khan, R.; Daverey, A. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review. Environmen. Technol. Innov., 2021, 24, 101924.
[http://dx.doi.org/10.1016/j.eti.2021.101924]
[82]
Lisjak, D.; Mertelj, A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog. Mater. Sci., 2018, 95, 286-328.
[http://dx.doi.org/10.1016/j.pmatsci.2018.03.003]
[83]
Dongsar, T.T.; Dongsar, T.S.; Abourehab, M.A.S.; Gupta, N.; Kesharwani, P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J., 2023, 187, 111898.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111898]
[84]
Khizar, S.; Elkalla, E.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Elaissari, A. Magnetic nanoparticles: Multifunctional tool for cancer therapy. Expert Opin. Drug Deliv., 2023, 20(2), 189-204.
[http://dx.doi.org/10.1080/17425247.2023.2166484] [PMID: 36608938]
[85]
Setia, A.; Mehata, A.K.; Vikas; Malik, A.K.; Viswanadh, M.K.; Muthu, M.S. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications. J. Drug Deliv. Sci. Technol., 2023, 81, 104295.
[http://dx.doi.org/10.1016/j.jddst.2023.104295]
[86]
Tegafaw, T.; Liu, S.; Ahmad, M.Y.; Saidi, A.K.A.A.; Zhao, D.; Liu, Y.; Nam, S.W.; Chang, Y.; Lee, G.H. Magnetic nanoparticle-based high-performance positive and negative magnetic resonance imaging contrast agents. Pharmaceutics, 2023, 15(6), 1745.
[http://dx.doi.org/10.3390/pharmaceutics15061745] [PMID: 37376193]
[87]
Xue, F.; Zhu, S.; Tian, Q.; Qin, R.; Wang, Z.; Huang, G.; Yang, S. Macrophage-mediated delivery of magnetic nanoparticles for enhanced magnetic resonance imaging and magnetothermal therapy of solid tumors. J. Colloid Interface Sci., 2023, 629(Pt A), 554-562.
[http://dx.doi.org/10.1016/j.jcis.2022.08.186] [PMID: 36088700]
[88]
Tran, N.; Webster, T.J. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem., 2010, 20(40), 8760-8767.
[http://dx.doi.org/10.1039/c0jm00994f]
[89]
Mertdinç-Ülküseven, S.; Khakzad, F.; Aslan, C.; Onbasli, K.; Çevik, Ç.; İşçi, S.; Balcı-Çağıran, Ö.; Yagci Acar, H.; Öveçoğlu, M.L.; Ağaoğulları, D. Fe2B magnetic nanoparticles: Synthesis, optimization and cytotoxicity for potential biomedical applications. J. Sci. Adv. Mater. Devices, 2023, 8(3), 100602.
[http://dx.doi.org/10.1016/j.jsamd.2023.100602]
[90]
Shao, J.; Li, J.; Weng, L.; Cheng, K.; Weng, W.; Sun, Q.; Wu, M.; Lin, J. Remote activation of M2 macrophage polarization via magneto-mechanical stimulation to promote osteointegration. ACS Biomater. Sci. Eng., 2023, 9(5), 2483-2494.
[http://dx.doi.org/10.1021/acsbiomaterials.3c00080] [PMID: 37092608]
[91]
Yao, C.; Yang, F.; Zhang, J.; Yao, J.; Cao, Y.; Peng, H.; Stanciu, S.G.; Charitidis, C.A.; Wu, A. Magneto-mechanical therapeutic effects and associated cell death pathways of magnetic nanocomposites with distinct geometries. Acta Biomater., 2023, 161, 238-249.
[http://dx.doi.org/10.1016/j.actbio.2023.02.033] [PMID: 36858162]
[92]
Nam, J.; Son, S.; Park, K.S.; Zou, W.; Shea, L.D.; Moon, J.J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater., 2019, 4(6), 398-414.
[http://dx.doi.org/10.1038/s41578-019-0108-1]
[93]
Gong, F.; Yang, N.; Wang, X.; Zhao, Q.; Chen, Q.; Liu, Z.; Cheng, L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today, 2020, 32, 100851.
[http://dx.doi.org/10.1016/j.nantod.2020.100851]
[94]
Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials, 2018, 156, 217-237.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.024] [PMID: 29207323]
[95]
Zhao, S.; Yu, X.; Qian, Y.; Chen, W.; Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics, 2020, 10(14), 6278-6309.
[http://dx.doi.org/10.7150/thno.42564] [PMID: 32483453]
[96]
Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; Zhang, S.; Fan, H.M.; Zhao, Y.X.; Liang, X.J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 2020, 10(8), 3793-3815.
[http://dx.doi.org/10.7150/thno.40805] [PMID: 32206123]
[97]
Manohar, A.; Vijayakanth, V.; Vattikuti, S.V.P.; Kim, K.H.; Structural, B.E.T. Structural, BET and EPR properties of mixed zinc-manganese spinel ferrites nanoparticles for energy storage applications. Ceram. Int., 2023, 49(12), 19717-19727.
[http://dx.doi.org/10.1016/j.ceramint.2023.03.089]
[98]
Farzin, A.; Etesami, S.A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater., 2020, 9(9), 1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[99]
Kang, T.; Li, F.; Baik, S.; Shao, W.; Ling, D.; Hyeon, T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.013] [PMID: 28525855]
[100]
Han, H.; Hou, Y.; Chen, X.; Zhang, P.; Kang, M.; Jin, Q.; Ji, J.; Gao, M. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J. Am. Chem. Soc., 2020, 142(10), 4944-4954.
[http://dx.doi.org/10.1021/jacs.0c00650] [PMID: 32069041]
[101]
Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol., 2020, 17(11), 657-674.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[102]
Moros, M.; Idiago-López, J.; Asín, L.; Moreno-Antolín, E.; Beola, L.; Grazú, V.; Fratila, R.M.; Gutiérrez, L.; de la Fuente, J.M. Triggering antitumoural drug release and gene expression by magnetic hyperthermia. Adv. Drug Deliv. Rev., 2019, 138, 326-343.
[http://dx.doi.org/10.1016/j.addr.2018.10.004] [PMID: 30339825]
[103]
Del Sol-Fernández, S.; Portilla-Tundidor, Y.; Gutiérrez, L.; Odio, O.F.; Reguera, E.; Barber, D.F.; Morales, M.P. Flower-like mn-doped magnetic nanoparticles functionalized with αvβ3-integrin-ligand to efficiently induce intracellular heat after alternating magnetic field exposition, triggering glioma cell death. ACS Appl. Mater. Interfaces, 2019, 11(30), 26648-26663.
[http://dx.doi.org/10.1021/acsami.9b08318] [PMID: 31287950]
[104]
Sharma, S.K.; Shrivastava, N.; Rossi, F.; Tung, L.D.; Thanh, N.T.K. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 2019, 29, 100795.
[http://dx.doi.org/10.1016/j.nantod.2019.100795]
[105]
De Santis, M.; Strau, G.; Bachner, M. Cross-sectional imaging techniques: The use of computed tomography (CT) and magnetic resonance imaging (MRI) in the management of germ cell tumors. In: Imaging in Oncological Urology; Springer: London, 2009; pp. 287-303.
[106]
McRobbie, D.W.; Moore, E.A.; Graves, M.J.; Prince, M.R. MRI from Picture to Proton; Cambridge university press, 2017.
[http://dx.doi.org/10.1017/9781107706958]
[107]
Murphy, K.J.; Brunberg, J.A.; Cohan, R.H. Adverse reactions to gadolinium contrast media: A review of 36 cases. AJR Am. J. Roentgenol., 1996, 167(4), 847-849.
