Abstract
Background: Helicobacter pylori (HP) infection could lead to various gastrointestinal diseases. Urease is the most important virulence factor of HP. It protects the bacterium against gastric acid.
Objective: Therefore, we aimed to design urease inhibitors as drugs against HP infection.
Methods: The DrugBank-approved library was assigned with 3D conformations and the structure of the urease was prepared. Using a re-docking strategy, the proper settings were determined for docking by PyRx and GOLD software. Virtual screening was performed to select the best inhibitory drugs based on binding affinity, FitnessScore, and binding orientation to critical amino acids of the active site. The best inhibitory drug was then evaluated by IC50 and the diameter of the zone of inhibition for bacterial growth.
Results: The structures of prepared drugs were screened against urease structure using the determined settings. Clodronic acid was determined to be the best-identified drug, due to higher PyRx binding energy, better GOLD FitnessScore, and interaction with critical amino acids of urease. In vitro results were also in line with the computational data. IC50 values of Clodronic acid and Acetohydroxamic Acid (AHA) were 29.78 ± 1.13 and 47.29 ± 2.06 μg/ml, respectively. Diameters of the zones of inhibition were 18 and 15 mm for Clodronic acid and AHA, respectively.
Conclusion: Clodronic acid has better HP urease inhibition potential than AHA. Given its approved status, the development of a repurposed drug based on Clodronic acid would require less time and cost. Further, in vitro studies would unveil the efficacy of Clodronic acid as a urease inhibitor.
[http://dx.doi.org/10.3748/wjg.v24.i29.3204] [PMID: 30090002]
[http://dx.doi.org/10.1053/j.gastro.2017.04.022] [PMID: 28456631]
[http://dx.doi.org/10.3389/fmicb.2019.00846] [PMID: 31110496]
[http://dx.doi.org/10.1128/9781555818005]
[http://dx.doi.org/10.3748/wjg.v12.i19.2991] [PMID: 16718777]
[http://dx.doi.org/10.1111/hel.12644] [PMID: 31486236]
[http://dx.doi.org/10.1097/00042737-200304000-00010] [PMID: 12655260]
[http://dx.doi.org/10.2220/biomedres.40.87] [PMID: 30982804]
[http://dx.doi.org/10.1128/mr.59.3.451-480.1995] [PMID: 7565414]
[http://dx.doi.org/10.1136/bmj.a1454] [PMID: 18794181]
(b) Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology, 2016, 151(1), 51-69. e14.
[http://dx.doi.org/10.1053/j.gastro.2016.04.006];
(c) Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M. Management of Helicobacter pylori infection-the maastricht v/florence consensus report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[http://dx.doi.org/10.1016/S0140-6736(86)92561-4] [PMID: 2873317]
[http://dx.doi.org/10.1016/j.bpg.2007.01.001] [PMID: 17382275];
(b) Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[http://dx.doi.org/10.1016/j.mib.2022.102203] [PMID: 36156373]
[http://dx.doi.org/10.1016/j.ejmech.2022.114273] [PMID: 35305460]
[http://dx.doi.org/10.1016/j.ejmech.2010.07.007] [PMID: 20691510]
[http://dx.doi.org/10.1002/cbdv.201900710] [PMID: 32187446];
(b) Maz, T.G.; Caliskan, H.B.; Capan, I.; Caliskan, B.; Özçelik, B.; Banoglu, E. Design, synthesis and evaluation of aryl‐tailored oxadiazole‐thiones as new urease inhibitors. ChemistrySelect, 2023, 8(8), e202204449.
[http://dx.doi.org/10.1002/slct.202204449];
(c) SarveAhrabi, Y. Anti-Helicobacter pylori activity of new derivatives of 1, 3,4-oxadiazole: In silico study. Avicenna J. Clin. Microbiol. Infect., 2021, 8(4), 135-138.
[http://dx.doi.org/10.34172/ajcmi.2021.25];
(d) Khan, Y.; Maalik, A.; Rehman, W.; Hussain, R.; Khan, S.; Alanazi, M.M.; Asiri, H.H.; Iqbal, S. Identification of novel oxadiazole-based benzothiazole derivatives as potent inhibitors of α-glucosidase and urease: Synthesis, in vitro bio-evaluation and their in silico molecular docking study. J. Saudi Chem. Soc., 2023, 27(4), 101682.
[http://dx.doi.org/10.1016/j.jscs.2023.101682];
(e) Rezaei, E.B.; Abedinifar, F.; Azizian, H.; Montazer, M.N.; Asadi, M.; Hosseini, S.; Sepehri, S.; Mohammadi-Khanaposhtani, M.; Biglar, M.; Larijani, B.; Amanlou, M.; Mahdavi, M. Design, synthesis, and evaluation of metronidazole-1,2,3-triazole derivatives as potent urease inhibitors. Chem. Pap., 2021, 75(8), 4217-4226.
[http://dx.doi.org/10.1007/s11696-021-01653-4];
(f) Singh, R.; Kumar, P.; Devi, M.; Sindhu, J.; Kumar, A.; Lal, S.; Singh, D.; Kumar, H.; Kumar, S. Urease inhibition and structure‐activity relationship study of thiazolidinone‐, triazole‐, and benzothiazole‐based heterocyclic derivatives: A focus review. ChemistrySelect, 2023, 8(13), e202300244.
[http://dx.doi.org/10.1002/slct.202300244];
(g) Song, W.Q.; Liu, M.L.; Li, S.Y.; Xiao, Z.P. Recent efforts in the discovery of urease inhibitor identifications. Curr. Top. Med. Chem., 2022, 22(2), 95-107.
[http://dx.doi.org/10.2174/1568026621666211129095441] [PMID: 34844543]
[http://dx.doi.org/10.1016/j.bmcl.2017.05.019] [PMID: 28526368];
(b) Ruhunage, S.; Udukala, D.N.; Gunaratna, M.J. Design, synthesis and evaluation of 3-hydroxy quinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka2020, p. 77.;
(c) Baltaş, N. Synthesis of quinazolinone derivatives containing an acyl hydrazone skeleton as potent anti-urease agents enzyme kinetic studies and anti-oxidant properties. J. Chem. Res., 2022, 46(3)
[http://dx.doi.org/10.1177/17475198221096568];
(d) Alwis, Y.V.; Gunaratna, M.J.; Udukala, D.N. Synthesis, evaluation and structure activity relationship study of 2-phenyl-3Hquinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka2020, p. 103.
[http://dx.doi.org/10.1016/j.bmc.2015.05.038] [PMID: 26081763];
(b) Sedaghati, S.; Azizian, H.; Montazer, M.N.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Moradkhani, F.; Ardestani, M.S.; Asgari, M.S.; Yahya-Meymandi, A.; Biglar, M.; Larijani, B.; Sadat-Ebrahimi, S.E.; Foroumadi, A.; Amanlou, M.; Mahdavi, M. Novel (thio)barbituric-phenoxy-N-phenylacetamide derivatives as potent urease inhibitors: Synthesis, in vitro urease inhibition, and in silico evaluations. Struct. Chem., 2021, 32(1), 37-48.
[http://dx.doi.org/10.1007/s11224-020-01617-6];
(c) Hosseinzadeh, N.; Nazari, M.M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Amanlou, M.; Mahdavi, M. Rational design, synthesis, docking simulation, and admet prediction of novel barbituric‐hydrazine‐phenoxy‐1,2,3‐triazole‐acetamide derivatives as potent urease inhibitors. ChemistrySelect, 2023, 8(3), e202203297.
[http://dx.doi.org/10.1002/slct.202203297];
(d) Mollazadeh, M.; Azizian, H.; Fakhrioliaei, A.; Iraji, A.; Avizheh, L.; Valizadeh, Y.; Zomorodian, K.; Elahi, F.; Moazzam, A.; Kazemzadeh, H.; Amanlou, M.; Garmciri, F.; Hamidian, E.; Biglar, M.; Larijani, B.; Mahdavi, M. Different barbiturate derivatives linked to aryl hydrazone moieties as urease inhibitors; design, synthesis, urease inhibitory evaluations, and molecular dynamic simulations. Med. Chem. Res., 2023, 32(5), 930-943.
[http://dx.doi.org/10.1007/s00044-023-03050-w]
[http://dx.doi.org/10.1016/j.bioorg.2016.03.010] [PMID: 27038849];
(b) Shahin, A.I.; Zaib, S.; Zaraei, S.O.; Kedia, R.A.; Anbar, H.S.; Younas, M.T.; Al-Tel, T.H.; Khoder, G.; El-Gamal, M.I. Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori. PLoS One, 2023, 18(6), e0286684.
[http://dx.doi.org/10.1371/journal.pone.0286684] [PMID: 37267378];
(c) Mermer, A. Design, synthesize and antiurease activity of novel thiazole derivatives: Machine learning, molecular docking and biological investigation. J. Mol. Struct., 2020, 1222, 128860.
[http://dx.doi.org/10.1016/j.molstruc.2020.128860];
(d) Channar, P.A.; Saeed, A.; Afzal, S.; Hussain, D.; Kalesse, M.; Shehzadi, S.A.; Iqbal, J. Hydrazine clubbed 1,3-thiazoles as potent urease inhibitors: design, synthesis and molecular docking studies. Mol. Divers., 2021, 25(2), 1-13.
[http://dx.doi.org/10.1007/s11030-020-10057-7] [PMID: 32095975]
[http://dx.doi.org/10.1016/j.bioorg.2019.01.061] [PMID: 30710848];
(b) Mohammed, S.O.; El Ashry, S.H.E.; Khalid, A.; Amer, M.R.; Metwaly, A.M.; Eissa, I.H.; Elkaeed, E.B.; Elshobaky, A.; Hafez, E.E. Expression, purification, and comparative inhibition of helicobacter pylori urease by regio-selectively alkylated benzimidazole 2-thione derivatives. Molecules, 2022, 27(3), 865.
[http://dx.doi.org/10.3390/molecules27030865] [PMID: 35164122];
(c) Saeedian Moghadam, E.; Mohammed Al-Sadi, A.; Ghafarzadegan, R.; Talebi, M.; Amanlou, M.; Amini, M.; Abdel-Jalil, R. Benzimidazole derivatives act as dual urease inhibitor and anti-Helicobacter pylori agent; synthesis, bioactivity, and molecular docking study. Synth. Commun., 2022, 52(6), 936-948.
[http://dx.doi.org/10.1080/00397911.2022.2061357];
(d) Rostami, H.; Haddadi, M.H. Benzimidazole derivatives: A versatile scaffold for drug development against Helicobacter pylori ‐related diseases. Fundam. Clin. Pharmacol., 2022, 36(6), 930-943.
[http://dx.doi.org/10.1111/fcp.12810] [PMID: 35716372];
(e) Mumtaz, S.; Iqbal, S.; Shah, M.; Hussain, R.; Rahim, F.; Rehman, W.; Khan, S.; Abid, O.R.; Rasheed, L.; Dera, A.A.; Al-ghulikah, H.A.; Kehili, S.; Elkaeed, E.B.; Alrbyawi, H.; Alahmdi, M.I. New triazinoindole bearing benzimidazole/benzoxazole hybrids analogs as potent inhibitors of urease: Synthesis, in vitro analysis and molecular docking studies. Molecules, 2022, 27(19), 6580.
[http://dx.doi.org/10.3390/molecules27196580] [PMID: 36235116];
(f) Pereira, C.; de Lyra, A.; Oliveira, B.; Nascimento, I.; da Silva-Júnior, E.; de Aquino, T.; Sisto, F.; Figueiredo, I.; Martins, F.; Modolo, L.; Santos, J.; de Fátima, Â. 2-(Pyridin-4yl)benzothiazole and its benzimidazole-analogue: Biophysical and in silico studies on their interaction with urease and in vitro anti-Helicobacter pylori activities. J. Braz. Chem. Soc., 2022, 33, 1041-1057.
[http://dx.doi.org/10.21577/0103-5053.20220020]
[http://dx.doi.org/10.1016/j.ejmech.2013.07.047] [PMID: 23974021];
(b) Mamidala, R.; Bhimathati, S.R.S.; Vema, A. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorg. Chem., 2021, 114, 105010.
[http://dx.doi.org/10.1016/j.bioorg.2021.105010] [PMID: 34102519]
[http://dx.doi.org/10.1016/j.bmcl.2015.05.069] [PMID: 26077497];
(b) Kalatuwawege, I.P.; Gunaratna, M.J.; Udukala, D.N. Synthesis, in silico studies, and evaluation of syn and anti isomers of n-substituted indole-3-carbaldehyde oxime derivatives as urease inhibitors against Helicobacter pylori. Molecules, 2021, 26(21), 6658.
[http://dx.doi.org/10.3390/molecules26216658] [PMID: 34771067];
(c) Ullah, H.; Arshad, G.; Rahim, F.; Nawaz, A.; Khan, F.; Iqbal, N.; Hayat, S.; Zada, H.; Samad, A.; Wadood, A. Synthesis, in vitro urease inhibitory potential and molecular docking study of bis-indole bearing sulfonamide analogues. Chemical Data Collections, 2023, 44, 100999.
[http://dx.doi.org/10.1016/j.cdc.2023.100999]
[http://dx.doi.org/10.1016/j.bmc.2019.115123] [PMID: 31623971];
(b) Nusfa, M.; Gunaratna, M. Syntheses and evaluation of chalcone derivatives as urease inhibitors against Helicobacter pylori and their antioxidant behavior. International Conference on Applied and Pure Sciences, Sri Lanka2021.
[http://dx.doi.org/10.2174/1389450122666210222091412] [PMID: 33618646];
(b) Khan, K.M.; Iqbal, S.; Lodhi, M.A.; Maharvi, G.M.; Perveen, S.; Choudhary, M.I.; Atta-ur-Rahman, ; Chohan, Z.H.; Supuran, C.T. Synthesis and urease enzyme inhibitory effects of some dicoumarols. J. Enzyme Inhib. Med. Chem., 2004, 19(4), 367-371.
[http://dx.doi.org/10.1080/14756360409162452] [PMID: 15558955];
(c) Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142, 345-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.105] [PMID: 31593727];
(d) Naz, F.; Kanwal, ; Latif, M.; Salar, U.; Khan, K.M.; al-Rashida, M.; Ali, I.; Ali, B.; Taha, M.; Perveen, S. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorg. Chem., 2020, 105, 104365.
[http://dx.doi.org/10.1016/j.bioorg.2020.104365] [PMID: 33091669]
[http://dx.doi.org/10.1186/s13065-019-0562-2] [PMID: 31384793];
(b) Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Advances, 2023, 13(5), 3210-3233.
[http://dx.doi.org/10.1039/D2RA08284E] [PMID: 36756398];
(c) Sharaf, M.; Arif, M.; Hamouda, H.I.; Khan, S.; Abdalla, M.; Shabana, S.; Rozan, H.E.; Khan, T.U.; Chi, Z.; Liu, C. Preparation, urease inhibition mechanisms, and anti-Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. Curr. Res. Microb. Sci., 2022, 3, 100103.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.064] [PMID: 30772649];
(b) Fiori-Duarte, A.T.; Rodrigues, R.P.; Kitagawa, R.R.; Kawano, D.F. Insights into the design of inhibitors of the urease enzyme-a major target for the treatment of Helicobacter pylori infections. Curr. Med. Chem., 2020, 27(23), 3967-3982.
[http://dx.doi.org/10.2174/0929867326666190301143549] [PMID: 30827224]
[http://dx.doi.org/10.1016/j.bmc.2019.01.043] [PMID: 30738655];
(b) Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg. Chem., 2020, 102, 104057.
[http://dx.doi.org/10.1016/j.bioorg.2020.104057] [PMID: 32663667];
(c) Ahmad, S.; Abdul Qadir, M.; Ahmed, M.; Imran, M.; Yousaf, N.; Wani, T.A.; Zargar, S.; Ali, I.; Muddassar, M. Exploring the potential of propanamide-sulfonamide based drug conjugates as dual inhibitors of urease and cyclooxygenase-2: biological and their in silico studies. Front Chem., 2023, 11, 1206380.
[http://dx.doi.org/10.3389/fchem.2023.1206380] [PMID: 37601915]
[http://dx.doi.org/10.1016/j.bioorg.2019.103359] [PMID: 31640931];
(b) Zahra, U.; Zaib, S.; Saeed, A.; Rehman, M.; Shabir, G.; Alsaab, H.O.; Khan, I. New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis. Int. J. Biol. Macromol., 2022, 198, 157-167.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.064] [PMID: 34953808];
(c) Li, W.Y.; Ni, W.W.; Ye, Y.X.; Fang, H.L.; Pan, X.M.; He, J.L.; Zhou, T.L.; Yi, J.; Liu, S.S.; Zhou, M.; Xiao, Z.P.; Zhu, H.L. N -monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 404-413.
[http://dx.doi.org/10.1080/14756366.2019.1706503] [PMID: 31880473]
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[http://dx.doi.org/10.3103/S0891416817040097];
(b) Rahbar, M.R.; Zarei, M.; Jahangiri, A.; Khalili, S.; Nezafat, N.; Negahdaripour, M.; Fattahian, Y.; Ghasemi, Y. Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. Infect. Genet. Evol., 2019, 71, 116-127.
[http://dx.doi.org/10.1016/j.meegid.2019.03.023] [PMID: 30922803]
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[http://dx.doi.org/10.1016/j.jmgm.2018.04.018] [PMID: 29775804];
(b) Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830];
(c) Channar, P.; Saeed, A.; Albericio, F.; Larik, F.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules, 2017, 22(8), 1352.
[http://dx.doi.org/10.3390/molecules22081352] [PMID: 28813027]
[http://dx.doi.org/10.1111/cbdd.13090] [PMID: 28834266]
[http://dx.doi.org/10.1021/ac60252a045];
(b) Vosooghi, M.; Farzipour, S.; Saeedi, M.; Shareh, N.B.; Mahdavi, M.; Mahernia, S.; Foroumadi, A.; Amanlou, M.; Shafiee, A. Synthesis of novel 5-arylidene (thio) barbituric acid and evaluation of their urease inhibitory activity. J. Indian Chem. Soc., 2015, 12(8), 1487-1491.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.065] [PMID: 30006158]
[http://dx.doi.org/10.1016/j.ejps.2017.02.004] [PMID: 28167234]
[http://dx.doi.org/10.1371/journal.pone.0168944] [PMID: 28045966];
(b) Pan, L.; Wang, C.; Yan, K.; Zhao, K.; Sheng, G.; Zhu, H.; Zhao, X.; Qu, D.; Niu, F.; You, Z. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands. J. Inorg. Biochem., 2016, 159, 22-28.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.017] [PMID: 26908284]
[PMID: 7661157];
(b) Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev., 1989, 53(1), 85-108.
[http://dx.doi.org/10.1128/mr.53.1.85-108.1989] [PMID: 2651866]
[http://dx.doi.org/10.3390/molecules22101696] [PMID: 29019930]
[http://dx.doi.org/10.1021/bi3009664] [PMID: 22891633]
[http://dx.doi.org/10.1021/acsinfecdis.0c00300] [PMID: 33471519];
(b) Carcanague, D.; Shue, Y.K.; Wuonola, M.A.; Uria-Nickelsen, M.; Joubran, C.; Abedi, J.K.; Jones, J.; Kühler, T.C. Novel structures derived from 2-[[(2-pyridyl)methyl]thio]-1H-benzimidazole as anti-Helicobacter pylori agents, Part 2. J. Med. Chem., 2002, 45(19), 4300-4309.
[http://dx.doi.org/10.1021/jm020868v] [PMID: 12213071]
[http://dx.doi.org/10.1110/ps.28602] [PMID: 11790835]
[http://dx.doi.org/10.1159/000471707] [PMID: 1726639];
(b) Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[http://dx.doi.org/10.1517/13543776.2011.574615] [PMID: 21457123]
[http://dx.doi.org/10.1080/14756366.2019.1663416] [PMID: 31530039];
(b) Rahman, M.M.; Tikhomirova, A.; Modak, J.K.; Hutton, M.L.; Supuran, C.T.; Roujeinikova, A. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathog., 2020, 12(1), 20.
[http://dx.doi.org/10.1186/s13099-020-00358-5] [PMID: 32318117]
[http://dx.doi.org/10.2165/00044011-200929060-00001] [PMID: 19432497]
[http://dx.doi.org/10.2174/0929867023369853] [PMID: 12132990]
[http://dx.doi.org/10.1021/ml100068u] [PMID: 24900188];
(b) Akhtar, T.; Hameed, S.; Khan, K.; Choudhary, M. Syntheses, urease inhibition, and antimicrobial studies of some chiral 3-substituted-4-amino-5-thioxo-1H,4H-1,2,4-triazoles. Med. Chem., 2008, 4(6), 539-543.
[http://dx.doi.org/10.2174/157340608786242025] [PMID: 18991737]
[http://dx.doi.org/10.1080/14756360802188420] [PMID: 18629680]
[http://dx.doi.org/10.1016/j.ejmech.2012.09.037] [PMID: 23142672]
[http://dx.doi.org/10.2174/157018008785777315]
[http://dx.doi.org/10.1080/1478641500059383] [PMID: 16835082]
[http://dx.doi.org/10.1021/jm100340m] [PMID: 20684601]
[http://dx.doi.org/10.1080/00958972.2018.1458228]
[http://dx.doi.org/10.1038/s41598-021-90104-x] [PMID: 34012008]
[http://dx.doi.org/10.1128/jb.171.12.6414-6422.1989] [PMID: 2687233];
(b) Sirko, A.; Brodzik, R. Plant ureases: Roles and regulation. Acta Biochim. Pol., 2000, 47(4), 1189-1195.
[http://dx.doi.org/10.18388/abp.2000_3972] [PMID: 11996109]
[http://dx.doi.org/10.1186/s13065-019-0556-0] [PMID: 31384789]
[http://dx.doi.org/10.1186/2008-2231-20-72] [PMID: 23351780]