Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

The Synergistic Effect of Curcumin and Piperine Nanoparticles on Methamphetamine-induced Neurotoxicity, Oxidative Stress, and Memory Impairments in Mice Brain

Author(s): Pedram Ebrahimnejad, Hamed Ghazvini, Parisa Hasanjani, Parisa Saberi-Hasanabadi, Javad Akhtari and Hamidreza Mohammadi*

Volume 21, Issue 15, 2024

Published on: 27 October, 2023

Page: [3149 - 3160] Pages: 12

DOI: 10.2174/0115701808249823231017103251

Price: $65

Abstract

Background: Methamphetamine (METH) is a highly addictive neural stimulant that severely affects the CNS and can induce oxidative damage. Piperine and curcumin are active constituents that have numerous properties, including antioxidant, anti-inflammatory, and neuroprotective.

Objective: In this study, the synergistic effect of piperine and curcumin nanoparticles was investigated on the acute doses of METH-induced neurotoxicity in mice brains.

Methods: METH (6 mg/kg, i.p) was administered to 14 groups of mice and piperine-curcumin nanoparticles at different doses (10, 20, 40 mg/kg and 20, 40 and 60 mg/kg, respectively) were administered. Open field test (OFT) and conditioned place preference (CPP) were used to investigate locomotor activity, anxiety-like behavior, and addictive behavior in mice. Oxidative stress biomarkers (reactive oxygen species (ROS), protein carbonyl content, lipid peroxidation, glutathione content, and mitochondrial function were evaluated in isolated brain mitochondria.

Results: We found that piperine and curcumin nanoparticles significantly decreased hyperlocomotion and anxiety-like behavior in METH-treated mice. Also, METH enhanced CPP whilst piperine and curcumin nanoparticles suppressed the effect of METH-induced CPP. METH administration significantly increased ROS, protein carbonyl content, and lipid peroxidation and decreased glutathione content and mitochondrial function in the isolated brain mitochondria. Piperine and curcumin nanoparticles (at all doses) showed synergistic effects on reducing oxidative damages in a dosedependent manner compared to the METH group.

Conclusion: In conclusion, combined piperine and curcumin nanoparticles showed greater neuroprotective effects against METH-induced neurotoxicity due to their greater permeability and better antioxidant properties than piperine and curcumin alone.

[1]
Mayer, A.; Miskelly, G. A review on the current methods of methamphetamine remediation, their limitations, and chemical degradation techniques that have been investigated. Forensic Chem., 2022, 27, 100399.
[http://dx.doi.org/10.1016/j.forc.2022.100399]
[2]
Winkelman, T.N.A.; Admon, L.K.; Jennings, L.; Shippee, N.D.; Richardson, C.R.; Bart, G. Evaluation of amphetamine-related hospitalizations and associated clinical outcomes and costs in the United States. JAMA Netw. Open, 2018, 1(6), e183758-e183758.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.3758] [PMID: 30646256]
[3]
Lopresti, A.L. Potential role of curcumin for the treatment of major depressive disorder. CNS Drugs, 2022, 36(2), 123-141.
[http://dx.doi.org/10.1007/s40263-022-00901-9] [PMID: 35129813]
[4]
Kish, S.J.; Fitzmaurice, P.S.; Boileau, I.; Schmunk, G.A.; Ang, L.C.; Furukawa, Y.; Chang, L.J.; Wickham, D.J.; Sherwin, A.; Tong, J. Brain serotonin transporter in human methamphetamine users. Psychopharmacology (Berl.), 2009, 202(4), 649-661.
[http://dx.doi.org/10.1007/s00213-008-1346-x] [PMID: 18841348]
[5]
Kitamura, O.; Tokunaga, I.; Gotohda, T.; Kubo, S. Immunohistochemical investigation of dopaminergic terminal markers and caspase-3 activation in the striatum of human methamphetamine users. Int. J. Legal Med., 2007, 121(3), 163-168.
[http://dx.doi.org/10.1007/s00414-006-0087-9] [PMID: 16622715]
[6]
Raduly, F.; Raditoiu, V.; Raditoiu, A.; Purcar, V. Curcumin: Modern applications for a versatile additive. Coatings, 2021, 11(5), 519.
[http://dx.doi.org/10.3390/coatings11050519]
[7]
Graves, S.M.; Xie, Z.; Stout, K.A.; Zampese, E.; Burbulla, L.F.; Shih, J.C.; Kondapalli, J.; Patriarchi, T.; Tian, L.; Brichta, L.; Greengard, P.; Krainc, D.; Schumacker, P.T.; Surmeier, D.J. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat. Neurosci., 2020, 23(1), 15-20.
[http://dx.doi.org/10.1038/s41593-019-0556-3] [PMID: 31844313]
[8]
Bazylianska, V.; Sharma, A.; Chauhan, H.; Schneider, B.; Moszczynska, A. Dopamine and methamphetamine differentially affect electron transport chain complexes and parkin in rat striatum: New insight into methamphetamine neurotoxicity. Int. J. Mol. Sci., 2021, 23(1), 363.
[http://dx.doi.org/10.3390/ijms23010363] [PMID: 35008791]
[9]
Davidson, C.; Gow, A.J.; Lee, T.H.; Ellinwood, E.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Brain Res. Rev., 2001, 36(1), 1-22.
[http://dx.doi.org/10.1016/S0165-0173(01)00054-6] [PMID: 11516769]
[10]
Ryskalin, L.; Puglisi-Allegra, S.; Lazzeri, G.; Biagioni, F.; Busceti, C.L.; Balestrini, L.; Fornasiero, A.; Leone, S.; Pompili, E.; Ferrucci, M.; Fornai, F. Neuroprotective effects of curcumin in methamphetamine-induced toxicity. Molecules, 2021, 26(9), 2493.
[http://dx.doi.org/10.3390/molecules26092493] [PMID: 33923340]
[11]
Hadizadeh-Bazaz, M.; Vaezi, G.; khaksari, M.; Hojati, V. Curcumin attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against methamphetamine neurotoxicity in male Wistar rats: Histological and biochemical changes. Neurotoxicology, 2021, 84, 208-217.
[http://dx.doi.org/10.1016/j.neuro.2021.03.011] [PMID: 33819551]
[12]
Prathipati, B. Neuroprotective effects of curcumin loaded solid lipid nanoparticles on homocysteine induced oxidative stress in vascular dementia. Current research in behavioral sciences, 2021, 2, 100029.
[http://dx.doi.org/10.1016/j.crbeha.2021.100029]
[13]
Clark, A.J.; Davis, M.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl. Acad. Sci. USA, 2015, 112(40), 12486-12491.
[http://dx.doi.org/10.1073/pnas.1517048112] [PMID: 26392563]
[14]
Yadav, J.K. Management of Alzheimer’s Disease with nutraceuticals. In: Nutraceuticals in Brain Health and Beyond; Elsevier, 2021; pp. 391-408.
[http://dx.doi.org/10.1016/B978-0-12-820593-8.00028-8]
[15]
Dong, W.; Yang, B.; Wang, L.; Li, B.; Guo, X.; Zhang, M.; Jiang, Z.; Fu, J.; Pi, J.; Guan, D.; Zhao, R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharmacol., 2018, 346, 28-36.
[http://dx.doi.org/10.1016/j.taap.2018.03.020] [PMID: 29571711]
[16]
Chin, D.; Huebbe, P.; Pallauf, K.; Rimbach, G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr. Med. Chem., 2013, 20(32), 3955-3985.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[17]
Mythri, R.B.; Bharath, M.M. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des., 2012, 18(1), 91-99.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[18]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[19]
Abdollahzadeh Estakhri, M.; Shokrzadeh, M.; Jaafari, M.R.; Karami, M.; Mohammadi, H. Organ toxicity attenuation by nanomicelles containing curcuminoids: Comparing the protective effects on tissues oxidative damage induced by diazinon. Iran. J. Basic Med. Sci., 2019, 22(1), 17-24.
[PMID: 30944703]
[20]
Raoofi, A.; Delbari, A.; Mahdian, D.; Mojadadi, M.S.; Akhlaghi, M.; Dadashizadeh, G.; Ebrahimi, V.; Amini, A.; Golmohammadi, R.; Javadinia, S.S.; Khaneghah, A.M. Effects of curcumin nanoparticle on the histological changes and apoptotic factors expression in testis tissue after methylphenidate administration in rats. Acta Histochem., 2021, 123(1), 151656.
[http://dx.doi.org/10.1016/j.acthis.2020.151656] [PMID: 33249311]
[21]
Bolat, Z.B.; Islek, Z.; Demir, B.N.; Yilmaz, E.N.; Sahin, F.; Ucisik, M.H. Curcumin-and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front. Bioeng. Biotechnol., 2020, 8, 50.
[http://dx.doi.org/10.3389/fbioe.2020.00050] [PMID: 32117930]
[22]
Heidari, H.; Bagherniya, M.; Majeed, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res., 2023, 37(4), 1462-1487.
[http://dx.doi.org/10.1002/ptr.7737] [PMID: 36720711]
[23]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[24]
Parihar, V.K. Nano-pharmacokinetics and cancer theranostics. In: Nano-Pharmacokinetics and Theranostics; Elsevier, 2021; pp. 221-232.
[http://dx.doi.org/10.1016/B978-0-323-85050-6.00014-1]
[25]
Rahimi, H.R.; Mohammadpour, A.H.; Dastani, M.; Jaafari, M.R.; Abnous, K.; Ghayour Mobarhan, M.; Kazemi Oskuee, R. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J. Phytomed., 2016, 6(5), 567-577.
[PMID: 27761427]
[26]
Sadeghi Ghadi, Z.; Dinarvand, R.; Asemi, N.; Talebpour Amiri, F.; Ebrahimnejad, P. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin. Eur. J. Pharm. Sci., 2019, 130, 234-246.
[http://dx.doi.org/10.1016/j.ejps.2019.01.035] [PMID: 30711688]
[27]
Yang, C.; Fu, X.; Hao, W.; Xiang, X.; Liu, T.; Yang, B.Z.; Zhang, X. Gut dysbiosis associated with the rats’ responses in methamphetamine‐induced conditioned place preference. Addict. Biol., 2021, 26(4), e12975.
[http://dx.doi.org/10.1111/adb.12975] [PMID: 33094505]
[28]
Khodamoradi, M.; Tirgar, F.; Ghazvini, H.; Rafaiee, R.; Tamijani, S.M.S.; Karimi, N.; Yadegari, A.; Khachaki, A.S.; Akhtari, J. Role of the cannabinoid CB1 receptor in methamphetamine-induced social and recognition memory impairment. Neurosci. Lett., 2022, 779, 136634.
[http://dx.doi.org/10.1016/j.neulet.2022.136634] [PMID: 35429587]
[29]
Khalifeh, S.; Khodamoradi, M.; Hajali, V.; Ghazvini, H.; Eliasy, L.; Kheradmand, A.; Farnia, V.; Akhtari, J.; Shahveisi, K.; Ghalehnoei, H. Naloxone ameliorates spatial memory deficits and hyperthermia induced by a neurotoxic methamphetamine regimen in male rats. Galen Med. J., 2019, 8, 1182.
[http://dx.doi.org/10.31661/gmj.v8i0.1182] [PMID: 34466469]
[30]
Shamsi-Goushki, A.; Mortazavi, Z.; Mirshekar, M.A.; Mohammadi, M.; Moradi-Kor, N.; Jafari-Maskouni, S.; Shahraki, M. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats. Diabetes Metab. Syndr. Obes., 2020, 13, 2337-2346.
[http://dx.doi.org/10.2147/DMSO.S247351] [PMID: 32753918]
[31]
Moutabian, H.; Ghahramani-Asl, R.; Mortezazadeh, T.; Laripour, R.; Narmani, A.; Zamani, H.; Ataei, G.; Bagheri, H.; Farhood, B.; Sathyapalan, T.; Sahebkar, A. The cardioprotective effects of nano‐curcumin against doxorubicin‐induced cardiotoxicity: A systematic review. Biofactors, 2022, 48(3), 597-610.
[http://dx.doi.org/10.1002/biof.1823] [PMID: 35080781]
[32]
Anooshe, M.; Nouri, K.; Karimi-Haghighi, S.; Mousavi, Z.; Haghparast, A. Cannabidiol efficiently suppressed the acquisition and expression of methamphetamine-induced conditioned place preference in the rat. Behav. Brain Res., 2021, 404, 113158.
[http://dx.doi.org/10.1016/j.bbr.2021.113158] [PMID: 33571569]
[33]
Karl, F.; Colaço, M.B.N.; Schulte, A.; Sommer, C.; Üçeyler, N. Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice. BMC Neurosci., 2019, 20(1), 16.
[http://dx.doi.org/10.1186/s12868-019-0498-4] [PMID: 30975083]
[34]
Bameri, B.; Shaki, F.; Ahangar, N.; Ataee, R.; Samadi, M.; Mohammadi, H. Evidence for the involvement of the dopaminergic system in seizure and oxidative damage induced by tramadol. Int. J. Toxicol., 2018, 37(2), 164-170.
[http://dx.doi.org/10.1177/1091581817753607] [PMID: 29554822]
[35]
Ashari, S.; Karami, M.; Shokrzadeh, M.; Ghandadi, M.; Ghassemi-Barghi, N.; Dashti, A.; Ranaee, M.; Mohammadi, H. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. Toxicol. Mech. Methods, 2020, 30(6), 427-437.
[http://dx.doi.org/10.1080/15376516.2020.1758980] [PMID: 32312132]
[36]
Altomare, A.; Baron, G.; Gianazza, E.; Banfi, C.; Carini, M.; Aldini, G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol., 2021, 42, 101899.
[http://dx.doi.org/10.1016/j.redox.2021.101899] [PMID: 33642248]
[37]
Wang, Y.; Basdogan, Y.; Zhang, T.; Lankone, R.S.; Wallace, A.N.; Fairbrother, D.H.; Keith, J.A.; Gilbertson, L.M. Unveiling the synergistic role of oxygen functional groups in the graphene-mediated oxidation of glutathione. ACS Appl. Mater. Interfaces, 2020, 12(41), 45753-45762.
[http://dx.doi.org/10.1021/acsami.0c11539] [PMID: 32940454]
[38]
Mohammadnejad, L.; Soltaninejad, K.; Seyedabadi, M.; Ghasem Pouri, S.K.; Shokrzadeh, M.; Mohammadi, H. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol. Toxicol. Res., 2021, 10(6), 1162-1170.
[http://dx.doi.org/10.1093/toxres/tfab096] [PMID: 34956619]
[39]
Fathi, H.; Ebrahimzadeh, M.A.; Ziar, A.; Mohammadi, H. Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol. Toxicol., 2015, 31(4-5), 231-239.
[http://dx.doi.org/10.1007/s10565-015-9307-8] [PMID: 26493312]
[40]
Zhang, K.K.; Chen, L.J.; Li, J.H.; Liu, J.L.; Wang, L.B.; Xu, L.L.; Yang, J.Z.; Li, X.W.; Xie, X.L.; Wang, Q. Methamphetamine disturbs gut homeostasis and reshapes serum metabolome, inducing neurotoxicity and abnormal behaviors in mice. Front. Microbiol., 2022, 13, 755189.
[http://dx.doi.org/10.3389/fmicb.2022.755189] [PMID: 35509309]
[41]
Gomes, K.M.; Petronilho, F.C.; Mantovani, M.; Garbelotto, T.; Boeck, C.R.; Dal-Pizzol, F.; Quevedo, J. Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem. Res., 2008, 33(6), 1024-1027.
[http://dx.doi.org/10.1007/s11064-007-9544-1] [PMID: 18049893]
[42]
Gopal, K.V.; Miller, B.R.; Gross, G.W. Acute and sub-chronic functional neurotoxicity of methylphenidate on neural networks in vitro. J. Neural Transm. (Vienna), 2007, 114(11), 1365-1375.
[http://dx.doi.org/10.1007/s00702-007-0759-8] [PMID: 17576514]
[43]
Chang, L.; Ernst, T.; Speck, O.; Patel, H.; DeSilva, M.; Leonido-Yee, M.; Miller, E.N. Perfusion MRI and computerized cognitive test abnormalities in abstinent methamphetamine users. Psychiatry Res. Neuroimaging, 2002, 114(2), 65-79.
[http://dx.doi.org/10.1016/S0925-4927(02)00004-5] [PMID: 12036507]
[44]
Ottonelli, I. Nanowired delivery of curcumin attenuates methamphetamine neurotoxicity and elevates levels of dopamine and brain-derived neurotrophic factor. In: Progress in Nanomedicine in Neurologic Diseases; Springer, 2023; pp. 385-416.
[http://dx.doi.org/10.1007/978-3-031-32997-5_10]
[45]
Chen, Y.J.; Liu, Y.L.; Zhong, Q.; Yu, Y.F.; Su, H.L.; Toque, H.A.; Dang, Y.H.; Chen, F.; Xu, M.; Chen, T. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice. Neurosci. Bull., 2012, 28(3), 222-232.
[http://dx.doi.org/10.1007/s12264-012-1236-4] [PMID: 22622821]
[46]
Motaghinejad, M.; Motevalian, M.; Shabab, B.; Fatima, S. Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J. Neural Transm. (Vienna), 2017, 124(1), 121-131.
[http://dx.doi.org/10.1007/s00702-016-1623-5] [PMID: 27682635]
[47]
Shrestha, P.; Katila, N.; Lee, S.; Seo, J.H.; Jeong, J.H.; Yook, S. Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed. Pharmacother., 2022, 154, 113591.
[http://dx.doi.org/10.1016/j.biopha.2022.113591] [PMID: 36007276]
[48]
Veschsanit, N.; Yang, J.L.; Ngampramuan, S.; Viwatpinyo, K.; Pinyomahakul, J.; Lwin, T.; Chancharoen, P.; Rungruang, S.; Govitrapong, P.; Mukda, S. Melatonin reverts methamphetamine-induced learning and memory impairments and hippocampal alterations in mice. Life Sci., 2021, 265, 118844.
[http://dx.doi.org/10.1016/j.lfs.2020.118844] [PMID: 33278389]
[49]
Mozaffari, S.; Ramezany Yasuj, S.; Motaghinejad, M.; Motevalian, M.; Kheiri, R. Crocin acting as a neuroprotective agent against methamphetamine-induced neurodegeneration via CREB-BDNF signaling pathway. Iran. J. Pharm. Res., 2019, 18(2), 745-758.
[PMID: 31531058]
[50]
Roshanbakhsh, H. Effects of piperine pretreatment on antioxidant capacity and spatial memory impairment induced by local injection of lysolecethin in rat hippocampus. J. Mazandaran Univ. Med. Sci., 2020, 30(188), 1-16.
[51]
Kharazmi, K.; Heydari, A.; Ardjmand, A. The effect of curcumin pre-treatment on morphine-induced inhibitory memory impairment and nitric oxide level in rat. KAUMS Journal, 2019, 23(1), 1-9. [FEYZ].
[52]
Bhat, A.; Mahalakshmi, A.M.; Ray, B.; Tuladhar, S.; Hediyal, T.A.; Manthiannem, E.; Padamati, J.; Chandra, R.; Chidambaram, S.B.; Sakharkar, M.K. Benefits of curcumin in brain disorders. Biofactors, 2019, 45(5), 666-689.
[http://dx.doi.org/10.1002/biof.1533] [PMID: 31185140]
[53]
Rakotoarisoa, M.; Angelova, A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders; The Road from Nanomedicine to Precision Medicine, 2019, pp. 1027-1065.
[http://dx.doi.org/10.1201/9780429295010-33]
[54]
Comim, C.M.; Gomes, K.M.; Réus, G.Z.; Petronilho, F.; Ferreira, G.K.; Streck, E.L.; Dal-Pizzol, F.; Quevedo, J. Methylphenidate treatment causes oxidative stress and alters energetic metabolism in an animal model of attention-deficit hyperactivity disorder. Acta Neuropsychiatr., 2014, 26(2), 96-103.
[http://dx.doi.org/10.1017/neu.2013.35] [PMID: 24855887]
[55]
Wang, H.; Liu, J.; Gao, G.; Wu, X.; Wang, X.; Yang, H. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res., 2016, 1639, 214-227.
[http://dx.doi.org/10.1016/j.brainres.2015.07.029] [PMID: 26232071]
[56]
Yu, J.; Yuan, H.; Bao, L.; Si, L. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Mol. Divers., 2021, 25(1), 233-248.
[http://dx.doi.org/10.1007/s11030-020-10055-9] [PMID: 32130644]
[57]
Kundu, S.; Singh, S. Protective mechanisms of 3-acetyl-11-keto-β-boswellic acid and piperine in fluid percussion rat model of traumatic brain injury targeting Nrf2 and NFkB signaling. Neurotox. Res., 2023, 41(1), 57-84.
[http://dx.doi.org/10.1007/s12640-022-00628-x] [PMID: 36576717]
[58]
Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front. Pharmacol., 2021, 12, 669362.
[http://dx.doi.org/10.3389/fphar.2021.669362] [PMID: 34122090]
[59]
Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[60]
Bhutani, M.K.; Bishnoi, M.; Kulkarni, S.K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol. Biochem. Behav., 2009, 92(1), 39-43.
[http://dx.doi.org/10.1016/j.pbb.2008.10.007] [PMID: 19000708]
[61]
Li, Q.; Zhai, W.; Jiang, Q.; Huang, R.; Liu, L.; Dai, J.; Gong, W.; Du, S.; Wu, Q. Curcumin–piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int. J. Pharm., 2015, 490(1-2), 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.008] [PMID: 25957703]
[62]
Machado, N.D.; Armas, G.V.; Fernández, M.A.; Grijalvo, S.; Díaz Díaz, D. Neuroprotective effects of resveratrol in ischemic brain injury. NeuroSci, 2021, 2(3), 305-319.
[http://dx.doi.org/10.3390/neurosci2030022]
[63]
Vijayalakshmi, S. The pro-apoptotic and cytotoxic efficacy of polydatin encapsulated poly (lactic-co-glycolic acid)(PLGA) nanoparticles. Process Biochem., 2021, 111, 210-218.
[http://dx.doi.org/10.1016/j.procbio.2021.10.033]
[64]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears Hallmarks of Alzheimer’s Disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442.
[http://dx.doi.org/10.3233/JAD-170093] [PMID: 29036814]

© 2025 Bentham Science Publishers | Privacy Policy