[http://dx.doi.org/10.2214/ajr.167.4.8819369] [PMID: 8819369]
[108]
Wang, L.; Huang, J.; Chen, H.; Wu, H.; Xu, Y.; Li, Y.; Yi, H.; Wang, Y.A.; Yang, L.; Mao, H. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T 1-T 2 switchable magnetic resonance imaging contrast. ACS Nano, 2017, 11(5), 4582-4592.
[http://dx.doi.org/10.1021/acsnano.7b00038] [PMID: 28426929]
[109]
Tao, F.; Ma, S.; Tao, H.; Jin, L.; Luo, Y.; Zheng, J.; Xiang, W.; Deng, H. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment - A review. Carbohydr. Polym., 2021, 251, 117063.
[http://dx.doi.org/10.1016/j.carbpol.2020.117063] [PMID: 33142615]
[110]
Widder, K.J.; Senyei, A.E.; Scarpelli, D.G. Magnetic microspheres: A model system of site specific drug delivery in vivo. Exp. Biol. Med., 1978, 158(2), 141-146.
[http://dx.doi.org/10.3181/00379727-158-40158] [PMID: 674215]
[111]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[112]
Manohar, A.; Vijayakanth, V.; Vattikuti, S.V.P.; Manivasagan, P.; Jang, E.S.; Chintagumpala, K.; Kim, K.H. Ca-doped MgFe2O4 nanoparticles for magnetic hyperthermia and their cytotoxicity in normal and cancer cell lines. ACS Appl. Nano Mater., 2022, 5(4), 5847-5856.
[http://dx.doi.org/10.1021/acsanm.2c01062]
[113]
Giri, S.; Trewyn, B.G.; Stellmaker, M.P.; Lin, V.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed., 2005, 44(32), 5038-5044.
[http://dx.doi.org/10.1002/anie.200501819] [PMID: 16038000]
[114]
Yao, X.; Niu, X.; Ma, K.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. Graphene quantum dots‐capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 2017, 13(2), 1602225.
[http://dx.doi.org/10.1002/smll.201602225] [PMID: 27735129]
[115]
Shahzad, K.; Mushtaq, S.; Rizwan, M.; Khalid, W.; Atif, M.; Din, F.U.; Ahmad, N.; Abbasi, R.; Ali, Z. Field-controlled magnetoelectric core-shell CoFe2O4@BaTiO3 nanoparticles as effective drug carriers and drug release in vitro. Mater. Sci. Eng. C, 2021, 119, 111444.
[http://dx.doi.org/10.1016/j.msec.2020.111444] [PMID: 33321584]
[116]
Dai, L.; Liu, R.; Hu, L.Q.; Zou, Z.F.; Si, C.L. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain. Chem. Eng., 2017, 5(9), 8241-8249.
[http://dx.doi.org/10.1021/acssuschemeng.7b01903]
[117]
Manivasagan, P.; Ashokkumar, S.; Manohar, A.; Joe, A.; Han, H.-W.; Seo, S.-H.; Thambi, T.; Duong, H.-S.; Kaushik, N.K.; Kim, K.H. Biocompatible calcium ion-doped magnesium ferrite nanoparticles as a new family of photothermal therapeutic materials for cancer treatment. Pharmaceutics, 2023, 15(5), 1555.
[118]
Rocha-Santos, T.A.P. Sensors and biosensors based on magnetic nanoparticles. Trends Analyt. Chem., 2014, 62, 28-36.
[http://dx.doi.org/10.1016/j.trac.2014.06.016]
[119]
Wang, T.; Zhou, Y.; Lei, C.; Luo, J.; Xie, S.; Pu, H. Magnetic impedance biosensor: A review. Biosens. Bioelectron., 2017, 90, 418-435.
[http://dx.doi.org/10.1016/j.bios.2016.10.031] [PMID: 27825890]
[120]
Tang, Q.; Zhou, Z.; Chen, Z. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale, 2013, 5(11), 4541-4583.
[http://dx.doi.org/10.1039/c3nr33218g] [PMID: 23443470]
[121]
Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem., 2006, 34(2-4), 237-247.
[http://dx.doi.org/10.1016/j.progsolidstchem.2005.11.010]
[122]
Huang, X.; Aguilar, Z.P.; Xu, H.; Lai, W.; Xiong, Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron., 2016, 75, 166-180.
[http://dx.doi.org/10.1016/j.bios.2015.08.032] [PMID: 26318786]
[123]
Wang, C.; Wang, C.; Wang, X.; Wang, K.; Zhu, Y.; Rong, Z.; Wang, W.; Xiao, R.; Wang, S. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Appl. Mater. Interfaces, 2019, 11(21), 19495-19505.
[http://dx.doi.org/10.1021/acsami.9b03920] [PMID: 31058488]
[124]
Jones, K.C.; de Voogt, P. Persistent organic pollutants (POPs): State of the science. Environ. Pollut., 1999, 100(1-3), 209-221.
[http://dx.doi.org/10.1016/S0269-7491(99)00098-6] [PMID: 15093119]
[125]
Govan, J. Recent advances in magnetic nanoparticles and nanocomposites for the remediation of water resources. Magnetochemistry, 2020, 6(4), 49.
[http://dx.doi.org/10.3390/magnetochemistry6040049]
[126]
Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 2020, 259, 127509.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127509] [PMID: 32645598]
[127]
Hodges, B.C.; Cates, E.L.; Kim, J.H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol., 2018, 13(8), 642-650.
[http://dx.doi.org/10.1038/s41565-018-0216-x] [PMID: 30082806]
[128]
Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; Liu, Z.F. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ., 2012, 424, 1-10.
[http://dx.doi.org/10.1016/j.scitotenv.2012.02.023] [PMID: 22391097]
[129]
Kilianová, M.; Prucek, R.; Filip, J.; Kolařík, J.; Kvítek, L.; Panáček, A.; Tuček, J.; Zbořil, R. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 2013, 93(11), 2690-2697.
[http://dx.doi.org/10.1016/j.chemosphere.2013.08.071] [PMID: 24054133]
[130]
Alvarez, P.J.J.; Chan, C.K.; Elimelech, M.; Halas, N.J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol., 2018, 13(8), 634-641.
[http://dx.doi.org/10.1038/s41565-018-0203-2] [PMID: 30082804]
[131]
El-Temsah, Y.S.; Sevcu, A.; Bobcikova, K.; Cernik, M.; Joner, E.J. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere, 2016, 144, 2221-2228.
[http://dx.doi.org/10.1016/j.chemosphere.2015.10.122] [PMID: 26598990]
[132]
Mishra, S.; Keswani, C.; Abhilash, P.C.; Fraceto, L.F.; Singh, H.B. Integrated approach of agri-nanotechnology: Challenges and future trends. Front. Plant Sci., 2017, 8, 471.
[http://dx.doi.org/10.3389/fpls.2017.00471] [PMID: 28421100]
[133]
Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci., 2015, 3(0), 1-24.
[http://dx.doi.org/10.7831/ras.3.1]
[134]
Zia-ur-Rehman, M.; Naeem, A.; Khalid, H.; Rizwan, M.; Ali, S.; Azhar, M. Responses of plants to iron oxide nanoparticles. In: Nanomaterials in Plants, Algae, and Microorganisms; Elsevier, 2018; pp. 221-238.
[http://dx.doi.org/10.1016/B978-0-12-811487-2.00010-4]
[135]
Abo-zeid, Y.; Ismail, N.S.M.; McLean, G.R.; Hamdy, N.M. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur. J. Pharm. Sci., 2020, 153, 105465.
[http://dx.doi.org/10.1016/j.ejps.2020.105465] [PMID: 32668312]
[136]
Somvanshi, S.B.; Kharat, P.B.; Saraf, T.S.; Somwanshi, S.B.; Shejul, S.B.; Jadhav, K.M. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater. Res. Innov., 2021, 25, 169-174.
[http://dx.doi.org/10.1080/14328917.2020.1769350]

© 2025 Bentham Science Publishers | Privacy Policy