Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Clodronic Acid has Strong Inhibitory Interactions with the Urease Enzyme of Helicobacter pylori: Computer-aided Design and in vitro Confirmation

Author(s): Mohsen Karami Fath, Saeed Khalili*, Masoud Mashhadi Akbar Boojar*, Zahra Sadat Hashemi and Mahboubeh Zarei

Volume 20, Issue 7, 2024

Published on: 10 November, 2023

Page: [1100 - 1112] Pages: 13

DOI: 10.2174/0115734099271837231026064439

Price: $65

Abstract

Background: Helicobacter pylori (HP) infection could lead to various gastrointestinal diseases. Urease is the most important virulence factor of HP. It protects the bacterium against gastric acid.

Objective: Therefore, we aimed to design urease inhibitors as drugs against HP infection.

Methods: The DrugBank-approved library was assigned with 3D conformations and the structure of the urease was prepared. Using a re-docking strategy, the proper settings were determined for docking by PyRx and GOLD software. Virtual screening was performed to select the best inhibitory drugs based on binding affinity, FitnessScore, and binding orientation to critical amino acids of the active site. The best inhibitory drug was then evaluated by IC50 and the diameter of the zone of inhibition for bacterial growth.

Results: The structures of prepared drugs were screened against urease structure using the determined settings. Clodronic acid was determined to be the best-identified drug, due to higher PyRx binding energy, better GOLD FitnessScore, and interaction with critical amino acids of urease. In vitro results were also in line with the computational data. IC50 values of Clodronic acid and Acetohydroxamic Acid (AHA) were 29.78 ± 1.13 and 47.29 ± 2.06 μg/ml, respectively. Diameters of the zones of inhibition were 18 and 15 mm for Clodronic acid and AHA, respectively.

Conclusion: Clodronic acid has better HP urease inhibition potential than AHA. Given its approved status, the development of a repurposed drug based on Clodronic acid would require less time and cost. Further, in vitro studies would unveil the efficacy of Clodronic acid as a urease inhibitor.

[1]
Gravina, A.G.; Zagari, R.M.; Musis, C.D.; Romano, L.; Loguercio, C.; Romano, M. Helicobacter pylori and extragastric diseases: A review. World J. Gastroenterol., 2018, 24(29), 3204-3221.
[http://dx.doi.org/10.3748/wjg.v24.i29.3204] [PMID: 30090002]
[2]
Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G.; Ng, S.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology, 2017, 153(2), 420-429.
[http://dx.doi.org/10.1053/j.gastro.2017.04.022] [PMID: 28456631]
[3]
Rizzato, C.; Torres, J.; Kasamatsu, E.; Camorlinga-Ponce, M.; Bravo, M.M.; Canzian, F.; Kato, I. Potential role of biofilm formation in the development of digestive tract cancer with special reference to Helicobacter pylori infection. Front. Microbiol., 2019, 10, 846.
[http://dx.doi.org/10.3389/fmicb.2019.00846] [PMID: 31110496]
[4]
Fleming, S.L.; Alcamo, I.E. Helicobacter pylori; Chelsea House, 2007.
[5]
Mobley, H.L.; Mendz, G.L.; Hazell, S.L. Helicobacter pylori: physiology and genetics; ASM Press: Washington, DC, 2001.
[http://dx.doi.org/10.1128/9781555818005]
[6]
Eslick, G.D. Helicobacter pylori infection causes gastric cancer A review of the epidemiological, meta-analytic, and experimental evidence. World J. Gastroenterol., 2006, 12(19), 2991-2999.
[http://dx.doi.org/10.3748/wjg.v12.i19.2991] [PMID: 16718777]
[7]
Lehours, P.; Ferrero, R.L. Review: Helicobacter: Inflammation, immunology, and vaccines. Helicobacter, 2019, 24(S1), e12644.
[http://dx.doi.org/10.1111/hel.12644] [PMID: 31486236]
[8]
Sidebotham, R.L.; Worku, M.L.; Karim, Q.N.; Dhir, N.K.; Baron, J.H. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment. Eur. J. Gastroenterol. Hepatol., 2003, 15(4), 395-401.
[http://dx.doi.org/10.1097/00042737-200304000-00010] [PMID: 12655260]
[9]
Takeshita, H.; Watanabe, E.; Norose, Y.; Ito, Y.; Takahashi, H. Neutralizing antibodies for Helicobacter pylori urease inhibit bacterial colonization in the murine stomach in vivo. Biomed. Res., 2019, 40(2), 87-95.
[http://dx.doi.org/10.2220/biomedres.40.87] [PMID: 30982804]
[10]
Mobley, H.L.; Island, M.D.; Hausinger, R.P. Molecular biology of microbial ureases. Microbiol. Rev., 1995, 59(3), 451-480.
[http://dx.doi.org/10.1128/mr.59.3.451-480.1995] [PMID: 7565414]
[11]
Fuccio, L.; Laterza, L.; Zagari, R.M.; Cennamo, V.; Grilli, D.; Bazzoli, F. Treatment of Helicobacter pylori infection. BMJ, 2008, 337(sep15 1), a1454.
[http://dx.doi.org/10.1136/bmj.a1454] [PMID: 18794181]
[12]
(a) Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG clinical guideline: Treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 2017, 112(2), 212-239.;
(b) Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology, 2016, 151(1), 51-69. e14.
[http://dx.doi.org/10.1053/j.gastro.2016.04.006];
(c) Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M. Management of Helicobacter pylori infection-the maastricht v/florence consensus report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[13]
Hazell, S.; Lee, A. Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers. Lancet, 1986, 328(8497), 15-17.
[http://dx.doi.org/10.1016/S0140-6736(86)92561-4] [PMID: 2873317]
[14]
(a) Robinson, K.; Argent, R.H.; Atherton, J.C. The inflammatory and immune response to Helicobacter pylori infection. Best Pract. Res. Clin. Gastroenterol., 2007, 21(2), 237-259.
[http://dx.doi.org/10.1016/j.bpg.2007.01.001] [PMID: 17382275];
(b) Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[15]
Vita, N.A.; Anderson, S.M.; LaFleur, M.D.; Lee, R.E. Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Curr. Opin. Microbiol., 2022, 70, 102203.
[http://dx.doi.org/10.1016/j.mib.2022.102203] [PMID: 36156373]
[16]
Yang, W.; Feng, Q.; Peng, Z.; Wang, G. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. Eur. J. Med. Chem., 2022, 234, 114273.
[http://dx.doi.org/10.1016/j.ejmech.2022.114273] [PMID: 35305460]
[17]
Chen, W.; Li, Y.; Cui, Y.; Zhang, X.; Zhu, H.L.; Zeng, Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Eur. J. Med. Chem., 2010, 45(10), 4473-4478.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.007] [PMID: 20691510]
[18]
(a) Salehi Ashani, R.; Azizian, H.; Sadeghi Alavijeh, N.; Fathi Vavsari, V.; Mahernia, S.; Sheysi, N.; Biglar, M.; Amanlou, M.; Balalaie, S. Synthesis, biological evaluation and molecular docking of deferasirox and substituted 1,2,4‐triazole derivatives as novel potent urease inhibitors: Proposing repositioning candidate. Chem. Biodivers., 2020, 17(5), e1900710.
[http://dx.doi.org/10.1002/cbdv.201900710] [PMID: 32187446];
(b) Maz, T.G.; Caliskan, H.B.; Capan, I.; Caliskan, B.; Özçelik, B.; Banoglu, E. Design, synthesis and evaluation of aryl‐tailored oxadiazole‐thiones as new urease inhibitors. ChemistrySelect, 2023, 8(8), e202204449.
[http://dx.doi.org/10.1002/slct.202204449];
(c) SarveAhrabi, Y. Anti-Helicobacter pylori activity of new derivatives of 1, 3,4-oxadiazole: In silico study. Avicenna J. Clin. Microbiol. Infect., 2021, 8(4), 135-138.
[http://dx.doi.org/10.34172/ajcmi.2021.25];
(d) Khan, Y.; Maalik, A.; Rehman, W.; Hussain, R.; Khan, S.; Alanazi, M.M.; Asiri, H.H.; Iqbal, S. Identification of novel oxadiazole-based benzothiazole derivatives as potent inhibitors of α-glucosidase and urease: Synthesis, in vitro bio-evaluation and their in silico molecular docking study. J. Saudi Chem. Soc., 2023, 27(4), 101682.
[http://dx.doi.org/10.1016/j.jscs.2023.101682];
(e) Rezaei, E.B.; Abedinifar, F.; Azizian, H.; Montazer, M.N.; Asadi, M.; Hosseini, S.; Sepehri, S.; Mohammadi-Khanaposhtani, M.; Biglar, M.; Larijani, B.; Amanlou, M.; Mahdavi, M. Design, synthesis, and evaluation of metronidazole-1,2,3-triazole derivatives as potent urease inhibitors. Chem. Pap., 2021, 75(8), 4217-4226.
