Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Zang Siwei Qingfei Mixture Alleviates Inflammatory Response to Attenuate Acute Lung Injury by the ACE2/NF-κB Signaling Pathway in Mice

Author(s): Si Lei and Shangjie Wu*

Volume 27, Issue 19, 2024

Published on: 07 November, 2023

Page: [2871 - 2884] Pages: 14

DOI: 10.2174/0113862073259884231024111447

open access plus

Abstract

Background: Acute lung injury (ALI) is a serious lung disease characterized by acute and severe inflammation. Upregulation of ACE2 and inhibition of the NF-κB signaling pathway attenuate LPS-induced ALI.

Objective: To explore whether Zang Siwei Qingfei Mixture inhibits the development of ALI through the ACE2/NF-κB signaling pathway.

Methods: Alveolar type II epithelial cells (AEC II) were identified by immunofluorescence staining and flow cytometry. C57BL/6J mice were treated with LPS to establish an ALI model. Cell viability was assessed using CCK8 assays. The levels of ACE, ACE2, p-p38/p38, p- ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 were analyzed by Western blotting. ELISA was applied to detect the levels of TNF-a, IL-6, AGT, and Ang1-7. HE staining was used to observe lung injury. The mRNA expression of ACE, ACE2, and Mas was measured by RT-qPCR.

Results: AEC II cells were successfully isolated. Treatment with the Zang Siwei Qingfei Mixture resulted in a decrease in ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 levels, while increasing ACE2 levels. Zang Siwei Qingfei mixture also led to a reduction in TNF-α, IL6, and AGT levels, while increasing Ang1-7 level. Histological analysis showed that Zang Siwei Qingfei Mixture treatment improved the alveolar structure of ALI mice and reduced inflammatory infiltration. The pretreatment with MLN-4760, an ACE2 inhibitor, resulted in opposite effects compared to Zang Siwei Qingfei Mixture treatment.

Conclusion: Zang Siwei Qingfei mixture attenuates ALI by regulating the ACE2/NF-κB signaling pathway in mice. This study provides a theoretical foundation for the development of improved ALI treatments.

[1]
Li, Y.; Cao, Y.; Xiao, J.; Shang, J.; Tan, Q.; Ping, F.; Huang, W.; Wu, F.; Zhang, H.; Zhang, X. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ., 2020, 27(9), 2635-2650.
[http://dx.doi.org/10.1038/s41418-020-0528-x] [PMID: 32203170]
[2]
Hong, H.; Lou, S.; Zheng, F.; Gao, H.; Wang, N.; Tian, S.; Huang, G.; Zhao, H. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. Phytomedicine, 2022, 101, 154143.
[http://dx.doi.org/10.1016/j.phymed.2022.154143] [PMID: 35537248]
[3]
Laskin, D.L.; Malaviya, R.; Laskin, J.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol. Sci., 2019, 168(2), 287-301.
[http://dx.doi.org/10.1093/toxsci/kfy309] [PMID: 30590802]
[4]
Chang, Y.W.; Tseng, C.P.; Lee, C.H.; Hwang, T.L.; Chen, Y.L.; Su, M.T.; Chong, K.Y.; Lan, Y.W.; Wu, C.C.; Chen, K.J.; Lu, F.H.; Liao, H.R.; Hsueh, C.; Hsieh, P.W. β-Nitrostyrene derivatives attenuate LPS-mediated acute lung injury via the inhibition of neutrophil-platelet interactions and NET release. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(4), L654-L669.
[http://dx.doi.org/10.1152/ajplung.00501.2016] [PMID: 29351433]
[5]
Jansing, J.C.; Fiedler, J.; Pich, A.; Viereck, J.; Thum, T.; Mühlfeld, C.; Brandenberger, C. miR-21-KO Alleviates alveolar structural remodeling and inflammatory signaling in acute lung injury. Int. J. Mol. Sci., 2020, 21(3), 822.
[http://dx.doi.org/10.3390/ijms21030822] [PMID: 32012801]
[6]
Sapoznikov, A.; Gal, Y.; Falach, R.; Sagi, I.; Ehrlich, S.; Lerer, E.; Makovitzki, A.; Aloshin, A.; Kronman, C.; Sabo, T. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: Neutrophil-dependent and -independent impairment of junction proteins. Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(1), L255-L268.
[http://dx.doi.org/10.1152/ajplung.00300.2018] [PMID: 30382767]
[7]
Zhu, P.; Zhang, W.; Feng, F.; Qin, L.; Ji, W.; Li, D.; Liang, R.; Zhang, Y.; Wang, Y.; Li, M.; Wu, W.; Jin, Y.; Duan, G. Role of angiotensin-converting enzyme 2 in fine particulate matter-induced acute lung injury. Sci. Total Environ., 2022, 825, 153964.
[http://dx.doi.org/10.1016/j.scitotenv.2022.153964] [PMID: 35182631]
[8]
Hrenak, J.; Simko, F. Renin-angiotensin system: An important player in the pathogenesis of acute respiratory distress syndrome. Int. J. Mol. Sci., 2020, 21(21), 8038.
[http://dx.doi.org/10.3390/ijms21218038] [PMID: 33126657]
[9]
Chen, Q.; Liu, J.; Wang, W.; Liu, S.; Yang, X.; Chen, M.; Cheng, L.; Lu, J.; Guo, T.; Huang, F. Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway. Biomed. Pharmacother., 2019, 115, 108971.
[http://dx.doi.org/10.1016/j.biopha.2019.108971] [PMID: 31102910]
[10]
Zhou, Q.; He, D.X.; Deng, Y.L.; Wang, C.L.; Zhang, L.L.; Jiang, F.M.; Irakoze, L.; Liang, Z.A. MiR-124-3p targeting PDE4B attenuates LPS-induced ALI through the TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2022, 105, 108540.
[http://dx.doi.org/10.1016/j.intimp.2022.108540] [PMID: 35063752]
[11]
Han, S.; Yuan, R.; Cui, Y.; He, J.; Wang, Q.Q.; Zhuo, Y.; Yang, S.; Gao, H.; Hederasaponin, C. Hederasaponin C alleviates lipopolysaccharide-induced acute lung injury in vivo and in vitro through the PIP2/NF-κB/NLRP3 signaling pathway. Front. Immunol., 2022, 13, 846384.
[http://dx.doi.org/10.3389/fimmu.2022.846384] [PMID: 35281058]
[12]
Chen, Y.; Qu, L.; Li, Y.; Chen, C.; He, W.; Shen, L.; Zhang, R. Glycyrrhizic acid alleviates lipopolysaccharide (LPS)-induced acute lung injury by regulating angiotensin-converting enzyme-2 (ACE2) and caveolin-1 signaling pathway. Inflammation, 2022, 45(1), 253-266.
[http://dx.doi.org/10.1007/s10753-021-01542-8] [PMID: 34427852]
[13]
Yan, L.S.; Cui, S.; Cheng, B.C.Y.; Yin, X.B.; Wang, Y.W.; Qiu, X.Y.; Nima, C.R.; Zhang, Y.; Zhang, S.F. Sichen formula ameliorates lipopolysaccharide-induced acute lung injury via blocking the TLR4 signaling pathways. Drug Des. Devel. Ther., 2023, 17, 297-312.
[http://dx.doi.org/10.2147/DDDT.S372981] [PMID: 36756190]
[14]
Wang, C.; Ren, L.; Chen, S.; Zheng, H.; Yang, Y.; Gu, T.; Li, Y.; Wang, C. Longdan Xiegan Tang attenuates liver injury and hepatic insulin resistance by regulating the angiotensin-converting enzyme 2/Ang (1–7)/Mas axis-mediated anti-inflammatory pathway in rats. J. Ethnopharmacol., 2021, 274, 114072.
[http://dx.doi.org/10.1016/j.jep.2021.114072] [PMID: 33781876]
[15]
Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B.; Arturo, H.C.P.; Pilapil, D.Y.H., IV; Tan, S.M.M.; Wei, D.Q.; Wenzel-Storjohann, A.; Tasdemir, D.; Yen, C.H.; Ji, S.Y.; Kim, G.Y.; Choi, Y.H.; Macabeo, A.P.G. Attenuation of Lipopolysaccharide-Induced Inflammatory Responses through Inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-Enriched n -Butanol Fraction from Uvaria alba. ACS Omega, 2023, 8(6), 5377-5392.
[http://dx.doi.org/10.1021/acsomega.2c06451] [PMID: 36816691]
[16]
He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res., 2021, 163, 105224.
[http://dx.doi.org/10.1016/j.phrs.2020.105224] [PMID: 33007416]
[17]
Jiang, R.; Luo, S.; Zhang, M.; Lan, Q.; Zhao, X.; Wang, W.; Zhuo, S.; Wang, X.; Jiang, X. Jianpiyiqi decoction inhibits proliferation and invasion by suppressing the Caspase-1/IRAKs/NF-KB signalling pathway in hepatoma Huh-7 cells. Eur. J. Integr. Med., 2023, 58, 102230.
[http://dx.doi.org/10.1016/j.eujim.2023.102230]
[18]
Donati, Y.; Blaskovic, S.; Ruchonnet-Métrailler, I.; Lascano Maillard, J.; Barazzone-Argiroffo, C. Simultaneous isolation of endothelial and alveolar epithelial type I and type II cells during mouse lung development in the absence of a transgenic reporter. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 318(4), L619-L630.
[http://dx.doi.org/10.1152/ajplung.00227.2019] [PMID: 32022591]
[19]
Chen, Q.; Liu, Y. Isolation and culture of mouse alveolar type II cells to study type II to type I cell differentiation. STAR Protoc., 2021, 2(1), 100241.
[20]
Ma, Q.; Li, R.; Pan, W.; Huang, W.; Liu, B.; Xie, Y.; Wang, Z.; Li, C.; Jiang, H.; Huang, J.; Shi, Y.; Dai, J.; Zheng, K.; Li, X.; Hui, M.; Fu, L.; Yang, Z. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway. Phytomedicine, 2020, 78, 153296.
[21]
Saravanan, R.; Ramachandran, V. Modulating efficacy of Rebaudioside A, a diterpenoid on antioxidant and circulatory lipids in experimental diabetic rats. Environ. Toxicol. Pharmacol., 2013, 36(2), 472-483.
[http://dx.doi.org/10.1016/j.etap.2013.05.009] [PMID: 23792234]
[22]
Wang, Y.; Li, L.; Wang, Y.; Zhu, X.; Jiang, M.; Song, E.; Song, Y. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway. Eur. J. Pharmacol., 2018, 822, 128-137.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.020] [PMID: 29355553]
[23]
Wang, J.; Yang, H.; Li, Q.; Wu, X.; Di, G.; Fan, J.; Wei, D.; Guo, C. Novel nanomicelles based on rebaudioside A: A potential nanoplatform for oral delivery of honokiol with enhanced oral bioavailability and antitumor activity. Int. J. Pharm., 2020, 590, 119899.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119899] [PMID: 32971177]
[24]
Kurek, J.M.; Król, E.; Krejpcio, Z. Steviol glycosides supplementation affects lipid metabolism in high-fat fed stz-induced diabetic rats. Nutrients, 2020, 13(1), 112.
[http://dx.doi.org/10.3390/nu13010112] [PMID: 33396905]
[25]
Wang, Q.P.; Browman, D.; Herzog, H.; Neely, G.G.; Neely, G.G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One, 2018, 13(7), e0199080.
[http://dx.doi.org/10.1371/journal.pone.0199080] [PMID: 29975731]
[26]
Tian, X.; Liu, Y.; Liu, X.; Gao, S.; Sun, X. Glycyrrhizic acid ammonium salt alleviates Concanavalin A-induced immunological liver injury in mice through the regulation of the balance of immune cells and the inhibition of hepatocyte apoptosis. Biomed. Pharmacother., 2019, 120, 109481.
[http://dx.doi.org/10.1016/j.biopha.2019.109481] [PMID: 31586906]
[27]
Barone, A.; Cristiano, M.C.; Cilurzo, F.; Locatelli, M.; Iannotta, D.; Di Marzio, L.; Celia, C.; Paolino, D. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf. B Biointerfaces, 2020, 193, 111152.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111152] [PMID: 32535351]
[28]
Ciarlo, L.; Marzoli, F.; Minosi, P.; Matarrese, P.; Pieretti, S. Ammonium glycyrrhizinate prevents apoptosis and mitochondrial dysfunction induced by high glucose in SH-SY5Y cell line and counteracts neuropathic pain in streptozotocin-induced diabetic mice. Biomedicines, 2021, 9(6), 608.
[http://dx.doi.org/10.3390/biomedicines9060608] [PMID: 34073550]
[29]
Shin, J.S. Im, H.T.; Lee, K.T. Saikosaponin B2 suppresses inflammatory responses through IKK/IκBα/NF-κB Signaling inactivation in LPS-induced raw 264.7 macrophages. Inflammation, 2019, 42(1), 342-353.
[http://dx.doi.org/10.1007/s10753-018-0898-0] [PMID: 30251218]
[30]
Zhao, Y.; Feng, L.; Liu, L.; Zhao, R. Saikosaponin b2 enhances the hepatotargeting effect of anticancer drugs through inhibition of multidrug resistance-associated drug transporters. Life Sci., 2019, 231, 116557.
[http://dx.doi.org/10.1016/j.lfs.2019.116557] [PMID: 31194994]
[31]
Lin, L.T.; Chung, C.Y.; Hsu, W.C.; Chang, S.P.; Hung, T.C.; Shields, J.; Russell, R.S.; Lin, C.C.; Li, C.F.; Yen, M.H.; Tyrrell, D.L.J.; Lin, C.C.; Richardson, C.D. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J. Hepatol., 2015, 62(3), 541-548.
[http://dx.doi.org/10.1016/j.jhep.2014.10.040] [PMID: 25450204]
[32]
Ren, D.; Luo, J.; Li, Y.; Zhang, J.; Yang, J.; Liu, J.; Zhang, X.; Cheng, N.; Xin, H. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. Phytomedicine, 2020, 67, 153163.
[http://dx.doi.org/10.1016/j.phymed.2019.153163] [PMID: 31901891]
[33]
You, M.; Fu, J.; Lv, X.; Wang, L.; Wang, H.; Li, R. Saikosaponin b2 inhibits tumor angiogenesis in liver cancer via down regulation of VEGF/ERK/HIF 1α signaling. Oncol. Rep., 2023, 50(1), 136.
[http://dx.doi.org/10.3892/or.2023.8573]
[34]
X, W. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress. J. Ethnopharmacol., 2023, 316, 116729.
[35]
Nan, J. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway. Int. Immunopharmacol., 2023, 121, 110423.
[36]
Huijuan, L. The protective effect of Eleutheroside E against the mechanical barrier dysfunction triggered by lipopolysaccharide in IPEC-J2 cells. Res. Vet. Sci., 2023, 154, 1-7.
[37]
Yao, Y.; Liao, C.; Qiu, H.; Liang, L.; Zheng, W.; Wu, L.; Meng, F. Effect of eleutheroside E on an MPTP-induced parkinson’s disease cell model and its mechanism. Molecules, 2023, 28(9), 3820.
[http://dx.doi.org/10.3390/molecules28093820] [PMID: 37175230]
[38]
Liu, Z.; Gao, W.; Xu, Y. Eleutheroside E alleviates cerebral ischemia-reperfusion injury in a 5-hydroxytryptamine receptor 2C (Htr2c)-dependent manner in rats. Bioengineered, 2022, 13(5), 11718-11731.
[http://dx.doi.org/10.1080/21655979.2022.2071009] [PMID: 35502892]
[39]
Mengyao, L. Eleutheroside E reduces intestinal fat accumulation in Caenorhabditis elegans through neuroendocrine signals. J. Sci. Food Agric., 2022, 102(12), 5219-5228.
[40]
Yipin, C. Eleutheroside E functions as anti-cervical cancer drug by inhibiting the phosphatidylinositol 3-kinase pathway and reprogramming the metabolic responses. J. Pharm. Pharmacol., 2022, 74(9), 1251-1260.
[41]
Song, C.; Duan, F.; Ju, T.; Qin, Y.; Zeng, D.; Shan, S.; Shi, Y.; Zhang, Y.; Lu, W. Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun. Biol., 2022, 5(1), 680.
[http://dx.doi.org/10.1038/s42003-022-03602-7] [PMID: 35804021]
[42]
Ana Beatriz Farias, D.S. Effects in vitro and in vivo of hesperidin administration in an experimental model of acute lung inflammation. Free Radic. Biol. Med., 2022, 180, 253-262.
[43]
Yuan, X.; Zhu, J.; Kang, Q.; He, X.; Guo, D. Protective effect of hesperidin against sepsis-induced lung injury by inducing the heat-stable protein 70 (Hsp70)/toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) pathway. Med. Sci. Monit., 2019, 25, 107-114.
[http://dx.doi.org/10.12659/MSM.912490] [PMID: 30608918]
[44]
Liu, X.; Yu, D.; Chen, M.; Sun, T.; Li, G.; Huang, W.; Nie, H.; Wang, C.; Zhang, Y.; Gong, Q.; Ren, B. Hesperidin ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting HMGB1 release. Int. Immunopharmacol., 2015, 25(2), 370-376.
[http://dx.doi.org/10.1016/j.intimp.2015.02.022] [PMID: 25724384]
[45]
Di, H. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis. Phytomedicine, 2023, 112, 154680.
[46]
Park, J.H.; Ku, H.J.; Park, J.W. Hesperetin mitigates acrolein-induced apoptosis in lung cells in vitro and in vivo. Redox Rep., 2018, 23(1), 188-193.
[http://dx.doi.org/10.1080/13510002.2018.1535640] [PMID: 30325253]
[47]
Ruihong, Y. Neohesperidin dihydrochalbazone protects against septic acute kidney injury in mice. Phytomedicine, 2023, 110, 154623.
[48]
Zhang, J.; Hui, Y.; Liu, F.; Yang, Q.; Lu, Y.; Chang, Y.; Liu, Q.; Ding, Y. Neohesperidin Protects Angiotensin II-Induced Hypertension and Vascular Remodeling. Front. Pharmacol., 2022, 13, 890202.
[http://dx.doi.org/10.3389/fphar.2022.890202] [PMID: 35677431]
[49]
Guo, J.; Fang, Y.; Jiang, F.; Li, L.; Zhou, H.; Xu, X.; Ning, W. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice. Eur. J. Pharmacol., 2019, 864, 172712.
[http://dx.doi.org/10.1016/j.ejphar.2019.172712] [PMID: 31586469]
[50]
Shubin, W. Neohesperidin induces cell cycle arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells. Am. J. Chin. Med., 2021, 49(5), 1251-1274.
[51]
Ndivhuwo, M. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol. Res., 2022, 178, 106163.
[52]
Yeh, C.H.; Yang, J.J.; Yang, M.L.; Li, Y.C.; Kuan, Y.H. Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK–NF-κB pathway. Free Radic. Biol. Med., 2014, 69, 249-257.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.028] [PMID: 24486341]
[53]
Chen, W.Y.; Huang, Y.C.; Yang, M.L.; Lee, C.Y.; Chen, C.J.; Yeh, C.H.; Pan, P.H.; Horng, C.T.; Kuo, W.H.; Kuan, Y.H. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation. Int. Immunopharmacol., 2014, 22(2), 409-413.
[http://dx.doi.org/10.1016/j.intimp.2014.07.026] [PMID: 25091621]
[54]
Huang, Y.C.; Horng, C.T.; Chen, S.T.; Lee, S.S.; Yang, M.L.; Lee, C.Y.; Kuo, W.H.; Yeh, C.H.; Kuan, Y.H. Rutin improves endotoxin-induced acute lung injury via inhibition of iNOS and VCAM-1 expression. Environ. Toxicol., 2016, 31(2), 185-191.
[http://dx.doi.org/10.1002/tox.22033] [PMID: 25080890]
[55]
Ganeshpurkar, A.; Saluja, A.K. Protective effect of rutin on humoral and cell mediated immunity in rat model. Chem. Biol. Interact., 2017, 273, 154-159.
[http://dx.doi.org/10.1016/j.cbi.2017.06.006] [PMID: 28606468]
[56]
Bai, L.; Li, A.; Gong, C.; Ning, X.; Wang, Z. Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF ‐β1/α‐SMA/Col I and III pathway. Biofactors, 2020, 46(4), 637-644.
[http://dx.doi.org/10.1002/biof.1629] [PMID: 32233122]
[57]
Kim, C.; Sim, H.; Bae, J.S. Benzoylpaeoniflorin activates anti-inflammatory mechanisms to mitigate sepsis in cell-culture and mouse sepsis models. Int. J. Mol. Sci., 2022, 23(21), 13130.
[http://dx.doi.org/10.3390/ijms232113130] [PMID: 36361915]
[58]
Wan-Chao, Z. Anti-anaphylactic potential of benzoylpaeoniflorin through inhibiting HDC and MAPKs from Paeonia lactiflora. Chin. J. Nat. Med., 2021, 19(11), 825-835.
[59]
Zhuang, H.; Lv, Q.; Zhong, C.; Cui, Y.; He, L.; Zhang, C.; Yu, J. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front. Immunol., 2021, 12, 649463.
[http://dx.doi.org/10.3389/fimmu.2021.649463]
[60]
Mengjie, X. Anti-influenza properties of tiliroside isolated from Hibiscus mutabilis L. J. Ethnopharmacol., 2023, 303, 115918.
[61]
Han, R.; Yang, H.; Ling, C.; Lu, L. Tiliroside suppresses triple-negative breast cancer as a multifunctional CAXII inhibitor. Cancer Cell Int., 2022, 22(1), 368.
[http://dx.doi.org/10.1186/s12935-022-02786-6] [PMID: 36424626]
[62]
Zhang, C.; Jiang, Y.; Liu, J.; Jin, M.; Qin, N.; Chen, Y.; Niu, W.; Duan, H. AMPK/AS160 mediates tiliroside derivatives-stimulated GLUT4 translocation in muscle cells. Drug Des. Devel. Ther., 2018, 12, 1581-1587.
[http://dx.doi.org/10.2147/DDDT.S164441] [PMID: 29910604]
[63]
Velagapudi, R.; El-Bakoush, A.; Olajide, O.A. Activation of Nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside. Mol. Neurobiol., 2018, 55(10), 8103-8123.
[http://dx.doi.org/10.1007/s12035-018-0975-2] [PMID: 29508282]
[64]
Ruaro, B.; Salton, F.; Braga, L.; Wade, B.; Confalonieri, P.; Volpe, M.C.; Baratella, E.; Maiocchi, S.; Confalonieri, M. The history and mystery of alveolar epithelial type II cells: Focus on their physiologic and pathologic role in lung. Int. J. Mol. Sci., 2021, 22(5), 2566.
[http://dx.doi.org/10.3390/ijms22052566] [PMID: 33806395]
[65]
Nureki, S.I.; Tomer, Y.; Venosa, A.; Katzen, J.; Russo, S.J.; Jamil, S.; Barrett, M.; Nguyen, V.; Kopp, M.; Mulugeta, S.; Beers, M.F. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J. Clin. Invest., 2018, 128(9), 4008-4024.
[http://dx.doi.org/10.1172/JCI99287] [PMID: 29920187]
[66]
Xu, Q.; Xu, J.; Wu, Y. Regulation of inflammation and apoptosis by GPR43 via JNK/ELK1 in acute lung injury. Inflamm. Res., 2022, 71(5-6), 603-614.
[http://dx.doi.org/10.1007/s00011-022-01556-4] [PMID: 35306578]
[67]
Yue, Q.; Zhang, W.; Lin, S.; Zheng, T.; Hou, Y.; Zhang, Y.; Li, Z.; Wang, K.; Yue, L.; Abay, B.; Li, M.; Fan, L. Ejiao ameliorates lipopolysaccharide-induced pulmonary inflammation via inhibition of NFκB regulating NLRP3 inflammasome and mitochondrial ROS. Biomed. Pharmacother., 2022, 152, 113275.
[http://dx.doi.org/10.1016/j.biopha.2022.113275] [PMID: 35714510]
[68]
Ma, Q.; Li, R.; Pan, W.; Huang, W.; Liu, B.; Xie, Y.; Wang, Z.; Li, C.; Jiang, H.; Huang, J.; Shi, Y.; Dai, J.; Zheng, K.; Li, X.; Hui, M.; Fu, L.; Yang, Z. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway. Phytomedicine, 2020, 78, 153296.
[http://dx.doi.org/10.1016/j.phymed.2020.153296] [PMID: 32890913]
[69]
Zhang, C.; Wang, X.; Wang, C.; He, C.; Ma, Q.; Li, J.; Wang, W.; Xu, Y.T.; Wang, T. Qingwenzhike prescription alleviates acute lung injury induced by LPS via inhibiting TLR4/NF-KB pathway and nlrp3 inflammasome activation. Front. Pharmacol., 2021, 12, 790072.
[http://dx.doi.org/10.3389/fphar.2021.790072] [PMID: 35002723]
[70]
He, Y.Q.; Zhou, C.C.; Deng, J.L.; Wang, L.; Chen, W.S. Tanreqing Inhibits LPS-Induced Acute Lung Injury in vivo and in vitro Through Downregulating sting Signaling Pathway. Front. Pharmacol., 2021, 12, 746964.
[http://dx.doi.org/10.3389/fphar.2021.746964] [PMID: 34721036]
[71]
Liu, J.; Chen, Q.; Liu, S.; Yang, X.; Zhang, Y.; Huang, F. Sini decoction alleviates E. coli induced acute lung injury in mice via equilibrating ACE-AngII-AT1R and ACE2-Ang-(1-7)-Mas axis. Life Sci., 2018, 208, 139-148.
[http://dx.doi.org/10.1016/j.lfs.2018.07.013] [PMID: 29990483]
[72]
Huang, H.; Wang, J.; Liu, Z.; Gao, F. The angiotensin-converting enzyme 2/angiotensin (1–7)/mas axis protects against pyroptosis in LPS-induced lung injury by inhibiting NLRP3 activation. Arch. Biochem. Biophys., 2020, 693, 108562.
[http://dx.doi.org/10.1016/j.abb.2020.108562] [PMID: 32866470]
[73]
Xing, J.; Yu, Z.; Zhang, X.; Li, W.; Gao, D.; Wang, J.; Ma, X.; Nie, X.; Wang, W. Epicatechin alleviates inflammation in lipopolysaccharide-induced acute lung injury in mice by inhibiting the p38 MAPK signaling pathway. Int. Immunopharmacol., 2019, 66, 146-153.
[http://dx.doi.org/10.1016/j.intimp.2018.11.016] [PMID: 30453148]
[74]
Su, V.Y.F.; Yang, K.Y.; Chiou, S.H.; Chen, N.J.; Mo, M.H.; Lin, C.S.; Wang, C.T. Induced pluripotent stem cells regulate triggering receptor expressed on myeloid cell-1 expression and the p38 mitogen-activated protein kinase pathway in endotoxin-induced acute lung injury. Stem Cells, 2019, 37(5), 631-639.
[http://dx.doi.org/10.1002/stem.2980] [PMID: 30681755]
[75]
Li, T.; Wu, Y.N.; Wang, H.; Ma, J.Y.; Zhai, S.S.; Duan, J. Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-κB signaling pathway. Mol. Immunol., 2020, 120, 13-22.
[http://dx.doi.org/10.1016/j.molimm.2020.01.014] [PMID: 32045770]
[76]
Cong, Z.; Yang, C.; Zeng, Z.; Wu, C.; Zhao, F.; Shen, Z.; Xiao, H.; Zhu, X. α1-adrenoceptor stimulation ameliorates lipopolysaccharide-induced lung injury by inhibiting alveolar macrophage inflammatory responses through NF-κB and ERK1/2 pathway in ARDS. Front. Immunol., 2023, 13, 1090773.
[http://dx.doi.org/10.3389/fimmu.2022.1090773] [PMID: 36685596]
[77]
Yazicioglu, T.; Mühlfeld, C.; Autilio, C.; Huang, C.K.; Bär, C.; Dittrich-Breiholz, O.; Thum, T.; Pérez-Gil, J.; Schmiedl, A.; Brandenberger, C. Aging impairs alveolar epithelial type II cell function in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2020, 319(5), L755-L769.
[http://dx.doi.org/10.1152/ajplung.00093.2020] [PMID: 32877222]
[78]
Paris, A.J.; Hayer, K.E.; Oved, J.H.; Avgousti, D.C.; Toulmin, S.A.; Zepp, J.A.; Zacharias, W.J.; Katzen, J.B.; Basil, M.C.; Kremp, M.M.; Slamowitz, A.R.; Jayachandran, S.; Sivakumar, A.; Dai, N.; Wang, P.; Frank, D.B.; Eisenlohr, L.C.; Cantu, E., III; Beers, M.F.; Weitzman, M.D.; Morrisey, E.E.; Worthen, G.S. STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat. Cell Biol., 2020, 22(10), 1197-1210.
[http://dx.doi.org/10.1038/s41556-020-0569-x] [PMID: 32989251]
[79]
Penkala, I.J.; Liberti, D.C.; Pankin, J.; Sivakumar, A.; Kremp, M.M.; Jayachandran, S.; Katzen, J.; Leach, J.P.; Windmueller, R.; Stolz, K.; Morley, M.P.; Babu, A.; Zhou, S.; Frank, D.B.; Morrisey, E.E. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration. Cell Stem Cell, 2021, 28(10), 1775-1789.
[http://dx.doi.org/10.1016/j.stem.2021.04.026]
[80]
Liberti, D.C.; Kremp, M.M.; Liberti, W.A., III; Penkala, I.J.; Li, S.; Zhou, S.; Morrisey, E.E. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep., 2021, 35(6), 109092.
[http://dx.doi.org/10.1016/j.celrep.2021.109092] [PMID: 33979629]
[81]
Zhang, T.; Li, M.; Zhao, S.; Zhou, M.; Liao, H.; Wu, H.; Mo, X.; Wang, H.; Guo, C.; Zhang, H.; Yang, N.; Huang, Y. CaMK4 promotes acute lung injury through nlrp3 inflammasome activation in type II alveolar epithelial cell. Front. Immunol., 2022, 13, 890710.
[http://dx.doi.org/10.3389/fimmu.2022.890710] [PMID: 35734175]
[82]
Chen, F.; Xie, L.; Kang, R.; Deng, R.; Xi, Z.; Sun, D.; Zhu, J.; Wang, L. Gentiopicroside inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and JNK signaling pathways. Biomed. Pharmacother., 2018, 100, 142-146.
[http://dx.doi.org/10.1016/j.biopha.2018.02.014] [PMID: 29428661]
[83]
Bai, R.; Yin, X.; Feng, X.; Cao, Y.; Wu, Y.; Zhu, Z.; Li, C.; Tu, P.; Chai, X. Corydalis hendersonii Hemsl. protects against myocardial injury by attenuating inflammation and fibrosis via NF-κB and JAK2-STAT3 signaling pathways. J. Ethnopharmacol., 2017, 207, 174-183.
[http://dx.doi.org/10.1016/j.jep.2017.06.020] [PMID: 28629818]
[84]
Shi, Q.; Li, T.T.; Wu, Y.M.; Sun, X.Y.; Lei, C.; Li, J.Y.; Hou, A.J. Meroterpenoids with diverse structures and anti-inflammatory activities from Rhododendron anthopogonoides. Phytochemistry, 2020, 180, 112524.
[http://dx.doi.org/10.1016/j.phytochem.2020.112524] [PMID: 33038550]

© 2025 Bentham Science Publishers | Privacy Policy