Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring the Molecular Mechanism of Niuxi-Mugua Formula in Treating Coronavirus Disease 2019 via Network Pharmacology, Computational Biology, and Surface Plasmon Resonance Verification

Author(s): Wei Wang, Xu Cao, Yi-nan Cao, Lian-lian Liu, Shu-ling Zhang, Wen-ying Qi, Jia-xin Zhang, Xian-zhao Yang, Xiao-ke Li*, Xiao-bin Zao* and Yong-an Ye*

Volume 20, Issue 7, 2024

Published on: 18 October, 2023

Page: [1113 - 1129] Pages: 17

DOI: 10.2174/0115734099272592231004170422

Price: $65

Abstract

Background: In China, Niuxi-Mugua formula (NMF) has been widely used to prevent and treat coronavirus disease 2019 (COVID-19). However, the mechanism of NMF for treating COVID-19 is not yet fully understood.

Objective: This study aimed to explore the potential mechanism of NMF for treating COVID- 19 by network pharmacology, computational biology, and surface plasmon resonance (SPR) verification.

Materials and Methods: The NMF-compound-target network was constructed to screen the key compounds, and the Molecular Complex Detection (MCODE) tool was used to screen the preliminary key genes. The overlapped genes (OGEs) and the preliminary key genes were further analyzed by enrichment analysis. Then, the correlation analysis of immune signatures and the preliminary key genes was performed. Molecular docking and molecular dynamic (MD) simulation assays were applied to clarify the interactions between key compounds and key genes. Moreover, the SPR interaction experiment was used for further affinity kinetic verification.

Results: Lipid and atherosclerosis, TNF, IL-17, and NF-kappa B signaling pathways were the main pathways of NMF in the treatment of COVID-19. There was a positive correlation between almost the majority of immune signatures and all preliminary key genes. The key compounds and the key genes were screened out, and they were involved in the main pathways of NMF for treating COVID-19. Moreover, the binding affinities of most key compounds binding to key genes were good, and IL1B-Quercetin had the best binding stability. SPR analysis further demonstrated that IL1B-Quercetin showed good binding affinity.

Conclusion: Our findings provided theoretical grounds for NMF in the treatment of COVID-19.

[1]
Tsai, T.I.; Khalili, J.S.; Gilchrist, M.; Waight, A.B.; Cohen, D.; Zhuo, S.; Zhang, Y.; Ding, M.; Zhu, H.; Mak, A.N.S.; Zhu, Y.; Goulet, D.R. ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern. Antiviral Res., 2022, 199, 105271.
[http://dx.doi.org/10.1016/j.antiviral.2022.105271] [PMID: 35240221]
[2]
Abdullah, U.; Saleh, N.; Shaw, P.; Jalal, N. COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines (Basel), 2023, 11(2), 319.
[http://dx.doi.org/10.3390/vaccines11020319] [PMID: 36851197]
[3]
Ma, S.; Yang, L.; Li, H.; Chen, X.; Lin, X.; Ge, W.; Wang, Y.; Sun, L.; Zhao, G.; Wang, B.; Wang, Z.; Wu, M.; Lu, X.; Akhtar, M.L.; Yang, D.; Bai, Y.; Li, Y.; Nie, H. Understanding metabolic alterations after SARS-CoV-2 infection: insights from the patients’ oral microenvironmental metabolites. BMC Infect. Dis., 2023, 23(1), 42.
[http://dx.doi.org/10.1186/s12879-022-07979-y] [PMID: 36690957]
[4]
Pluta, M.P.; Zachura, M.N.; Winiarska, K.; Kalemba, A.; Kapłan, C.; Szczepańska, A.J.; Krzych, Ł.J. Usefulness of Selected Peripheral Blood Counts in Predicting Death in Patients with Severe and Critical COVID-19. J. Clin. Med., 2022, 11(4), 1011.
[http://dx.doi.org/10.3390/jcm11041011] [PMID: 35207281]
[5]
Mukai, K.; Tsunoda, H.; Imai, R.; Numata, A.; Kida, K.; Oba, K.; Yagishita, K.; Yamauchi, H.; Kanomata, N.; Kurihara, Y. The location of unilateral axillary lymphadenopathy after COVID-19 vaccination compared with that of metastasis from breast cancer without vaccination. Jpn. J. Radiol., 2023, 41(6), 617-624.
[http://dx.doi.org/10.1007/s11604-023-01387-1] [PMID: 36626076]
[6]
Sun, F.; Liu, J.; Tariq, A.; Wang, Z.; Wu, Y.; Li, L. Unraveling the mechanism of action of cepharanthine for the treatment of novel coronavirus pneumonia (COVID-19) from the perspectives of systematic pharmacology. Arab. J. Chem., 2023, 16(6), 104722.
[http://dx.doi.org/10.1016/j.arabjc.2023.104722] [PMID: 36910427]
[7]
Prabhakar, P.K.; Khurana, N.; Vyas, M.; Sharma, V.; Batiha, G.E.S.; Kaur, H.; Singh, J.; Kumar, D.; Sharma, N.; Kaushik, A.; Kumar, R. Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics, 2023, 15(2), 451.
[http://dx.doi.org/10.3390/pharmaceutics15020451] [PMID: 36839773]
[8]
Wei, J.; Yu, Y.; Li, Y.; Shao, J.; Li, J.; Li, L.; Li, Y. Pharmacokinetics, tissue distribution and excretion of 6-O-demethylmenisporphine, a bioactive oxoisoaporphine alkaloid from Menispermi Rhizoma, as determined by a HPLC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1156, 122297.
[http://dx.doi.org/10.1016/j.jchromb.2020.122297] [PMID: 32829132]
[9]
Lan, X.; Olaleye, O.E.; Lu, J.; Yang, W.; Du, F.; Yang, J.; Cheng, C.; Shi, Y.; Wang, F.; Zeng, X.; Tian, N.; Liao, P.; Yu, X.; Xu, F.; Li, Y.; Wang, H.; Zhang, N.; Jia, W.; Li, C. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule. Acta Pharmacol. Sin., 2021, 42(12), 2155-2172.
[http://dx.doi.org/10.1038/s41401-021-00651-2] [PMID: 33931765]
[10]
Wu, H.; Ji, C.; Dai, R.; Hei, P.; Liang, J.; Wu, X.; Li, Q.; Yang, J.; Mao, W.; Guo, Q. Traditional Chinese medicine treatment for COVID-19: An overview of systematic reviews and meta-analyses. J. Integr. Med., 2022, 20(5), 416-426.
[http://dx.doi.org/10.1016/j.joim.2022.06.006] [PMID: 35811240]
[11]
Zao, X.; Zhou, Y.; Liang, Y.; Cao, X.; Chen, H.; Li, X.; Ye, Y. The host immune response of a discharged COVID-19 patient with twice reemergence of SARS-CoV-2: a case report. BMC Infect. Dis., 2021, 21(1), 991.
[http://dx.doi.org/10.1186/s12879-021-06679-3] [PMID: 34556058]
[12]
Chen, L.; Yu, M.; Liu, Y.; Zeng, M.; Zhang, C.; Huang, S. Analysis of the characteristics and curative effect of 85 cases of novel coronavirus pneumonia from the perspective of Five-Yun. Chiang-Hsi Chung I Yao, 2021, 52(10), 17-21.https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHQs2MdQ22WGM3m8IlhwcM2ycj8mXzT8qomwgBBs9P3Ey&uniplatform=NZKPT
[13]
Wang, L.; Wang, M.; Mou, S. The application of the Niuxi Mugua decoction in Gengzi year. Clinical Journal of Chinese Medicine, 2023, 15(01), 101-103.https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ioT0BO4yQ4m_mOgeS2ml3UDQl-ZL75zdCaLrbZfFVihd43VszdcKtY1ASzCcqdQ2r&uniplatform=NZKPT
[14]
Xu, L.; Li, Y.; Zheng, D.; Shao, Z.; Wen, S.; Lin, F.; Zeng, Z.; Song, Y. Prescription Law of New Coronavirus Pneumonia in Different Stages. Zhongguo Shiyan Fangjixue Zazhi, 2020, 26, 8-16.
[http://dx.doi.org/10.13422/j.cnki.syfjx.20201211]
[15]
Shi, S.; Liu, Q. On TCM Value in Treatment to COVID-19 Based on TCM Model of Jiangxia Cabin Hospital. Jiangsu Journal of Traditional Chinese Medicine, 2020, 52(04), 11-14.https://kns.cnki.net/kcms2/article/abstract?v=dlzqEeXOOWvZtVTxVn0a3GaYDE9mob0Bus_v9VQd67YdqqPI66zk-riLWx4ESpH 48k9K6rePMgLCsdWnoggEqlWJ_AHdj9mpVbpdQxfVuWtA4bwQ5A3x23CzYHY3dJuF&uniplatform=NZKPT&language=gb
[http://dx.doi.org/10.19844/j.cnki.1672-397x.2020.00.008]
[16]
Ming, Y.; Jiachen, L.; Tao, G.; Zhihui, W. Exploration of the Mechanism of Tripterygium Wilfordii in the Treatment of Myocardial Fibrosis Based on Network Pharmacology and Molecular Docking. Curr. Computeraided Drug Des., 2023, 19(1), 68-79.
[http://dx.doi.org/10.2174/1573409919666221028120329] [PMID: 36306461]
[17]
Liu, S.; Wang, Z.; Zhu, R.; Wang, F.; Cheng, Y.; Liu, Y. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2. J. Vis. Exp., 2021, 175.
[http://dx.doi.org/10.3791/62528]
[18]
Charwudzi, A.; Meng, Y.; Hu, L.; Ding, C.; Pu, L.; Li, Q.; Xu, M.; Zhai, Z.; Xiong, S. Integrated bioinformatics analysis reveals dynamic candidate genes and signaling pathways involved in the progression and prognosis of diffuse large B-cell lymphoma. PeerJ, 2021, 9, e12394.
[http://dx.doi.org/10.7717/peerj.12394] [PMID: 34760386]
[19]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[20]
Rakhshani, H.; Dehghanian, E.; Rahati, A. Enhanced GROMACS: toward a better numerical simulation framework. J. Mol. Model., 2019, 25(12), 355.
[http://dx.doi.org/10.1007/s00894-019-4232-z] [PMID: 31768713]
[21]
Gul, S.; Ahmad, S.; Ullah, A.; Ismail, S.; Khurram, M. Tahir ul Qamar, M.; Hakami, A.R.; Alkhathami, A.G.; Alrumaihi, F.; Allemailem, K.S. Designing a Recombinant Vaccine against Providencia rettgeri Using Immunoinformatics Approach. Vaccines (Basel), 2022, 10(2), 189.
[http://dx.doi.org/10.3390/vaccines10020189] [PMID: 35214648]
[22]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[23]
Xu, H.; Zhang, Y.; Wang, P.; Zhang, J.; Chen, H.; Zhang, L.; Du, X.; Zhao, C.; Wu, D.; Liu, F.; Yang, H.; Liu, C. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm. Sin. B, 2021, 11(6), 1379-1399.
[http://dx.doi.org/10.1016/j.apsb.2021.03.024] [PMID: 34221858]
[24]
Liu, C.; Yu, L.; Jiang, Y.; Gu, S.; Li, C.; Yin, W.; Zhou, Z. The possibility of polygonum cuspidatum against osteoarthritis based on network pharmacology and molecular docking. Curr Comput Aided Drug Des., 2023, 20, (2).
[http://dx.doi.org/10.2174/1573409919666230403114131]
[25]
Mao, X.; Xu, H.; Li, S.; Su, J.; Li, W.; Guo, Q.; Wang, P.; Guo, R.; Xiao, X.; Zhang, Y.; Yang, H. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network. Phytomedicine, 2019, 54, 159-168.
[http://dx.doi.org/10.1016/j.phymed.2018.09.018] [PMID: 30668365]
[26]
Yang, J.; Wang, C.; Cheng, S.; Zhang, Y.; Jin, Y.; Zhang, N.; Wang, Y. Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer. Front. Genet., 2023, 13, 1094474.
[http://dx.doi.org/10.3389/fgene.2022.1094474] [PMID: 36685851]
[27]
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[28]
Cuesta, S.A.; Mora, J.R.; Márquez, E.A. In silicoscreening of the drugbank database to search for possible drugs against SARS-CoV-2. Molecules, 2021, 26(4), 1100.
[http://dx.doi.org/10.3390/molecules26041100] [PMID: 33669720]
[29]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Zhou, Z.; Han, L.; Karapetyan, K.; Dracheva, S.; Shoemaker, B.A.; Bolton, E.; Gindulyte, A.; Bryant, S.H. PubChem’s bioassay database. Nucleic Acids Res., 2012, 40(D1), D400-D412.
[http://dx.doi.org/10.1093/nar/gkr1132] [PMID: 22140110]
[30]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[31]
Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med., 2018, 10(4), e1417.
[http://dx.doi.org/10.1002/wsbm.1417] [PMID: 29474005]
[32]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[33]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[34]
Zhao, X.; Wang, L.; Chen, G. Joint covariate detection on expression profiles for identifying micrornas related to venous metastasis in hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 5349.
[http://dx.doi.org/10.1038/s41598-017-05776-1] [PMID: 28706271]
[35]
Lowery, S.A.; Sariol, A.; Perlman, S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe, 2021, 29(7), 1052-1062.
[http://dx.doi.org/10.1016/j.chom.2021.05.004] [PMID: 34022154]
[36]
Park, S.H. An impaired inflammatory and innate immune response in COVID-19. Mol. Cells, 2021, 44(6), 384-391.
[http://dx.doi.org/10.14348/molcells.2021.0068] [PMID: 34098591]
[37]
Wang, T.; Tian, J.; Jin, Y. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci. Rep., 2021, 11(1), 19488.
[http://dx.doi.org/10.1038/s41598-021-98998-3] [PMID: 34593936]
[38]
Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; André, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res., 2022, 198, 105252.
[http://dx.doi.org/10.1016/j.antiviral.2022.105252] [PMID: 35085683]
[39]
Niraj, N.; Mahajan, S.S.; Prakash, A.; Sarma, P.; Medhi, B. Paxlovid: A promising drug for the challenging treatment of SARS-COV-2 in the pandemic era. Indian J. Pharmacol., 2022, 54(6), 452-458.
[http://dx.doi.org/10.4103/ijp.ijp_291_22] [PMID: 36722557]
[40]
Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Burley, S.K. RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci., 2020, 29(1), 52-65.
[http://dx.doi.org/10.1002/pro.3730] [PMID: 31531901]
[41]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[42]
Xu, L.; Zhang, J.; Wang, Y.; Zhang, Z.; Wang, F.; Tang, X. Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Biosci. Rep., 2021, 41(2), BSR20203565.
[http://dx.doi.org/10.1042/BSR20203565] [PMID: 33409535]
[43]
Wang, T.; Fan, L.; Feng, S.; Ding, X.; An, X.; Chen, J.; Wang, M.; Zhai, X.; Li, Y. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Sci. Rep., 2022, 12(1), 7430.
[http://dx.doi.org/10.1038/s41598-022-10769-w] [PMID: 35523810]
[44]
Mao, J.; Wang, G.; Yang, L.; Tan, L.; Tian, C.; Tang, L.; Fang, L.; Mu, Z.; Zhu, Z.; Li, Y. Combined network pharmacology and molecular docking to verify the treatment of type 2 diabetes with pueraria lobata radix and salviae miltiorrhizae radix. Comput. Math. Methods Med., 2023, 2023, 1-15.
[http://dx.doi.org/10.1155/2023/9150324] [PMID: 36820318]
[45]
Ngo, S.T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D.H.; Vu, V.V. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5771-5780.
[http://dx.doi.org/10.1021/acs.jcim.0c00491] [PMID: 32530282]
[46]
Beyeh, N.K. Nonappa; Liljeström, V.; Mikkilä, J.; Korpi, A.; Bochicchio, D.; Pavan, G.M.; Ikkala, O.; Ras, R.H.A.; Kostiainen, M.A. Crystalline cyclophane–protein cage frameworks. ACS Nano, 2018, 12(8), 8029-8036.
[http://dx.doi.org/10.1021/acsnano.8b02856] [PMID: 30028590]
[47]
Hrdinova, J.; Fernández, D.I.; Ercig, B.; Tullemans, B.M.E.; Suylen, D.P.L.; Agten, S.M.; Jurk, K.; Hackeng, T.M.; Vanhoorelbeke, K.; Voorberg, J.; Reutelingsperger, C.P.M.; Wichapong, K.; Heemskerk, J.W.M.; Nicolaes, G.A.F. Structure-based cyclic glycoprotein ibα-derived peptides interfering with von willebrand factor-binding, affecting platelet aggregation under shear. Int. J. Mol. Sci., 2022, 23(4), 2046.
[http://dx.doi.org/10.3390/ijms23042046] [PMID: 35216161]
[48]
Ghufran, M.; Ullah, M.; Khan, H.A.; Ghufran, S.; Ayaz, M.; Siddiq, M.; Abbas, S.Q.; Hassan, S.S.; Bungau, S. In-Silico lead druggable compounds identification against SARS COVID-19 main protease target from in-house, chembridge and zinc databases by structure-based virtual screening, molecular docking and molecular dynamics simulations. Bioengineering, 2023, 10(1), 100.
[http://dx.doi.org/10.3390/bioengineering10010100] [PMID: 36671672]
[49]
Fattahi, A.; Koohsari, P.; Shadman, L.M.; Ghandi, K. The impact of the surface modification on tin-doped indium oxide nanocomposite properties. Nanomaterials (Basel), 2022, 12(1), 155.
[http://dx.doi.org/10.3390/nano12010155] [PMID: 35010105]
[50]
Niu, X.; Liu, Q.; Xu, Z.; Chen, Z.; Xu, L.; Xu, L.; Li, J.; Fang, X. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nat. Commun., 2020, 11(1), 5496.
[http://dx.doi.org/10.1038/s41467-020-19260-4] [PMID: 33127896]
[51]
Sinha, S.; Wang, S.M. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput. Struct. Biotechnol. J., 2020, 18, 723-736.
[http://dx.doi.org/10.1016/j.csbj.2020.03.013] [PMID: 32257056]
[52]
Das, K.C.; Konhar, R.; Biswal, D.K. Fasciola gigantica vaccine construct: An In silico approach towards identification and design of a multi-epitope subunit vaccine using calcium binding EF-hand proteins. BMC Immunol., 2023, 24(1), 1.
[http://dx.doi.org/10.1186/s12865-022-00535-y] [PMID: 36604615]
[53]
Yang, K.; Jin, H.; Gao, X.; Wang, G.C.; Zhang, G.Q. Elucidating the molecular determinants in the process of gastrin C-terminal pentapeptide amide end activating cholecystokinin 2 receptor by Gaussian accelerated molecular dynamics simulations. Front. Pharmacol., 2023, 13, 1054575.
[http://dx.doi.org/10.3389/fphar.2022.1054575] [PMID: 36756145]
[54]
He, H.P.; Luo, M.; Cao, Y.L.; Lin, Y.X.; Zhang, H.; Zhang, X.; Ou, J.Y.; Yu, B.; Chen, X.; Xu, M.; Feng, L.; Zeng, M.S.; Zeng, Y.X.; Gao, S. Structure of Epstein-Barr virus tegument protein complex BBRF2-BSRF1 reveals its potential role in viral envelopment. Nat. Commun., 2020, 11(1), 5405.
[http://dx.doi.org/10.1038/s41467-020-19259-x] [PMID: 33106493]
[55]
Abel, Y.; Paiva, A.C.F.; Bizarro, J.; Chagot, M.E.; Santo, P.E.; Robert, M.C.; Quinternet, M.; Vandermoere, F.; Sousa, P.M.F.; Fort, P.; Charpentier, B.; Manival, X.; Bandeiras, T.M.; Bertrand, E.; Verheggen, C. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Nucleic Acids Res., 2021, 49(2), 1094-1113.
[http://dx.doi.org/10.1093/nar/gkaa1226] [PMID: 33367824]
[56]
Rohner, N.A.; Nguyen, D.; von Recum, H.A. Affinity effects on the release of non-conventional antifibrotics from polymer depots. Pharmaceutics, 2020, 12(3), 275.
[http://dx.doi.org/10.3390/pharmaceutics12030275] [PMID: 32192207]
[57]
Kwofie, S.K.; Broni, E.; Teye, J.; Quansah, E.; Issah, I.; Wilson, M.D.; Miller, W.A., III; Tiburu, E.K.; Bonney, J.H.K. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput. Biol. Med., 2019, 113, 103414.
[http://dx.doi.org/10.1016/j.compbiomed.2019.103414] [PMID: 31536833]
[58]
Zheng, S.; Zhou, B.; Yang, L.; Hou, A.; Zhang, J.; Yu, H.; Kuang, H.; Jiang, H.; Yang, L. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from Duhuo Jisheng decoction on osteoarthritis in rats. J. Ethnopharmacol., 2023, 315, 116679.
[http://dx.doi.org/10.1016/j.jep.2023.116679] [PMID: 37257711]
[59]
Kang, X.; Jin, D.; Jiang, L.; Zhang, Y.; Zhang, Y.; An, X.; Duan, L.; Yang, C.; Zhou, R.; Duan, Y.; Sun, Y.; Lian, F. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: A systematic review. Chin. Med., 2022, 17(1), 30.
[http://dx.doi.org/10.1186/s13020-022-00587-7] [PMID: 35227280]
[60]
Cava, C.; Bertoli, G.; Castiglioni, I. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation. Future Virol., 2021, 16(8), 527-542.
[http://dx.doi.org/10.2217/fvl-2020-0392] [PMID: 34306168]
[61]
Ye, M.; Luo, G.; Ye, D.; She, M.; Sun, N.; Lu, Y.J.; Zheng, J. Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia. Phytomedicine, 2021, 85, 153401.
[http://dx.doi.org/10.1016/j.phymed.2020.153401] [PMID: 33191068]
[62]
Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother. Res., 2021, 35(3), 1230-1236.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[63]
Tronina, T.; Mrozowska, M.; Bartmańska, A.; Popłoński, J.; Sordon, S.; Huszcza, E. Simple and rapid method for wogonin preparation and its biotransformation. Int. J. Mol. Sci., 2021, 22(16), 8973.
[http://dx.doi.org/10.3390/ijms22168973] [PMID: 34445678]
[64]
Liu, Y.; Zhang, H.G. Vigilance on new-onset atherosclerosis following SARS-CoV-2 infection. Front. Med., 2021, 7, 629413.
[http://dx.doi.org/10.3389/fmed.2020.629413] [PMID: 33553222]
[65]
Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine storm in COVID-19: Immunopathogenesis and therapy. Medicina, 2022, 58(2), 144.
[http://dx.doi.org/10.3390/medicina58020144] [PMID: 35208467]
[66]
Generali, D.; Bosio, G.; Malberti, F.; Cuzzoli, A.; Testa, S.; Romanini, L.; Fioravanti, A.; Morandini, A.; Pianta, L.; Giannotti, G.; Viola, E.M.; Giorgi-Pierfranceschi, M.; Foramitti, M.; Tira, R.A.; Zangrandi, I.; Chiodelli, G.; Machiavelli, A.; Cappelletti, M.R.; Giossi, A.; De Giuli, V.; Costanzi, C.; Campana, C.; Bernocchi, O.; Sirico, M.; Zoncada, A.; Molteni, A.; Venturini, S.; Giudici, F.; Scaltriti, M.; Pan, A. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int. J. Infect. Dis., 2021, 104(104), 433-440.
[http://dx.doi.org/10.1016/j.ijid.2020.12.073] [PMID: 33385581]
[67]
Lin, H.; Wang, X.; Liu, M.; Huang, M.; Shen, Z.; Feng, J.; Yang, H.; Li, Z.; Gao, J.; Ye, X. Exploring the treatment of COVID ‐19 with Yinqiao powder based on network pharmacology. Phytother. Res., 2021, 35(5), 2651-2664.
[http://dx.doi.org/10.1002/ptr.7012] [PMID: 33452734]
[68]
Zhang, R.; Chen, X.; Zuo, W.; Ji, Z.; Qu, Y.; Su, Y.; Yang, M.; Zuo, P.; Ma, G.; Li, Y. Inflammatory activation and immune cell infiltration are main biological characteristics of SARS-CoV-2 infected myocardium. Bioengineered, 2022, 13(2), 2486-2497.
[http://dx.doi.org/10.1080/21655979.2021.2014621] [PMID: 35037831]
[69]
Kircheis, R.; Planz, O. Could a lower toll-like receptor (TLR) and NF-κB activation due to a changed charge distribution in the spike protein be the reason for the lower pathogenicity of omicron? Int. J. Mol. Sci., 2022, 23(11), 5966.
[http://dx.doi.org/10.3390/ijms23115966] [PMID: 35682644]
[70]
Kavianpour, M.; Saleh, M.; Verdi, J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res. Ther., 2020, 11(1), 404.
[http://dx.doi.org/10.1186/s13287-020-01849-7] [PMID: 32948252]
[71]
Jonny, J.; Putranto, T.A.; Sitepu, E.C.; Irfon, R. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo? Expert Rev. Vaccines, 2022, 21(8), 1111-1120.
[http://dx.doi.org/10.1080/14760584.2022.2080658] [PMID: 35593184]
[72]
Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2020, 53, 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[73]
Toor, S.M.; Saleh, R.; Sasidharan Nair, V.; Taha, R.Z.; Elkord, E. T‐cell responses and therapies against SARS‐CoV‐2 infection. Immunology, 2021, 162(1), 30-43.
[http://dx.doi.org/10.1111/imm.13262] [PMID: 32935333]
[74]
Yan, W.; Chen, D.; Bigambo, F.M.; Wei, H.; Wang, X.; Xia, Y. Differences of blood cells, lymphocyte subsets and cytokines in COVID-19 patients with different clinical stages: A network meta-analysis. BMC Infect. Dis., 2021, 21(1), 156.
[http://dx.doi.org/10.1186/s12879-021-05847-9] [PMID: 33557779]
[75]
Carnicer-Lombarte, A.; Chen, S.T.; Malliaras, G.G.; Barone, D.G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol., 2021, 9, 622524.
[http://dx.doi.org/10.3389/fbioe.2021.622524] [PMID: 33937212]
[76]
Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol., 2020, 108(1), 17-41.
[http://dx.doi.org/10.1002/JLB.3COVR0520-272R] [PMID: 32534467]
[77]
Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 255.
[http://dx.doi.org/10.1038/s41392-021-00679-0] [PMID: 34234112]
[78]
Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol., 2020, 127, 104370.
[http://dx.doi.org/10.1016/j.jcv.2020.104370] [PMID: 32344321]
[79]
Coomes, E.A.; Haghbayan, H. Interleukin‐6 in Covid‐19: A systematic review and META‐ANALYSIS. Rev. Med. Virol., 2020, 30(6), 1-9.
[http://dx.doi.org/10.1002/rmv.2141] [PMID: 32845568]
[80]
Nagashima, S.; Mendes, M.C.; Camargo, M.A.P.; Borges, N.H.; Godoy, T.M.; Miggiolaro, A.F.R.S.; da Silva Dezidério, F.; Machado-Souza, C.; de Noronha, L. Endothelial dysfunction and thrombosis in patients with COVID-19—brief report. Arterioscler. Thromb. Vasc. Biol., 2020, 40(10), 2404-2407.
[http://dx.doi.org/10.1161/ATVBAHA.120.314860] [PMID: 32762443]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy