Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Cysteine-coated Magnetite Nanoparticles for the Removal of Carmoisine Edible Dye from Aqueous Medium

Author(s): Somaye Nikzad Shalkouhi, Hassan Kefayati* and Shahab Shariati*

Volume 27, Issue 19, 2024

Published on: 27 October, 2023

Page: [2861 - 2870] Pages: 10

DOI: 10.2174/0113862073259873231018081113

open access plus

Abstract

Background: In this study, cysteine-coated magnetite nanoparticles (F3O4@Cys MNPs) were synthesized by chemical method and applied as a recoverable and efficient adsorbent for the removal of carmoisine dye from aqueous solutions. The synthesized MNPs were characterized by FT-IR, XRD, SEM, and TEM studies.

Methods: The effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array design (L16 array). Under the optimum conditions (pH = 2, stirring time = 30 min, adsorbent amount = 0.1 g and without salt addition), more than 92% of carmoisine was removed from the aqueous solutions.

Results: The kinetic studies showed rapid adsorption dynamics by a pseudo second-order kinetic model, confirming that diffusion controls the adsorption process. Dye adsorption equilibrium data were fitted well to the Freundlich isotherm, and the synthesized adsorbent showed high removal efficiency.

Conclusion: The obtained results showed that the synthesized MNPs act as a reusable adsorbent for carmoisine removal with an easy procedure.

[1]
Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V.S. Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(3), 654-662.
[http://dx.doi.org/10.1016/j.saa.2008.11.017] [PMID: 19124271]
[2]
Spataru, M.C.; Spataru, C.; Solcan, C.; Gradinaru, A.C.; Donosa, R.E.; Hritcu, L.D. Study of the health effects of red beet juice and asorubine food dyes used in feeding and watering of the animals for experience. Revista de Chimie, 2019, 70(5), 1569-1574.
[http://dx.doi.org/10.37358/RC.19.5.7170]
[3]
Gicevic, A.; Hindija, L.; Karacic, A. Toxicity of azo dyes in pharmaceutical industry; CMBEBIH, 2019, pp. 581-587.
[4]
Reza, M.S.A.; Hasan, M.M.; Kamruzzaman, M.; Hossain, M.I.; Zubair, M.A.; Bari, L.; Abedin, M.Z.; Reza, M.A.; Khalid-Bin-Ferdaus, K.M.; Haque, K.M.F.; Islam, K.; Ahmed, M.U.; Hossain, M.K. Study of a common azo food dye in mice model: Toxicity reports and its relation to carcinogenicity. Food Sci. Nutr., 2019, 7(2), 667-677.
[http://dx.doi.org/10.1002/fsn3.906]
[5]
Maloney, J.P.; Ryan, T.A.; Brasel, K.J.; Binion, D.G.; Johnson, D.R.; Halbower, A.C.; Frankel, E.H.; Nyffeler, M.; Moss, M. Food dye use in enteral feedings: A review and a call for a moratorium. Nutr. Clin. Pract., 2002, 17(3), 169-181.
[http://dx.doi.org/10.1177/0115426502017003169] [PMID: 16214982]
[6]
Montaser, M.; Alkafafy, M. Effects of synthetic food color (carmoisine) on expression of some fuel metabolism genes in liver of male albino rats. Life Sci. J., 2013, 10, 2191-2198.
[7]
Al-hamadani, R.F.Ch.; Merzah, A.S.; Jasim, E.A. Removal of food carmoisine dye E-112 from waste water using different manufactured media. Mater. Sci. Eng., 2019, 518, 62009-62019.
[8]
Sivakumar, P.; Ramesh, R.; Ramanand, A.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis, studies and growth mechanism of ferromagnetic NiFe2O4 nanosheet. Appl. Surf. Sci., 2012, 258(17), 6648-6652.
[http://dx.doi.org/10.1016/j.apsusc.2012.03.099]
[9]
Patil, J.Y.; Nadargi, D.Y.; Gurav, J.L.; Mulla, I.S.; Suryavanshi, S.S. Synthesis of glycine combusted NiFe2O4 spinel ferrite: A highly versatile gas sensor. Mater. Lett., 2014, 124, 144-147.
[http://dx.doi.org/10.1016/j.matlet.2014.03.051]
[10]
Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron., 2013, 49, 1-8.
[http://dx.doi.org/10.1016/j.bios.2013.04.034] [PMID: 23708810]
[11]
Sobhanardakani, S.; Zandipak, R. Removal of methyl orange dye from aqueous solutions using NiFe2O4 nanoparticles: equilibrium and kinetic studies. Salamat va Muhit, 2016, 9, 247-258.
[12]
Sojoudi, M.; Shariati, Sh.; Khabazipour, M. Amine functionalized Kit-6 mesoporous magnetite nanocomposite as an efficient adsorbent for removal of Ponceau 4R dye from aqueous solutions. Anal. Bioanal. Chem. Res., 2016, 3, 287-298.
[13]
Toutounchi, S.; Shariati, Sh.; Mahanpoor, K. Synthesis of nano‐sized magnetite mesoporous carbon for removal of Reactive Yellow dye from aqueous solutions. Appl. Organomet. Chem., 2019, 33(9), e5046.
[http://dx.doi.org/10.1002/aoc.5046]
[14]
Shariati, Sh.; Chinevari, A.; Ghorbani, M. Simultaneous removal of four dye pollutants in mixture using amine functionalized Kit-6 silica mesoporous magnetic nanocomposite. Silicon, 2020, 12(8), 1865-1878.
[http://dx.doi.org/10.1007/s12633-019-00288-1]
[15]
Seyed Danesh, S.M.; Shariati, Sh.; Faghihian, H. Synthesis of Kit-6 magnetite silica nanocomposite functionalized by amine group for removal of Carmoisine dye from aqueous solutions. Comb. Chem. High Throughput Screen., 2021, 24(9), 1453-1464.
[PMID: 33030127]
[16]
Mostashari, S.Z.; Fallah Shojaei, A.; Tabatabaeian, K.; Kefayati, H.; Shariati, Sh. Efficient removal of carmoisine dye from aqueous solution using Fe3O4 magnetic nanoparticles modified with asparagine, Desalin. Water Treat., 2021, 229, 441-451.
[17]
Shalkouhi, S.N.; Kefayati, H.; Shariati, Sh. Synthesis of novel spiro[chromeno[4′,3′:3,4]pyrazolo[1,2-b]phthalazine-7,3′-indoline]-2′,6,9,14-tetraone. J. Iran Chem. Soc., 2019, 16(2), 263-267.
[http://dx.doi.org/10.1007/s13738-018-1506-9]
[18]
Sohrabi, M.R.; Khavaran, A.; Shariati, Sh.; Shariati, Sh. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arab. J. Chem., 2017, 10, S3523-S3531.
[http://dx.doi.org/10.1016/j.arabjc.2014.02.019]
[19]
Zhang, L.; He, R.; Gu, H.C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci., 2006, 253(5), 2611-2617.
[http://dx.doi.org/10.1016/j.apsusc.2006.05.023]
[20]
Jang, J.H.; Lim, H.B. Characterization and analytical application of surface modified magnetic nanoparticles. Microchem. J., 2010, 94(2), 148-158.
[http://dx.doi.org/10.1016/j.microc.2009.10.011]
[21]
Nozari, M.; Shariati, Sh. Poly(methacrylic acid) surface modified magnetite nanoparticles for dispersive solid-phase adsorption of chlorpyrifos pesticide from aqueous solutions, Desalin. Water Treat., 2023, 289, 163-169.
[22]
Toutounchi, S.; Shariati, Sh.; Mahanpoor, K. Sulfonic acid functionalized magnetite nanomesoporous carbons for removal of Safranin O from aqueous solutions, Desalin. Water Treat., 2019, 153, 253-263.
[23]
Shariati, Sh.; Khabazipour, M.; Safa, F. Synthesis and application of amine functionalized silica mesoporous magnetite nanoparticles for removal of chromium(VI) from aqueous solutions. J. Porous Mater., 2017, 24(1), 129-139.
[http://dx.doi.org/10.1007/s10934-016-0245-5]
[24]
Kouchakinejad, R.; Shariati, Sh.; Abolhasani, J.; Kalhor, E.G.; Vardini, M.T. Core-shells of magnetite nanoparticles decorated by SBA-3-SO3H mesoporous silica for magnetic solid phase adsorption of paraquat herbicide from aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp., 2022, 643, 128709.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128709]
[25]
Rahnama, S.; Shariati, Sh.; Divsar, F. Synthesis of functionalized magnetite titanium dioxide nanocomposite for removal of Acid Fuchsine dye. Comb. Chem. High Throughput Screen., 2018, 21(8), 583-593.
[PMID: 30338734]
[26]
S.M.; Faghihian, H.; Shariati, Sh. Sulfonic acid functionalized SBA-3 silica mesoporous magnetite nanocomposite for Safranin O dye removal. Silicon, 2019, 11(4), 1817-1827.
[http://dx.doi.org/10.1007/s12633-018-9997-7]
[27]
Nandi, B.; Goswami, A.; Purkait, M. Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Appl. Clay Sci., 2009, 42(3-4), 583-590.
[http://dx.doi.org/10.1016/j.clay.2008.03.015]
[28]
Ringot, D.; Lerzy, B.; Chaplain, K.; Bonhoure, J.; Auclair, E.; Larondelle, Y. In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models. Bioresour. Technol., 2007, 98(9), 1812-1821.
[http://dx.doi.org/10.1016/j.biortech.2006.06.015] [PMID: 16919938]
[29]
Vijayaraghavan, K.; Padmesh, T.; Palanivelu, K.; Velan, M. Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater., 2006, 133(1-3), 304-308.
[http://dx.doi.org/10.1016/j.jhazmat.2005.10.016] [PMID: 16297540]

© 2025 Bentham Science Publishers | Privacy Policy