[http://dx.doi.org/10.1007/s11696-021-01653-4];
(f) Singh, R.; Kumar, P.; Devi, M.; Sindhu, J.; Kumar, A.; Lal, S.; Singh, D.; Kumar, H.; Kumar, S. Urease inhibition and structure‐activity relationship study of thiazolidinone‐, triazole‐, and benzothiazole‐based heterocyclic derivatives: A focus review. ChemistrySelect, 2023, 8(13), e202300244.
[http://dx.doi.org/10.1002/slct.202300244];
(g) Song, W.Q.; Liu, M.L.; Li, S.Y.; Xiao, Z.P. Recent efforts in the discovery of urease inhibitor identifications. Curr. Top. Med. Chem., 2022, 22(2), 95-107.
[http://dx.doi.org/10.2174/1568026621666211129095441] [PMID: 34844543]
[19]
(a) Menteşe, E.; Bektaş, H.; Sokmen, B.B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H -benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorg. Med. Chem. Lett., 2017, 27(13), 3014-3018.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.019] [PMID: 28526368];
(b) Ruhunage, S.; Udukala, D.N.; Gunaratna, M.J. Design, synthesis and evaluation of 3-hydroxy quinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka2020, p. 77.;
(c) Baltaş, N. Synthesis of quinazolinone derivatives containing an acyl hydrazone skeleton as potent anti-urease agents enzyme kinetic studies and anti-oxidant properties. J. Chem. Res., 2022, 46(3)
[http://dx.doi.org/10.1177/17475198221096568];
(d) Alwis, Y.V.; Gunaratna, M.J.; Udukala, D.N. Synthesis, evaluation and structure activity relationship study of 2-phenyl-3Hquinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka2020, p. 103.
[20]
(a) Rauf, A.; Shahzad, S.; Bajda, M.; Yar, M.; Ahmed, F.; Hussain, N.; Akhtar, M.N.; Khan, A.; Jończyk, J. Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(17), 6049-6058.
[http://dx.doi.org/10.1016/j.bmc.2015.05.038] [PMID: 26081763];
(b) Sedaghati, S.; Azizian, H.; Montazer, M.N.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Moradkhani, F.; Ardestani, M.S.; Asgari, M.S.; Yahya-Meymandi, A.; Biglar, M.; Larijani, B.; Sadat-Ebrahimi, S.E.; Foroumadi, A.; Amanlou, M.; Mahdavi, M. Novel (thio)barbituric-phenoxy-N-phenylacetamide derivatives as potent urease inhibitors: Synthesis, in vitro urease inhibition, and in silico evaluations. Struct. Chem., 2021, 32(1), 37-48.
[http://dx.doi.org/10.1007/s11224-020-01617-6];
(c) Hosseinzadeh, N.; Nazari, M.M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Amanlou, M.; Mahdavi, M. Rational design, synthesis, docking simulation, and admet prediction of novel barbituric‐hydrazine‐phenoxy‐1,2,3‐triazole‐acetamide derivatives as potent urease inhibitors. ChemistrySelect, 2023, 8(3), e202203297.
[http://dx.doi.org/10.1002/slct.202203297];
(d) Mollazadeh, M.; Azizian, H.; Fakhrioliaei, A.; Iraji, A.; Avizheh, L.; Valizadeh, Y.; Zomorodian, K.; Elahi, F.; Moazzam, A.; Kazemzadeh, H.; Amanlou, M.; Garmciri, F.; Hamidian, E.; Biglar, M.; Larijani, B.; Mahdavi, M. Different barbiturate derivatives linked to aryl hydrazone moieties as urease inhibitors; design, synthesis, urease inhibitory evaluations, and molecular dynamic simulations. Med. Chem. Res., 2023, 32(5), 930-943.
[http://dx.doi.org/10.1007/s00044-023-03050-w]
[21]
(a) Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Khan, K.M.; Riaz, M. Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies. Bioorg. Chem., 2016, 66, 80-87.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.010] [PMID: 27038849];
(b) Shahin, A.I.; Zaib, S.; Zaraei, S.O.; Kedia, R.A.; Anbar, H.S.; Younas, M.T.; Al-Tel, T.H.; Khoder, G.; El-Gamal, M.I. Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori. PLoS One, 2023, 18(6), e0286684.
[http://dx.doi.org/10.1371/journal.pone.0286684] [PMID: 37267378];
(c) Mermer, A. Design, synthesize and antiurease activity of novel thiazole derivatives: Machine learning, molecular docking and biological investigation. J. Mol. Struct., 2020, 1222, 128860.
[http://dx.doi.org/10.1016/j.molstruc.2020.128860];
(d) Channar, P.A.; Saeed, A.; Afzal, S.; Hussain, D.; Kalesse, M.; Shehzadi, S.A.; Iqbal, J. Hydrazine clubbed 1,3-thiazoles as potent urease inhibitors: design, synthesis and molecular docking studies. Mol. Divers., 2021, 25(2), 1-13.
[http://dx.doi.org/10.1007/s11030-020-10057-7] [PMID: 32095975]
[22]
(a) Menteşe, E.; Emirik, M.; Sökmen, B.B. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem., 2019, 86, 151-158.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.061] [PMID: 30710848];
(b) Mohammed, S.O.; El Ashry, S.H.E.; Khalid, A.; Amer, M.R.; Metwaly, A.M.; Eissa, I.H.; Elkaeed, E.B.; Elshobaky, A.; Hafez, E.E. Expression, purification, and comparative inhibition of helicobacter pylori urease by regio-selectively alkylated benzimidazole 2-thione derivatives. Molecules, 2022, 27(3), 865.
[http://dx.doi.org/10.3390/molecules27030865] [PMID: 35164122];
(c) Saeedian Moghadam, E.; Mohammed Al-Sadi, A.; Ghafarzadegan, R.; Talebi, M.; Amanlou, M.; Amini, M.; Abdel-Jalil, R. Benzimidazole derivatives act as dual urease inhibitor and anti-Helicobacter pylori agent; synthesis, bioactivity, and molecular docking study. Synth. Commun., 2022, 52(6), 936-948.
[http://dx.doi.org/10.1080/00397911.2022.2061357];
(d) Rostami, H.; Haddadi, M.H. Benzimidazole derivatives: A versatile scaffold for drug development against Helicobacter pylori ‐related diseases. Fundam. Clin. Pharmacol., 2022, 36(6), 930-943.
[http://dx.doi.org/10.1111/fcp.12810] [PMID: 35716372];
(e) Mumtaz, S.; Iqbal, S.; Shah, M.; Hussain, R.; Rahim, F.; Rehman, W.; Khan, S.; Abid, O.R.; Rasheed, L.; Dera, A.A.; Al-ghulikah, H.A.; Kehili, S.; Elkaeed, E.B.; Alrbyawi, H.; Alahmdi, M.I. New triazinoindole bearing benzimidazole/benzoxazole hybrids analogs as potent inhibitors of urease: Synthesis, in vitro analysis and molecular docking studies. Molecules, 2022, 27(19), 6580.
[http://dx.doi.org/10.3390/molecules27196580] [PMID: 36235116];
(f) Pereira, C.; de Lyra, A.; Oliveira, B.; Nascimento, I.; da Silva-Júnior, E.; de Aquino, T.; Sisto, F.; Figueiredo, I.; Martins, F.; Modolo, L.; Santos, J.; de Fátima, Â. 2-(Pyridin-4yl)benzothiazole and its benzimidazole-analogue: Biophysical and in silico studies on their interaction with urease and in vitro anti-Helicobacter pylori activities. J. Braz. Chem. Soc., 2022, 33, 1041-1057.
[http://dx.doi.org/10.21577/0103-5053.20220020]
[23]
(a) Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.047] [PMID: 23974021];
(b) Mamidala, R.; Bhimathati, S.R.S.; Vema, A. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorg. Chem., 2021, 114, 105010.
[http://dx.doi.org/10.1016/j.bioorg.2021.105010] [PMID: 34102519]
[24]
(a) Taha, M.; Ismail, N.H.; Khan, A.; Shah, S.A.A.; Anwar, A.; Halim, S.A.; Fatmi, M.Q.; Imran, S.; Rahim, F.; Khan, K.M. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg. Med. Chem. Lett., 2015, 25(16), 3285-3289.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.069] [PMID: 26077497];
(b) Kalatuwawege, I.P.; Gunaratna, M.J.; Udukala, D.N. Synthesis, in silico studies, and evaluation of syn and anti isomers of n-substituted indole-3-carbaldehyde oxime derivatives as urease inhibitors against Helicobacter pylori. Molecules, 2021, 26(21), 6658.
[http://dx.doi.org/10.3390/molecules26216658] [PMID: 34771067];
(c) Ullah, H.; Arshad, G.; Rahim, F.; Nawaz, A.; Khan, F.; Iqbal, N.; Hayat, S.; Zada, H.; Samad, A.; Wadood, A. Synthesis, in vitro urease inhibitory potential and molecular docking study of bis-indole bearing sulfonamide analogues. Chemical Data Collections, 2023, 44, 100999.
[http://dx.doi.org/10.1016/j.cdc.2023.100999]
[25]
(a) Kazmi, M.; Khan, I.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Ibrar, A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg. Med. Chem., 2019, 27(22), 115123.
[http://dx.doi.org/10.1016/j.bmc.2019.115123] [PMID: 31623971];
(b) Nusfa, M.; Gunaratna, M. Syntheses and evaluation of chalcone derivatives as urease inhibitors against Helicobacter pylori and their antioxidant behavior. International Conference on Applied and Pure Sciences, Sri Lanka2021.
[26]
(a) Asghar, H.; Asghar, H.; Asghar, T. A review on anti-urease potential of coumarins. Curr. Drug Targets, 2021, 22(17), 1926-1943.
[http://dx.doi.org/10.2174/1389450122666210222091412] [PMID: 33618646];
(b) Khan, K.M.; Iqbal, S.; Lodhi, M.A.; Maharvi, G.M.; Perveen, S.; Choudhary, M.I.; Atta-ur-Rahman, ; Chohan, Z.H.; Supuran, C.T. Synthesis and urease enzyme inhibitory effects of some dicoumarols. J. Enzyme Inhib. Med. Chem., 2004, 19(4), 367-371.
[http://dx.doi.org/10.1080/14756360409162452] [PMID: 15558955];
(c) Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142, 345-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.105] [PMID: 31593727];
(d) Naz, F.; Kanwal, ; Latif, M.; Salar, U.; Khan, K.M.; al-Rashida, M.; Ali, I.; Ali, B.; Taha, M.; Perveen, S. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorg. Chem., 2020, 105, 104365.
[http://dx.doi.org/10.1016/j.bioorg.2020.104365] [PMID: 33091669]
[27]
(a) Kataria, R.; Khatkar, A. Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem., 2019, 13(1), 45.
[http://dx.doi.org/10.1186/s13065-019-0562-2] [PMID: 31384793];
(b) Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Hussein, E.M.; Naeem, N.; Sadiq, A.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Advances, 2023, 13(5), 3210-3233.
[http://dx.doi.org/10.1039/D2RA08284E] [PMID: 36756398];
(c) Sharaf, M.; Arif, M.; Hamouda, H.I.; Khan, S.; Abdalla, M.; Shabana, S.; Rozan, H.E.; Khan, T.U.; Chi, Z.; Liu, C. Preparation, urease inhibition mechanisms, and anti-Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. Curr. Res. Microb. Sci., 2022, 3, 100103.
[28]
(a) Gholivand, K.; Pooyan, M.; Mohammadpanah, F.; Pirastefar, F.; Junk, P.C.; Wang, J.; Ebrahimi, V.A.A.; Mani-Varnosfaderani, A. Synthesis, crystal structure and biological evaluation of new phosphoramide derivatives as urease inhibitors using docking, QSAR and kinetic studies. Bioorg. Chem., 2019, 86, 482-493.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.064] [PMID: 30772649];
(b) Fiori-Duarte, A.T.; Rodrigues, R.P.; Kitagawa, R.R.; Kawano, D.F. Insights into the design of inhibitors of the urease enzyme-a major target for the treatment of Helicobacter pylori infections. Curr. Med. Chem., 2020, 27(23), 3967-3982.
[http://dx.doi.org/10.2174/0929867326666190301143549] [PMID: 30827224]
[29]
(a) Arshia.; Begum, F.; Almandil, N.B.; Lodhi, M.A.; Khan, K.M.; Hameed, A.; Perveen, S. Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorg. Med. Chem., 2019, 27(6), 1009-1022.
[http://dx.doi.org/10.1016/j.bmc.2019.01.043] [PMID: 30738655];
(b) Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg. Chem., 2020, 102, 104057.
[http://dx.doi.org/10.1016/j.bioorg.2020.104057] [PMID: 32663667];
(c) Ahmad, S.; Abdul Qadir, M.; Ahmed, M.; Imran, M.; Yousaf, N.; Wani, T.A.; Zargar, S.; Ali, I.; Muddassar, M. Exploring the potential of propanamide-sulfonamide based drug conjugates as dual inhibitors of urease and cyclooxygenase-2: biological and their in silico studies. Front Chem., 2023, 11, 1206380.
[http://dx.doi.org/10.3389/fchem.2023.1206380] [PMID: 37601915]
[30]
(a) Wahid, S.; Jahangir, S.; Versiani, M.A.; Khan, K.M.; Salar, U.; Ashraf, M.; Farzand, U.; Wadood, A. Kanwal; Ashfaq-ur-Rehaman; Arshia; Taha, M.; Perveen, S. Atenolol thiourea hybrid as potent urease inhibitors: Design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies. Bioorg. Chem., 2020, 94, 103359.
[http://dx.doi.org/10.1016/j.bioorg.2019.103359] [PMID: 31640931];
(b) Zahra, U.; Zaib, S.; Saeed, A.; Rehman, M.; Shabir, G.; Alsaab, H.O.; Khan, I. New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis. Int. J. Biol. Macromol., 2022, 198, 157-167.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.064] [PMID: 34953808];
(c) Li, W.Y.; Ni, W.W.; Ye, Y.X.; Fang, H.L.; Pan, X.M.; He, J.L.; Zhou, T.L.; Yi, J.; Liu, S.S.; Zhou, M.; Xiao, Z.P.; Zhu, H.L. N -monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 404-413.
[http://dx.doi.org/10.1080/14756366.2019.1706503] [PMID: 31880473]
[31]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[32]
(a) Khalili, S.; Rasaee, M.J.; Mousavi, S.L.; Amani, J.; Jahangiri, A.; Borna, H. In silico prediction and in vitro verification of a novel multi-epitope antigen for HBV detection. Mol. Gen. Microbiol. Virol., 2017, 32(4), 230-240.
[http://dx.doi.org/10.3103/S0891416817040097];
(b) Rahbar, M.R.; Zarei, M.; Jahangiri, A.; Khalili, S.; Nezafat, N.; Negahdaripour, M.; Fattahian, Y.; Ghasemi, Y. Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. Infect. Genet. Evol., 2019, 71, 116-127.
[http://dx.doi.org/10.1016/j.meegid.2019.03.023] [PMID: 30922803]
[33]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[34]
(a) Arora, R.; Issar, U.; Kakkar, R. In silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids. J. Mol. Graph. Model., 2018, 83, 64-73.
[http://dx.doi.org/10.1016/j.jmgm.2018.04.018] [PMID: 29775804];
(b) Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830];
(c) Channar, P.; Saeed, A.; Albericio, F.; Larik, F.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules, 2017, 22(8), 1352.
[http://dx.doi.org/10.3390/molecules22081352] [PMID: 28813027]
[35]
Abdul Fattah, T.; Saeed, A.; Channar, P.A.; Ashraf, Z.; Abbas, Q.; Hassan, M.; Larik, F.A. Synthesis, enzyme inhibitory kinetics, and computational studies of novel 1‐(2‐(4‐isobutylphenyl) propanoyl)‐3‐arylthioureas as Jack bean urease inhibitors. Chem. Biol. Drug Des., 2018, 91(2), 434-447.
[http://dx.doi.org/10.1111/cbdd.13090] [PMID: 28834266]
[36]
(a) Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39(8), 971-974.
[http://dx.doi.org/10.1021/ac60252a045];
(b) Vosooghi, M.; Farzipour, S.; Saeedi, M.; Shareh, N.B.; Mahdavi, M.; Mahernia, S.; Foroumadi, A.; Amanlou, M.; Shafiee, A. Synthesis of novel 5-arylidene (thio) barbituric acid and evaluation of their urease inhibitory activity. J. Indian Chem. Soc., 2015, 12(8), 1487-1491.
[37]
Liu, Q.; Shi, W.K.; Ren, S.Z.; Ni, W.W.; Li, W.Y.; Chen, H.M.; Liu, P.; Yuan, J.; He, X.S.; Liu, J.J.; Cao, P.; Yang, P.Z.; Xiao, Z.P.; Zhu, H.L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur. J. Med. Chem., 2018, 156, 126-136.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.065] [PMID: 30006158]
[38]
Tan, L.; Li, C.; Chen, H.; Mo, Z.; Zhou, J.; Liu, Y.; Ma, Z.; Xu, Y.; Yang, X.; Xie, J.; Su, Z. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism. Eur. J. Pharm. Sci., 2017, 110, 77-86.
[http://dx.doi.org/10.1016/j.ejps.2017.02.004] [PMID: 28167234]
[39]
(a) Zhou, J.T.; Li, C.L.; Tan, L.H.; Xu, Y.F.; Liu, Y.H.; Mo, Z.Z.; Dou, Y.X.; Su, R.; Su, Z.R.; Huang, P.; Xie, J.H. Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS One, 2017, 12(1), e0168944.
[http://dx.doi.org/10.1371/journal.pone.0168944] [PMID: 28045966];
(b) Pan, L.; Wang, C.; Yan, K.; Zhao, K.; Sheng, G.; Zhu, H.; Zhao, X.; Qu, D.; Niu, F.; You, Z. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands. J. Inorg. Biochem., 2016, 159, 22-28.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.017] [PMID: 26908284]
[40]
(a) Kuipers, E.J.; Uyterlinde, A.M.; Peña, A.S.; Hazenberg, H.J.; Bloemena, E.; Lindeman, J.; Klinkenberg-Knol, E.C.; Meuwissen, S.G. Increase of Helicobacter pylori-associated corpus gastritis during acid suppressive therapy: implications for long-term safety. Am. J. Gastroenterol., 1995, 90(9), 1401-1406.
[PMID: 7661157];
(b) Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev., 1989, 53(1), 85-108.
[http://dx.doi.org/10.1128/mr.53.1.85-108.1989] [PMID: 2651866]
[41]
Hassan, S.; Švajdlenka, E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules, 2017, 22(10), 1696.
[http://dx.doi.org/10.3390/molecules22101696] [PMID: 29019930]
[42]
Wang, S.; Haapalainen, A.M.; Yan, F.; Du, Q.; Tyler, P.C.; Evans, G.B.; Rinaldo-Matthis, A.; Brown, R.L.; Norris, G.E.; Almo, S.C.; Schramm, V.L. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori. Biochemistry, 2012, 51(35), 6892-6894.
[http://dx.doi.org/10.1021/bi3009664] [PMID: 22891633]
[43]
(a) Mugengana, A.K.; Vita, N.A.; Brown Gandt, A.; Moran, K.; Agyapong, G.; Sharma, L.K.; Griffith, E.C.; Liu, J.; Yang, L.; Gavrish, E.; Hevener, K.E.; LaFleur, M.D.; Lee, R.E. The discovery and development of thienopyrimidines as inhibitors of Helicobacter pylori that act through inhibition of the respiratory complex I. ACS Infect. Dis., 2021, 7(5), 1044-1058.
[http://dx.doi.org/10.1021/acsinfecdis.0c00300] [PMID: 33471519];
(b) Carcanague, D.; Shue, Y.K.; Wuonola, M.A.; Uria-Nickelsen, M.; Joubran, C.; Abedi, J.K.; Jones, J.; Kühler, T.C. Novel structures derived from 2-[[(2-pyridyl)methyl]thio]-1H-benzimidazole as anti-Helicobacter pylori agents, Part 2. J. Med. Chem., 2002, 45(19), 4300-4309.
[http://dx.doi.org/10.1021/jm020868v] [PMID: 12213071]
[44]
Freigang, J.; Diederichs, K.; Schäfer, K.P.; Welte, W.; Paul, R. Crystal structure of oxidized flavodoxin, an essential protein in Helicobacter pylori. Protein Sci., 2002, 11(2), 253-261.
[http://dx.doi.org/10.1110/ps.28602] [PMID: 11790835]
[45]
(a) Griffith, D.P.; Gleeson, M.J.; Lee, H.; Longuet, R.; Deman, E.; Earle, N. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur. Urol., 1991, 20(3), 243-247.
[http://dx.doi.org/10.1159/000471707] [PMID: 1726639];
(b) Kosikowska, P.; Berlicki, Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review. Expert Opin. Ther. Pat., 2011, 21(6), 945-957.
[http://dx.doi.org/10.1517/13543776.2011.574615] [PMID: 21457123]
[46]
(a) Modak, J.K.; Tikhomirova, A.; Gorrell, R.J.; Rahman, M.M.; Kotsanas, D.; Korman, T.M.; Garcia-Bustos, J.; Kwok, T.; Ferrero, R.L.; Supuran, C.T.; Roujeinikova, A. Anti-Helicobacter pylori activity of ethoxzolamide. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1660-1667.
[http://dx.doi.org/10.1080/14756366.2019.1663416] [PMID: 31530039];
(b) Rahman, M.M.; Tikhomirova, A.; Modak, J.K.; Hutton, M.L.; Supuran, C.T.; Roujeinikova, A. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathog., 2020, 12(1), 20.
[http://dx.doi.org/10.1186/s13099-020-00358-5] [PMID: 32318117]
[47]
Frediani, B.; Cavalieri, L.; Cremonesi, G. Clodronic acid formulations available in Europe and their use in osteoporosis: A review. Clin. Drug Investig., 2009, 29(6), 359-379.
[http://dx.doi.org/10.2165/00044011-200929060-00001] [PMID: 19432497]
[48]
Amtul, Z.; Atta-ur-Rahman, B.S.P.; Siddiqui, R.; Choudhary, M. Chemistry and mechanism of urease inhibition. Curr. Med. Chem., 2002, 9(14), 1323-1348.
[http://dx.doi.org/10.2174/0929867023369853] [PMID: 12132990]
[49]
(a) Abid, O.R.; Babar, T.M.; Ali, F.I.; Ahmed, S.; Wadood, A.; Rama, N.H.; Uddin, R. Zaheer-ul-Haq; Khan, A.; Choudhary, M.I. Identification of novel urease inhibitors by high-throughput virtual and in vitro screening. ACS Med. Chem. Lett., 2010, 1(4), 145-149.
[http://dx.doi.org/10.1021/ml100068u] [PMID: 24900188];
(b) Akhtar, T.; Hameed, S.; Khan, K.; Choudhary, M. Syntheses, urease inhibition, and antimicrobial studies of some chiral 3-substituted-4-amino-5-thioxo-1H,4H-1,2,4-triazoles. Med. Chem., 2008, 4(6), 539-543.
[http://dx.doi.org/10.2174/157340608786242025] [PMID: 18991737]
[50]
Pervez, H.; Chohan, Z.H.; Ramzan, M.; Nasim, F.U.H.; Khan, K.M. Synthesis and biological evaluation of some new N 4 -substituted isatin-3-thiosemicarbazones. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 437-446.
[http://dx.doi.org/10.1080/14756360802188420] [PMID: 18629680]
[51]
Cui, Y.; Dong, X.; Li, Y.; Li, Z.; Chen, W. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde. Eur. J. Med. Chem., 2012, 58, 323-331.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.037] [PMID: 23142672]
[52]
Perveen, S.; Khan, K.M.; Lodhi, M.A.; Choudhary, M.I. Atta-ur-Rahman; Voelter, W. Urease and α-chymotrypsin inhibitory effects of selected urea derivatives. Lett. Drug Des. Discov., 2008, 5(6), 401-405.
[http://dx.doi.org/10.2174/157018008785777315]
[53]
Hanif, M.; Shoaib, K.; Saleem, M.; Hasan Rama, N.; Zaib, S.; Iqbal, J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN Pharmacol., 2012, 2012, 928901.
[54]
Mohammed Khan, K.; Saify, Z.S.; Arif Lodhi, M.; Butt, N.; Perveen, S.; Murtaza Maharvi, G.; Iqbal Choudhary, M. Atta-ur-rahman, Piperidines: A new class of Urease inhibitors. Nat. Prod. Res., 2006, 20(6), 523-530.
[http://dx.doi.org/10.1080/1478641500059383] [PMID: 16835082]
[55]
Vassiliou, S.; Kosikowska, P.; Grabowiecka, A.; Yiotakis, A.; Kafarski, P.; Berlicki, Ł. Computer-aided optimization of phosphinic inhibitors of bacterial ureases. J. Med. Chem., 2010, 53(15), 5597-5606.
[http://dx.doi.org/10.1021/jm100340m] [PMID: 20684601]
[56]
Habala, L.; Devínsky, F.; Egger, A.E. REVIEW: Metal complexes as urease inhibitors. J. Coord. Chem., 2018, 71(7), 907-940.
[http://dx.doi.org/10.1080/00958972.2018.1458228]
[57]
Pedrood, K.; Azizian, H.; Montazer, M.N.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Asadi, M.; Bahadorikhalili, S.; Rastegar, H.; Larijani, B.; Amanlou, M.; Mahdavi, M. Arylmethylene hydrazine derivatives containing 1,3-dimethylbarbituric moiety as novel urease inhibitors. Sci. Rep., 2021, 11(1), 10607.
[http://dx.doi.org/10.1038/s41598-021-90104-x] [PMID: 34012008]
[58]
(a) Jones, B.D.; Mobley, H.L. Proteus mirabilis urease: Nucleotide sequence determination and comparison with jack bean urease. J. Bacteriol., 1989, 171(12), 6414-6422.
[http://dx.doi.org/10.1128/jb.171.12.6414-6422.1989] [PMID: 2687233];
(b) Sirko, A.; Brodzik, R. Plant ureases: Roles and regulation. Acta Biochim. Pol., 2000, 47(4), 1189-1195.
[http://dx.doi.org/10.18388/abp.2000_3972] [PMID: 11996109]
[59]
Kataria, R.; Khatkar, A. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. pylori bacterium. BMC Chem., 2019, 13(1), 41.
[http://dx.doi.org/10.1186/s13065-019-0556-0] [PMID: 31384789]
[60]
Nabati, F.; Mojab, F.; Habibi-Rezaei, M.; Bagherzadeh, K.; Amanlou, M.; Yousefi, B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. Daru, 2012, 20(1), 72.
[http://dx.doi.org/10.1186/2008-2231-20-72] [PMID: 23351780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy