Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Hepatoprotective Effects of Rheum turkestanicum Janisch on High-fat Diet-induced Non-alcoholic Fatty Liver Disease in Mice

Author(s): Mohammad Reza Mahdinezhad, Farshad Mirzavi, Sara Hooshmand, Shirin Taraz Jamshidi, Ahmad Ghorbani* and Mohammad Soukhtanloo*

Volume 21, Issue 15, 2024

Published on: 07 November, 2023

Page: [3134 - 3148] Pages: 15

DOI: 10.2174/0115701808248646231102075104

Price: $65

Abstract

Background: Consumption of a high-fat diet (HFD) is one of the main causes of nonalcoholic fatty liver disease (NAFLD), which is increasing due to lifestyle changes and is still an important global health issue. Despite the efforts, there is still no common treatment for this disease. Studies have shown that the root of Rheum turkestanicum Janisch has a hypolipidemic effect and a significant antioxidant effect on liver tissue in diabetic rats. However, no experimental study has been performed on the hepatoprotective effects of this herb on HFD-induced NAFLD have been proven.

Objective: This study aimed to evaluate the effect of Rheum turkestanicum Janisch extract (RTE) on HFD-induced NAFLD in BALB/c mice.

Materials and Methods: The study was performed with two models of prevention and therapeutic effect of RTE. Serum biochemical markers, histopathology, oxidative stress indicators, and qRTPCR were measured to evaluate the effects of RTE on lipid metabolism disorders in mice feeding with HFD.

Results: In the prevention model, compared to the HFD group, RTE treatment decreased the levels of glucose, triglyceride, and cholesterol and improved liver profile markers, oxidative stress, and expression of genes involved in lipid metabolism.

Conclusion: The results of this study suggest that RTE has hepatoprotective effects against HFDinduced liver damage by reducing oxidative stress, lipogenesis, and increasing beta-oxidation of free fatty acids.

[1]
Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.G.; Verheij, J.; Nieuwdorp, M.; Clément, K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(5), 279-297.
[http://dx.doi.org/10.1038/s41575-020-0269-9] [PMID: 32152478]
[2]
Kneeman, J.M.; Misdraji, J.; Corey, K.E. Secondary causes of nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol., 2012, 5(3), 199-207.
[http://dx.doi.org/10.1177/1756283X11430859] [PMID: 22570680]
[3]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[4]
Fingas, C.D.; Best, J.; Sowa, J.P.; Canbay, A. Epidemiology of nonalcoholic steatohepatitis and hepatocellular carcinoma. Clin. Liver Dis., 2016, 8(5), 119-122.
[http://dx.doi.org/10.1002/cld.585] [PMID: 31041078]
[5]
Zou, X.; Yan, C.; Shi, Y.; Cao, K.; Xu, J.; Wang, X.; Chen, C.; Luo, C.; Li, Y.; Gao, J.; Pang, W.; Zhao, J.; Zhao, F.; Li, H.; Zheng, A.; Sun, W.; Long, J.; Szeto, I.M.Y.; Zhao, Y.; Dong, Z.; Zhang, P.; Wang, J.; Lu, W.; Zhang, Y.; Liu, J.; Feng, Z. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin. Antioxid. Redox Signal., 2014, 21(11), 1557-1570.
[http://dx.doi.org/10.1089/ars.2013.5538] [PMID: 24393106]
[6]
Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med., 2020, 152, 116-141.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.025] [PMID: 32156524]
[7]
Quijano, C.; Trujillo, M.; Castro, L.; Trostchansky, A. Interplay between oxidant species and energy metabolism. Redox Biol., 2016, 8, 28-42.
[http://dx.doi.org/10.1016/j.redox.2015.11.010] [PMID: 26741399]
[8]
Day, E.A.; Ford, R.J.; Steinberg, G.R. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol. Metab., 2017, 28(8), 545-560.
[http://dx.doi.org/10.1016/j.tem.2017.05.004] [PMID: 28647324]
[9]
Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol., 2019, 20, 247-260.
[http://dx.doi.org/10.1016/j.redox.2018.09.025] [PMID: 30384259]
[10]
Sekiya, M.; Hiraishi, A.; Touyama, M.; Sakamoto, K. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem. Biophys. Res. Commun., 2008, 375(4), 602-607.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.068] [PMID: 18727921]
[11]
Trépo, E.; Romeo, S.; Zucman-Rossi, J.; Nahon, P. PNPLA3 gene in liver diseases. J. Hepatol., 2016, 65(2), 399-412.
[http://dx.doi.org/10.1016/j.jhep.2016.03.011] [PMID: 27038645]
[12]
Ren, T.; Zhu, J.; Zhu, L.; Cheng, M. The combination of blueberry juice and probiotics ameliorate non-alcoholic steatohepatitis (NASH) by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α. Nutrients, 2017, 9(3), 198.
[http://dx.doi.org/10.3390/nu9030198] [PMID: 28264426]
[13]
Yoshikawa, T.; Ide, T.; Shimano, H.; Yahagi, N.; Amemiya-Kudo, M.; Matsuzaka, T.; Yatoh, S.; Kitamine, T.; Okazaki, H.; Tamura, Y.; Sekiya, M.; Takahashi, A.; Hasty, A.H.; Sato, R.; Sone, H.; Osuga, J.; Ishibashi, S.; Yamada, N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) α and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol. Endocrinol., 2003, 17(7), 1240-1254.
[http://dx.doi.org/10.1210/me.2002-0190] [PMID: 12730331]
[14]
Kersten, S. Integrated physiology and systems biology of PPARα. Mol. Metab., 2014, 3(4), 354-371.
[http://dx.doi.org/10.1016/j.molmet.2014.02.002] [PMID: 24944896]
[15]
Murase, T.; Misawa, K.; Minegishi, Y.; Aoki, M.; Ominami, H.; Suzuki, Y.; Shibuya, Y.; Hase, T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab., 2011, 300(1), E122-E133.
[http://dx.doi.org/10.1152/ajpendo.00441.2010] [PMID: 20943752]
[16]
Pan, M.H.; Chen, J.W.; Kong, Z.L.; Wu, J.C.; Ho, C.T.; Lai, C.S. Attenuation by tetrahydrocurcumin of adiposity and hepatic steatosis in mice with high-fat-diet-induced obesity. J. Agric. Food Chem., 2018, 66(48), 12685-12695.
[http://dx.doi.org/10.1021/acs.jafc.8b04624] [PMID: 30415544]
[17]
Dehghan, H.; Salehi, P.; Amiri, M.S. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod., 2018, 117, 303-309.
[http://dx.doi.org/10.1016/j.indcrop.2018.02.086]
[18]
Hosseini, A.; Rajabian, A.; Fanoudi, S.; Farzadnia, M.; Boroushaki, M.T. Protective effect of Rheum turkestanicum root against mercuric chloride-induced hepatorenal toxicity in rats. Avicenna J. Phytomed., 2018, 8(6), 488-497.
[PMID: 30456196]
[19]
Amiri, M.S.; Joharchi, M.R. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J. Phytomed., 2013, 3(3), 254-271.
[PMID: 25050282]
[20]
Amiri, M.S.; Joharchi, M.R.; Taghavizadehyazdi, M.E. Ethno-medicinal plants used to cure jaundice by traditional healers of mashhad, iran. Iran. J. Pharm. Res., 2014, 13(1), 157-162.
[PMID: 24734067]
[21]
Xu, G.; Wang, X.; Liu, C.; Li, W.; Wei, S.; Liu, Y.; Cheng, X.; Liu, J. Authentication of official Da-huang by sequencing and multiplex allele-specific PCR of a short maturase K gene. Genome, 2013, 56(2), 109-113.
[http://dx.doi.org/10.1139/gen-2012-0182] [PMID: 23517320]
[22]
Singh, A.; Lal, M.; Samant, S.S. Diversity, indigenous uses and conservation prioritization of medicinal plants in Lahaul valley, proposed Cold Desert Biosphere Reserve, India. International Journal of Biodiversity Science & Management, 2009, 5(3), 132-154.
[http://dx.doi.org/10.1080/17451590903230249]
[23]
Hadjzadeh, M.A.; Rajaei, Z.; Khodaei, E.; Malek, M.; Ghanbari, H. Rheum turkestanicum rhizomes possess anti-hypertriglyceridemic, but not hypoglycemic or hepatoprotective effect in experimental diabetes. Avicenna J. Phytomed., 2017, 7(1), 1-9.
[PMID: 28265541]
[24]
Hosseini, A.; Mollazadeh, H.; Amiri, M.S.; Sadeghnia, H.R.; Ghorbani, A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 86, 605-611.
[http://dx.doi.org/10.1016/j.biopha.2016.12.059] [PMID: 28027536]
[25]
Shafiee-Nick, R.; Ghorbani, A.; Vafaee Bagheri, F.; Rakhshandeh, H. Chronic administration of a combination of six herbs inhibits the progression of hyperglycemia and decreases serum lipids and aspartate amino transferase activity in diabetic rats. Adv. Pharmacol. Sci., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/789796] [PMID: 23304131]
[26]
Mahdinezhad, M.R.; Hooshmand, S.; Soukhtanloo, M.; Jamshidi, S.T.; Ehtiati, S.; Ghorbani, A. Protective effects of a standardized extract of Iris germanica on pancreas and liver in streptozotocin-induced diabetic rats. Res. Pharm. Sci., 2020, 16(1), 71-78.
[PMID: 33953776]
[27]
Hooshmand, S.; Mahdinezhad, M.R.; Taraz Jamshidi, S.; Soukhtanloo, M.; Mirzavi, F.; Iranshahi, M.; Hasanpour, M.; Ghorbani, A. MORUS NIGRA L. extract prolongs survival of rats with hepatocellular carcinoma. Phytother. Res., 2021, 35(6), 3365-3376.
[http://dx.doi.org/10.1002/ptr.7056] [PMID: 33624311]
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Jahani Yazdi, A.; Javanshir, S.; Soukhtanloo, M.; Jalili-Nik, M.; Jafarian, A.H.; Iranshahi, M.; Hasanpour, M.; Khatami, S.M.; Hosseini, A.; Amiri, M.S.; Ghorbani, A. Acute and sub-acute toxicity evaluation of the root extract of Rheum turkestanicum Janisch. Drug Chem. Toxicol., 2020, 43(6), 609-615.
[http://dx.doi.org/10.1080/01480545.2018.1561713] [PMID: 31264488]
[30]
Kesh, S.B.; Sarkar, D.; Manna, K. High-fat diet-induced oxidative stress and its impact on metabolic syndrome: A review. Asian J. Pharm. Clin. Res., 2016, 9(1), 47-52.
[31]
Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med., 2012, 52(1), 59-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.003] [PMID: 22064361]
[32]
Sarwar, R.; Pierce, N.; Koppe, S. Obesity and nonalcoholic fatty liver disease: Current perspectives. Diabetes Metab. Syndr. Obes., 2018, 11, 533-542.
[http://dx.doi.org/10.2147/DMSO.S146339] [PMID: 30288073]
[33]
Sakamoto, Y.; Narita, K.; Nakane, A. Reduced IL-1β production in diet-induced obese mice impairs host defense against skin Staphylococcus aureus infection. Hirosaki Medical Journal, 2012, 64, 29-40.
[34]
Lim, H.; Park, J.; Kim, H.L.; Kang, J.; Jeong, M.Y.; Youn, D.H.; Jung, Y.; Kim, Y.I.; Kim, H.J.; Ahn, K.S.; Kim, S.J.; Choe, S.K.; Hong, S.H.; Um, J.Y. Chrysophanic acid suppresses adipogenesis and induces thermogenesis by activating AMP-activated protein kinase alpha in vivo and in vitro. Front. Pharmacol., 2016, 7, 476.
[http://dx.doi.org/10.3389/fphar.2016.00476] [PMID: 28008317]
[35]
Park, E.; Lee, C.G.; Jeon, H.; Jeong, H.; Yeo, S.; Yong, Y.; Jeong, S.Y. Anti-obesity effects of combined Cornus officinalis and Ribes fasciculatum extract in high-fat diet-induced obese male mice. Animals, 2021, 11(11), 3187.
[http://dx.doi.org/10.3390/ani11113187] [PMID: 34827919]
[36]
Li, J.; Wu, H.; Liu, Y.; Yang, L. High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR. Exp. Anim., 2020, 69(3), 326-335.
[http://dx.doi.org/10.1538/expanim.19-0148]
[37]
Wang, K.; Cao, P.; Wang, H.; Tang, Z.; Wang, N.; Wang, J.; Zhang, Y. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci. Rep., 2016, 6(1), 26229.
[http://dx.doi.org/10.1038/srep26229] [PMID: 27189109]
[38]
Ghorbani, A. Protective Effects of Rheum Turkestanicum Janischagainst Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats. 2021.
[http://dx.doi.org/10.21203/rs.3.rs-528331/v1]
[39]
Park, M.; Yoo, J.H.; Lee, Y.S.; Lee, H.J. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients, 2019, 11(3), 494.
[http://dx.doi.org/10.3390/nu11030494] [PMID: 30813654]
[40]
Yang, W.; She, L.; Yu, K.; Yan, S.; Zhang, X.; Tian, X.; Ma, S.; Zhang, X. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model. Mol. Med. Rep., 2016, 14(4), 3277-3284.
[http://dx.doi.org/10.3892/mmr.2016.5634] [PMID: 27573054]
[41]
Li, H.; Huang, W.; Wang, M.; Chen, P.; Chen, L.; Zhang, X. Tandem Mass Tag-based quantitative proteomics analysis of metabolic associated fatty liver disease induced by high fat diet in mice. Nutr. Metab., 2020, 17(1), 97.
[http://dx.doi.org/10.1186/s12986-020-00522-3] [PMID: 33292312]
[42]
Yang, L.; Zhou, Y.; Song, H.; Zheng, P. Jiang-Zhi granules decrease sensitivity to low-dose CCl4 induced liver injury in NAFLD rats through reducing endoplasmic reticulum stress. BMC Complement. Altern. Med., 2019, 19(1), 228.
[http://dx.doi.org/10.1186/s12906-019-2641-2] [PMID: 31438932]
[43]
Pantsari, M.W.; Harrison, S.A. Nonalcoholic fatty liver disease presenting with an isolated elevated alkaline phosphatase. J. Clin. Gastroenterol., 2006, 40(7), 633-635.
[http://dx.doi.org/10.1097/00004836-200608000-00015] [PMID: 16917408]
[44]
Sun, L. Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease. Endocrine, 2020, 69(2)
[http://dx.doi.org/10.1007/s12020-020-02319-z]
[45]
Hadizadeh, F.; Faghihimani, E.; Adibi, P. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World J. Gastrointest. Pathophysiol., 2017, 8(2), 11-26.
[http://dx.doi.org/10.4291/wjgp.v8.i2.11] [PMID: 28573064]
[46]
Jarrar, M.; Shafey, A. The paradox of ectopic melanin synthesis in adipose: Potential mechanism, benefits and perspectives in abating obesity complications. J. Obe. Weight Loss Ther., 2017, 8
[http://dx.doi.org/10.4172/2165-7904.1000363]
[47]
Xu, W.; Zhao, T.; Xiao, H. The implication of oxidative stress and AMPK-nrf2 antioxidative signaling in pneumonia pathogenesis. Front. Endocrinol., 2020, 11, 400.
[http://dx.doi.org/10.3389/fendo.2020.00400] [PMID: 32625169]
[48]
Li, J.; Zheng, X.; Ma, X.; Xu, X.; Du, Y.; Lv, Q.; Li, X.; Wu, Y.; Sun, H.; Yu, L.; Zhang, Z. Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J. Inorg. Biochem., 2019, 197, 110698.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110698] [PMID: 31054488]
[49]
Li, W.; Yang, H.; Zhao, Q.; Wang, X.; Zhang, J.; Zhao, X. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice. J. Agric. Food Chem., 2019, 67(27), 7726-7737.
[http://dx.doi.org/10.1021/acs.jafc.9b02523] [PMID: 31203627]
[50]
Gu, M.; Zhao, P.; Huang, J.; Zhao, Y.; Wang, Y.; Li, Y.; Li, Y.; Fan, S.; Ma, Y.M.; Tong, Q.; Yang, L.; Ji, G.; Huang, C. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front. Pharmacol., 2016, 7, 345.
[http://dx.doi.org/10.3389/fphar.2016.00345] [PMID: 27733832]
[51]
Ni, X.; Wang, H. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD). Am. J. Transl. Res., 2016, 8(2), 1073-1081.
[PMID: 27158393]
[52]
Sahin, E.; Bagci, R.; Bektur Aykanat, N.E.; Kacar, S.; Sahinturk, V. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J. Food Biochem., 2020, 44(6), e13194.
[http://dx.doi.org/10.1111/jfbc.13194] [PMID: 32189355]
[53]
Souza, K.S.; Moreira, L.S.; Silva, B.T.; Oliveira, B.P.M.; Carvalho, A.S.; Silva, P.S.; Verri, W.A., Jr; Sá-Nakanishi, A.B.; Bracht, L.; Zanoni, J.N.; Gonçalves, O.H.; Bracht, A.; Comar, J.F. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sci., 2021, 284, 119910.
[http://dx.doi.org/10.1016/j.lfs.2021.119910] [PMID: 34453939]
[54]
Jiang, W.; Zhou, R.; Li, P.; Sun, Y.; Lu, Q.; Qiu, Y.; Wang, J.; Liu, J.; Hao, K.; Ding, X. Protective effect of chrysophanol on LPS/D -GalN-induced hepatic injury through the RIP140/NF-κB pathway. RSC Advances, 2016, 6(44), 38192-38200.
[http://dx.doi.org/10.1039/C5RA19841K]
[55]
Shen, C.; Pan, Z.; Wu, S.; Zheng, M.; Zhong, C.; Xin, X.; Lan, S.; Zhu, Z.; Liu, M.; Wu, H.; Huang, Q.; Zhang, J.; Liu, Z.; Si, Y.; Tu, H.; Deng, Z.; Yu, Y.; Liu, H.; Zhong, Y.; Guo, J.; Cai, J.; Xian, S. Emodin palliates high-fat diet-induced nonalcoholic fatty liver disease in mice via activating the farnesoid X receptor pathway. J. Ethnopharmacol., 2021, 279, 114340.
[http://dx.doi.org/10.1016/j.jep.2021.114340] [PMID: 34171397]
[56]
Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 2001, 49(11), 5165-5170.
[http://dx.doi.org/10.1021/jf010697n] [PMID: 11714298]
[57]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[58]
Liu, B.; Zhang, J.; Sun, P.; Yi, R.; Han, X.; Zhao, X. Raw Bowl Tea (Tuocha) polyphenol prevention of nonalcoholic fatty liver disease by regulating intestinal function in mice. Biomolecules, 2019, 9(9), 435.
[http://dx.doi.org/10.3390/biom9090435] [PMID: 31480575]
[59]
Jian, T.; Lü, H.; Ding, X.; Wu, Y.; Zuo, Y.; Li, J.; Chen, J.; Gu, H. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice. PeerJ, 2019, 7, e8165.
[http://dx.doi.org/10.7717/peerj.8165] [PMID: 31803542]
[60]
Ferré, P.; Foufelle, F. SREBP-1c transcription factor and lipid homeostasis: Clinical perspective. Horm. Res., 2007, 68(2), 72-82.
[PMID: 17344645]
[61]
Li, J.L.; Wang, Q.Y.; Luan, H.Y.; Kang, Z.C.; Wang, C.B. Effects of L-carnitine against oxidative stress in human hepatocytes: Involvement of peroxisome proliferator-activated receptor alpha. J. Biomed. Sci., 2012, 19(1), 32.
[http://dx.doi.org/10.1186/1423-0127-19-32] [PMID: 22435679]
[62]
Lee, M.R.; Park, K.; Ma, J. Leonurus japonicus Houtt attenuates nonalcoholic fatty liver disease in free fatty acid-induced HepG2 Cells and mice fed a high-fat diet. Nutrients, 2017, 10(1), 20.
[http://dx.doi.org/10.3390/nu10010020] [PMID: 29295591]
[63]
Sundaresan, A.; Radhiga, T.; Pugalendi, K.V. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice. Eur. J. Pharmacol., 2014, 741, 297-303.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.032] [PMID: 25149666]
[64]
Li, X.; Wang, R.; Zhou, N.; Wang, X.; Liu, Q.; Bai, Y.; Bai, Y.; Liu, Z.; Yang, H.; Zou, J.; Wang, H.; Shi, T. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed. Rep., 2013, 1(1), 71-76.
[http://dx.doi.org/10.3892/br.2012.27] [PMID: 24648896]
[65]
Xu, J.; Peng, Y.; Zeng, Y.; Hua, Y.; Xu, X. 2, 3, 4′, 5-tetrahydroxystilbene-2-0-β-d glycoside attenuates age-and diet-associated non-alcoholic steatohepatitis and atherosclerosis in LDL receptor knockout mice and its possible mechanisms. Int. J. Mol. Sci., 2019, 20(7), 1617.
[http://dx.doi.org/10.3390/ijms20071617] [PMID: 30939745]
[66]
Montgomery, M.K.; Hallahan, N.L.; Brown, S.H.; Liu, M.; Mitchell, T.W.; Cooney, G.J.; Turner, N. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia, 2013, 56(5), 1129-1139.
[http://dx.doi.org/10.1007/s00125-013-2846-8] [PMID: 23423668]
[67]
Li, D.; Jiang, C.; Mei, G.; Zhao, Y.; Chen, L.; Liu, J.; Tang, Y.; Gao, C.; Yao, P. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients, 2020, 12(10), 2954.
[http://dx.doi.org/10.3390/nu12102954] [PMID: 32992479]
[68]
Matsuzaka, T.; Shimano, H. New perspective on type 2 diabetes, dyslipidemia and non‐alcoholic fatty liver disease. J. Diabetes Investig., 2020, 11(3), 532-534.
[http://dx.doi.org/10.1111/jdi.13258] [PMID: 32232972]
[69]
Wu, T.; Tang, Q.; Yu, Z.; Gao, Z.; Hu, H.; Chen, W.; Zheng, X.; Yu, T. Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice. Int J Food Sci Nutr., 2014, 65(3), 351-359.
[http://dx.doi.org/10.3109/09637486.2013.854749] [PMID: 24224922]
[70]
Liu, S.; Chang, X.; Yu, J.; Xu, W. Cerasus humilis cherry polyphenol reduces high-fat diet-induced obesity in C57BL/6 mice by mitigating fat deposition, inflammation, and oxidation. J. Agric. Food Chem., 2020, 68(15), 4424-4436.
[http://dx.doi.org/10.1021/acs.jafc.0c01617] [PMID: 32227855]
[71]
Hosten, A.O. BUN and Creatinine, in Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H.K.; Hall, W.D.; Hurst, J.W., Eds.; Butterworths, 1990.
[72]
Mezey, E. Liver disease and protein needs. Annu. Rev. Nutr., 1982, 2(1), 21-50.
[http://dx.doi.org/10.1146/annurev.nu.02.070182.000321] [PMID: 6764731]

© 2025 Bentham Science Publishers | Privacy Policy