Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Research Article

Bioconvection Flow in the Existence of MHD Casson Nanofluid with Viscous Dissipation and Chemical Reaction

Author(s): B. Arun* and M. Deivanayaki

Volume 19, Issue 1, 2025

Published on: 08 November, 2023

Article ID: e081123223344 Pages: 15

DOI: 10.2174/0118722121253729231030113406

Price: $65

Abstract

Objective: Casson nanofluids are used to investigate the effects of Magneto hydrodynamics (MHD), viscous dissipation, temperature and concentration on convective heat transfer flow through a stretching/shrinking vertical sheet.

Method: The BVP4C method in MATLAB is used to obtain numerical solutions for solving the governing Ordinary Differential Equations (ODEs) by converting them into the governing Partial Differential Equations (PDEs) using similarity transformations. To examine the effects of pertinent variables, including the Magnetic parameter, the Brownian motion parameter, the Cassson fluid parameter, the chemical reaction constant, the Prandtl number, the concentration to thermal Buoyancy ratio, the microorganism to thermal Buoyancy ratio, the Lewis number, the bioconvection Peclet number, the bioconvection Lewis number, the local skin friction, the local Nusselt number, the local Sherwood number and the local density number of the motile microorganisms.

Result: Quantitative data are plotted according to the bioconvection flow, temperature, concentration and velocity profiles.

Conclusion: It is observed that this patent study helps to compare the variations in the chemical reactions of the MHD Casson nanofluid by using graphs. Which in turn also leads to providing a concept of developing a patent over Casson nanofluids.

[1]
A. Einstein, and A.D. Cowper, "Investigation on the theory of the Brownian movement., vol. Vol. 83", Sci. Mon., 1956.
[2]
S.P. Jang, and S.U.S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids", Appl. Phys. Lett., vol. 84, no. 21, pp. 4316-4318, 2004.
[http://dx.doi.org/10.1063/1.1756684]
[3]
J. Buongiorno, "Convective transport in nanofluids", J. Heat Transfer, vol. 128, no. 3, pp. 240-250, 2006.
[http://dx.doi.org/10.1115/1.2150834]
[4]
K. Zaimi, A. Ishak, and I. Pop, "Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid., vol. Vol. 4", Sci. Rep., 2014.
[5]
R. Nandkeolyar, S.S. Motsa, and P. Sibanda, "Viscous and joule heating in the stagnation point nanofluid flow through a stretching sheet with homogenous-heterogeneous reactions and nonlinear convection", J. Nanotechnol. Eng. Med., vol. 4, no. 4, p. 041004, .
[http://dx.doi.org/10.1115/1.4027435]
[6]
I.L. Animasaun, C.S.K. Raju, and N. Sandeep, "Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. ", Alex. Eng. J., vol. 55, no. 2, pp. 1595-1606, 2016.
[http://dx.doi.org/10.1016/j.aej.2016.01.018]
[7]
S.U.S. Choi, and J.A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticle ASME Special Conference, vol. Vol. 66, pp. 99-105 San Francisco, USA, 1995",
[8]
H.A. Nguyen, C.T. Mintsa, and G. Roy, "New temperature dependent thermal conductivity data of water based nanofluids ”, Thermal Engineering and Environment", Fifth IASME/WSEAS Int. Conference on Heat Transfer, vol. Vol. 2902007, 2009pp. 25-27 Athens, Greece",
[9]
A.C. Eringen, "Simple microfluids", Int. J. Eng. Sci., vol. 2, no. 2, pp. 205-217, 1964.
[http://dx.doi.org/10.1016/0020-7225(64)90005-9]
[10]
T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, and M.I. Khan, "Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment", Int. J. Hydrogen Energy, vol. 42, no. 26, pp. 16821-16833, 2017.
[http://dx.doi.org/10.1016/j.ijhydene.2017.05.006]
[11]
K. Rafique, M.I. Anwar, M. Misiran, I. Khan, A.H. Seikh, E.S.M. Sherif, and K.S. Nisar, "Numerical analysis with Keller-box scheme for stagnation point effect on flow of micropolar nanofluid over an inclined surface", Symmetry , vol. 11, no. 11, p. 1379, 2019.
[http://dx.doi.org/10.3390/sym11111379]
[12]
L.A. Lund, Z. Omar, I. Khan, and S. Dero, "Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface", J. Cent. South Univ., vol. 26, no. 5, pp. 1283-1293, 2019.
[http://dx.doi.org/10.1007/s11771-019-4087-6]
[13]
S. Nadeem, R. Mehmood, and N.S. Akbar, "Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions", Int. J. Therm. Sci., vol. 78, pp. 90-100, 2014.
[http://dx.doi.org/10.1016/j.ijthermalsci.2013.12.001]
[14]
G. Makanda, S. Shaw, and P. Sibanda, "Diffusion of chemically reactive species in Casson fluid flow over an unsteady stretching surface in porous medium in the presence of a magnetic field", Math. Probl. Eng., vol. 2015, pp. 1-10, 2015.
[http://dx.doi.org/10.1155/2015/724596]
[15]
T. Hayat, S. Asad, and A. Alsaedi, "Flow of Casson fluid with nanoparticles", Appl. Math. Mech., vol. 37, no. 4, pp. 459-470, 2016.
[http://dx.doi.org/10.1007/s10483-016-2047-9]
[16]
B.J. Gireesha, G.K. Ramesh, and C.S. Bagewadi, "Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation", Adv. Appl. Sci. Res., vol. 3, pp. 2392-2401, 2012.
[17]
A. Ahmed, "Phase-fitted and amplification-fitted higher order two-derivative runge-kutta method for the numerical solution of orbital and related periodical IVPs", Math. Probl. Eng., vol. 2017, pp. 1-12, 2017.
[http://dx.doi.org/10.1155/2017/1871278]
[18]
S. Ghorai, and N.A. Hill, "Wavelengths of gyrotactic plumes in bioconvection", Bull. Math. Biol., vol. 62, no. 3, pp. 429-450, 2000.
[http://dx.doi.org/10.1006/bulm.1999.0160] [PMID: 10812715]
[19]
A.V. Kuznetsov, and A.A. Avramenko, "Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth", Int. Commun. Heat Mass Transf., vol. 31, no. 1, pp. 1-10, 2004.
[http://dx.doi.org/10.1016/S0735-1933(03)00196-9]
[20]
W.A. Khan, and O.D. Makinde, "MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet", Int. J. Therm. Sci., vol. 81, pp. 118-124, 2014.
[http://dx.doi.org/10.1016/j.ijthermalsci.2014.03.009]
[21]
W.A. Khan, O.D. Makinde, and Z.H. Khan, "MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip", Int. J. Heat Mass Transf., vol. 74, pp. 285-291, 2014.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.03.026]
[22]
W.N. Mutuku, and O.D. Makinde, "Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fluids, vol. 95, pp. 88-97, 2014.
[http://dx.doi.org/10.1016/j.compfluid.2014.02.026]
[23]
O.D. Makinde, W.A. Khan, and J.R. Culham, "MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer", Int. J. Heat Mass Transf., vol. 93, pp. 595-604, 2016.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.10.050]
[24]
S. Das, R.N. Jana, and O.D. Makinde, "Magnetohydrodynamic free convective flow of nanofluid past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects", J. Mech., vol. 32, no. 2, pp. 197-210, 2016.
[http://dx.doi.org/10.1017/jmech.2015.49]
[25]
W.A. Khan, O.D. Makinde, and Z.H. Khan, "Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat", Int. J. Heat Mass Transf., vol. 96, pp. 525-534, 2016.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.01.052]
[26]
S. Motsa, and I. Animasaun, A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface Therm. Sci., vol. 19, suppl. Suppl. 1, pp. 249-258, 2015..
[http://dx.doi.org/10.2298/TSCI15S1S49M]
[27]
O.D. Makinde, F. Mabood, W.A. Khan, and M.S. Tshehla, "MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat", J. Mol. Liq., vol. 219, pp. 624-630, 2016.
[http://dx.doi.org/10.1016/j.molliq.2016.03.078]
[28]
N. Sandeep, C. Sulochana, and I.L. Animasaun, "Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction", Inter. J. Engineering Res. Africa, vol. 20, pp. 93-111, 2015.
[http://dx.doi.org/10.4028/www.scientific.net/JERA.20.93]
[29]
O.D. Makinde, and I.L. Animasaun, "Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution", J. Mol. Liq., vol. 221, pp. 733-743, 2016.
[http://dx.doi.org/10.1016/j.molliq.2016.06.047]
[30]
K.A. Kumar, V. Sugunamma, N. Sandeep, and J.V.R. Reddy, "Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects", Multidiscip. Model. Mater. Struct., vol. 2, pp. 103-132, 2018.
[31]
L.A. Lund, Z. Omar, U. Khan, I. Khan, D. Baleanu, and K.S. Nisar, "Stability analysis and dual solutions of micropolar nanofluid over the inclined stretching/shrinking surface with convective boundary condition", Symmetry , vol. 12, no. 1, p. 74, 2020.
[http://dx.doi.org/10.3390/sym12010074]
[32]
N. Syed Asif Ali Shah, A. Ahammad, M. El Sayed, El Din. Tag, G. Fehmi, A.U. Awan, and A. Bagh, "Bioconvection effects on Prandtl Hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet", Nanomaterials , vol. 12, pp. 1-19, 2022.
[33]
A.N Hossam, S.I. Alshber, M.R. Ahmed, and Abd El Nasser. Mahd, " Influence of bioconvection and chemical reaction on magneto- Carreau nanofluid flow through an inclined cylinder", MDPI Mathematics, vol. 10, pp. 1-14, 2022.
[34]
M. Dhlamini, H. Mondal, P. Sibanda, and S. Sandile, "“Mosta and Sachin Shaw, “A mathematical model for bioconvection flow with activation energy for chemical reaction and microbial activity””, Indian Acad. Sci., Pramana –", J. Phys., no. June, pp. 96-112, 2022.
[35]
R.S. Varun Kumar, P. Gunderi Dhananjaya, R. Naveen Kumar, R.J. Punith Gowda, and B.C. Prasannakumara, "Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction", Int. J. Comput. Methods Eng. Sci. Mech., vol. 23, no. 1, pp. 12-19, 2022.
[http://dx.doi.org/10.1080/15502287.2021.1900451]
[36]
P. Li, F.Z. Duraihem, A.U. Awan, A. Al-Zubaidi, N. Abbas, and D. Ahmad, "Heat transfer of Hybrid nanomaterials base Maxwell micropolar fluid flow over an exponentially stretching surface", Nanomaterials , vol. 12, no. 7, pp. 1-13, 2022.
[http://dx.doi.org/10.3390/nano12071207] [PMID: 35407325]
[37]
L. Ali, B. Ali, and M.B. Ghori, "Melting effect on Cattaneo–Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach", Comput. Math. Appl., vol. 109, pp. 260-269, 2022.
[http://dx.doi.org/10.1016/j.camwa.2022.01.009]
[38]
A. Ali, H.S. Khan, S. Saleem, and M. Hussan, "EMHD nanofluid flow with radiation and variable heat flux effects along a slandering stretching sheet", Nanomaterials , vol. 12, no. 21, p. 3872, 2022.
[http://dx.doi.org/10.3390/nano12213872] [PMID: 36364648]
[39]
M.I. Asjad, M. Zahid, F. Jarad, and A.M. Alsharif, "Bioconvection flow of MHD viscous nanofluid in the presence of chemical reaction and activation energy", Math. Probl. Eng., vol. 2022, pp. 1-9, 2022.
[http://dx.doi.org/10.1155/2022/1707894]
[40]
S.M. Atif, S. Hussain, and M. Sagheer, "Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms", AIP Adv., vol. 9, no. 2, p. 025208, 2019.
[http://dx.doi.org/10.1063/1.5085742]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy