Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Immunological Approaches in the Treatment of Diabetic Nephropathy

In Press, (this is not the final "Version of Record"). Available online 06 November, 2023
Author(s): Fatemeh Pour-Reza-Gholi and Sara Assadiasl*
Published on: 06 November, 2023

Article ID: e061123223172

DOI: 10.2174/0115733998267893231016062205

Price: $95

Abstract

Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has no definite treatment so far. In fact, a combination of metabolic, hemodynamic, and immunological factors are involved in the pathogenesis of DN; therefore, effective disease management requires a holistic approach to all predisposing contributors. Due to the recent findings about the role of inflammation in the initiation and progression of kidney injury in diabetic patients and considerable advances in immunotherapy methods, it might be useful to revise and reconsider the current knowledge of the potential of immunomodulation in preventing and attenuating DN. In this review, we have summarized the findings of add-on therapeutic methods that have concentrated on regulating inflammatory responses in diabetic nephropathy, including phosphodiesterase inhibitors, nuclear factor-kB inhibitors, Janus kinase inhibitors, chemokine inhibitors, anti-cytokine antibodies, cell therapy, and vaccination.

[1]
Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, Egido J. Therapeutic approaches to diabetic nephropathy—beyond the RAS. Nat Rev Nephrol 2014; 10(6): 325-46.
[http://dx.doi.org/10.1038/nrneph.2014.74] [PMID: 24802062]
[2]
Lim A. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis 2014; 7: 361-81.
[http://dx.doi.org/10.2147/IJNRD.S40172] [PMID: 25342915]
[3]
ACE Inhibitors in Diabetic Nephropathy Trialist Group.. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med 2001; 134(5): 370-9.
[http://dx.doi.org/10.7326/0003-4819-134-5-200103060-00009] [PMID: 11242497]
[4]
Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int 2013; 83(3): 517-23.
[http://dx.doi.org/10.1038/ki.2012.401] [PMID: 23302714]
[5]
Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288-98.
[http://dx.doi.org/10.1007/s00125-009-1470-0] [PMID: 19655124]
[6]
Kawanami D, Matoba K, Utsunomiya K. Dyslipidemia in diabetic nephropathy. Renal Replacement Therapy 2016; 2(1): 16.
[http://dx.doi.org/10.1186/s41100-016-0028-0]
[7]
Kouroumichakis I, Papanas N, Zarogoulidis P, Liakopoulos V, Maltezos E, Mikhailidis DP. Fibrates: Therapeutic potential for diabetic nephropathy? Eur J Intern Med 2012; 23(4): 309-16.
[http://dx.doi.org/10.1016/j.ejim.2011.12.007] [PMID: 22560376]
[8]
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13: 958790.
[http://dx.doi.org/10.3389/fimmu.2022.958790] [PMID: 36045667]
[9]
Kanda H, Yamawaki K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin Exp Nephrol 2020; 24(10): 857-64.
[http://dx.doi.org/10.1007/s10157-020-01917-5] [PMID: 32594372]
[10]
Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 2016; 59(8): 1624-7.
[http://dx.doi.org/10.1007/s00125-016-4021-5] [PMID: 27333885]
[11]
Moreno JA, Gomez-Guerrero C, Mas S, et al. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs 2018; 27(11): 917-30.
[http://dx.doi.org/10.1080/13543784.2018.1538352] [PMID: 30334635]
[12]
Wang Y, Shan SK, Guo B, et al. The multi-therapeutic role of MSCs in diabetic nephropathy. Front Endocrinol 2021; 12: 671566.
[http://dx.doi.org/10.3389/fendo.2021.671566] [PMID: 34163437]
[13]
Ding D, Du Y, Qiu Z, et al. Vaccination against type 1 angiotensin receptor prevents streptozotocin-induced diabetic nephropathy. J Mol Med (Berl) 2016; 94(2): 207-18.
[http://dx.doi.org/10.1007/s00109-015-1343-6] [PMID: 26407577]
[14]
Bhanot S, Leehey DJ. Pentoxifylline for diabetic nephropathy: An important opportunity to re-purpose an old drug? Curr Hypertens Rep 2016; 18(1): 8.
[http://dx.doi.org/10.1007/s11906-015-0612-7] [PMID: 26747265]
[15]
Navarro JF, Milena FJ, Mora C, León C, García J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 2006; 26(6): 562-70.
[http://dx.doi.org/10.1159/000098004] [PMID: 17167242]
[16]
Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: The PREDIAN trial. J Am Soc Nephrol 2015; 26(1): 220-9.
[http://dx.doi.org/10.1681/ASN.2014010012] [PMID: 24970885]
[17]
Moosaie F, Rabizadeh S, Fallahzadeh A, et al. Effects of pentoxifylline on serum markers of diabetic nephropathy in type 2 diabetes. Diabetes Ther 2022; 13(5): 1023-36.
[http://dx.doi.org/10.1007/s13300-022-01250-y] [PMID: 35380410]
[18]
Han SJ, Kim HJ, Kim DJ, et al. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: a prospective randomized double-blind multicenter study. Diabetol Metab Syndr 2015; 7(1): 64.
[http://dx.doi.org/10.1186/s13098-015-0060-1] [PMID: 26300986]
[19]
Braman V, Graham P, Cheng C, et al. A randomized phase I evaluation of CTP‐499, a novel deuterium‐containing drug candidate for diabetic nephropathy. Clin Pharmacol Drug Dev 2013; 2(1): 53-66.
[http://dx.doi.org/10.1002/cpdd.3] [PMID: 27121560]
[20]
Sabounjian L, Graham P, Wu L, et al. A first-in-patient, multicenter, double-blind, 2-arm, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease. Clin Pharmacol Drug Dev 2016; 5(4): 314-25.
[http://dx.doi.org/10.1002/cpdd.241] [PMID: 27310332]
[21]
Singh B, Diamond SA, Pergola PE, et al. In Am J Kidney Dis. WB saunders Co-Elsevier INC 1600 John F Kennedy Boulevard, STE 1800 2014; 63: pp. A120-0.
[22]
Wolk R, Smith WB, Neutel JM, et al. Blood pressure lowering effects of a new long-acting inhibitor of phosphodiesterase 5 in patients with mild to moderate hypertension. Hypertension 2009; 53(6): 1091-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.132225] [PMID: 19398651]
[23]
Scheele W, Diamond S, Gale J, et al. Phosphodiesterase type 5 inhibition reduces albuminuria in subjects with overt diabetic nephropathy. J Am Soc Nephrol 2016; 27(11): 3459-68.
[http://dx.doi.org/10.1681/ASN.2015050473] [PMID: 27113485]
[24]
Sanz AB, Sanchez-Niño MD, Ramos AM, et al. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010; 21(8): 1254-62.
[http://dx.doi.org/10.1681/ASN.2010020218] [PMID: 20651166]
[25]
Pergola PE, Krauth M, Huff JW, et al. Effect of bardoxolone methyl on kidney function in patients with T2D and Stage 3b-4 CKD. Am J Nephrol 2011; 33(5): 469-76.
[http://dx.doi.org/10.1159/000327599] [PMID: 21508635]
[26]
de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 2013; 369(26): 2492-503.
[http://dx.doi.org/10.1056/NEJMoa1306033] [PMID: 24206459]
[27]
Chin MP, Bakris GL, Block GA, et al. Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am J Nephrol 2018; 47(1): 40-7.
[http://dx.doi.org/10.1159/000486398] [PMID: 29402767]
[28]
Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit. Cell Cycle 2012; 11(1): 159-69.
[http://dx.doi.org/10.4161/cc.11.1.18559] [PMID: 22189654]
[29]
Ruggenenti P, Negarim M. Effects of MCP-1 inhibition by bindarit therapy in type 2 diabetes subjects with micro-or macro-albuminuria. J Am Soc Nephrol 2010; 21 (Suppl. 1): 44A.
[30]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014; 219: 64-75.
[http://dx.doi.org/10.1016/j.cbi.2014.05.011] [PMID: 24877639]
[31]
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 2018; 51(1): 9.
[http://dx.doi.org/10.1186/s40659-018-0157-8] [PMID: 29604956]
[32]
Soetikno V, Sari FR, Veeraveedu PT, et al. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond) 2011; 8(1): 35.
[http://dx.doi.org/10.1186/1743-7075-8-35] [PMID: 21663638]
[33]
Li F, Chen Y, Li Y, Huang M, Zhao W. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur J Pharmacol 2020; 886: 173449.
[http://dx.doi.org/10.1016/j.ejphar.2020.173449] [PMID: 32758570]
[34]
Kim JE, Lee MH, Nam DH, et al. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 2013; 8(4): e62068.
[http://dx.doi.org/10.1371/journal.pone.0062068] [PMID: 23637966]
[35]
Zhang YW, Wu CY, Cheng JT. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-κB and IκB in renal cortex of streptozotoxin-induced diabetic rats. J Ethnopharmacol 2007; 114(3): 387-92.
[http://dx.doi.org/10.1016/j.jep.2007.08.024] [PMID: 17900838]
[36]
Chao EC, Henry RR. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat Rev Drug Discov 2010; 9(7): 551-9.
[http://dx.doi.org/10.1038/nrd3180] [PMID: 20508640]
[37]
Birnbaum Y, Bajaj M, Yang HC, Ye Y. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovasc Drugs Ther 2018; 32(2): 135-45.
[http://dx.doi.org/10.1007/s10557-018-6778-x] [PMID: 29508169]
[38]
Heerspink HJL, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019; 62(7): 1154-66.
[http://dx.doi.org/10.1007/s00125-019-4859-4] [PMID: 31001673]
[39]
La Grotta R, de Candia P, Olivieri F, et al. Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin. Cell Mol Life Sci 2022; 79(5): 273.
[http://dx.doi.org/10.1007/s00018-022-04289-z] [PMID: 35503137]
[40]
Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: A randomized clinical trial. JAMA 2015; 314(9): 884-94.
[http://dx.doi.org/10.1001/jama.2015.10081] [PMID: 26325557]
[41]
Marcath LA. Finerenone. Clin Diabetes 2021; 39(3): 331-2.
[http://dx.doi.org/10.2337/cd21-0050] [PMID: 34421212]
[42]
Barrera-Chimal J, Estrela GR, Lechner SM, et al. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling. Kidney Int 2018; 93(6): 1344-55.
[http://dx.doi.org/10.1016/j.kint.2017.12.016] [PMID: 29548765]
[43]
Lattenist L, Lechner SM, Messaoudi S, et al. Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury–mediated chronic kidney disease. Hypertension 2017; 69(5): 870-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08526] [PMID: 28320854]
[44]
Jerome JR, Deliyanti D, Suphapimol V, Kolkhof P, Wilkinson-Berka JL. Finerenone, a non-steroidal mineralocorticoid receptor antagonist, reduces vascular injury and increases regulatory T-cells: Studies in rodents with diabetic and neovascular retinopathy. Int J Mol Sci 2023; 24(3): 2334.
[http://dx.doi.org/10.3390/ijms24032334] [PMID: 36768656]
[45]
Moreno JA, Moreno S, Rubio-Navarro A, et al. Targeting chemokines in proteinuria-induced renal disease. Expert Opin Ther Targets 2012; 16(8): 833-45.
[http://dx.doi.org/10.1517/14728222.2012.703657] [PMID: 22793382]
[46]
Darisipudi MN, Kulkarni OP, Sayyed SG, et al. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol 2011; 179(1): 116-24.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.004] [PMID: 21703397]
[47]
Sayyed SG, Ryu M, Kulkarni OP, et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int 2011; 80(1): 68-78.
[http://dx.doi.org/10.1038/ki.2011.102] [PMID: 21508925]
[48]
Sullivan T, Miao Z, Dairaghi DJ, et al. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Renal Physiol 2013; 305(9): F1288-97.
[http://dx.doi.org/10.1152/ajprenal.00316.2013] [PMID: 23986513]
[49]
de Zeeuw D, Bekker P, Henkel E, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol 2015; 3(9): 687-96.
[http://dx.doi.org/10.1016/S2213-8587(15)00261-2] [PMID: 26268910]
[50]
Gale JD, Gilbert S, Blumenthal S, et al. Effect of PF-04634817, an Oral CCR2/5 Chemokine Receptor Antagonist, on Albuminuria in Adults with Overt Diabetic Nephropathy. Kidney Int Rep 2018; 3(6): 1316-27.
[http://dx.doi.org/10.1016/j.ekir.2018.07.010] [PMID: 30450458]
[51]
Moriwaki Y, Inokuchi T, Yamamoto A, et al. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol 2007; 44(4): 215-8.
[http://dx.doi.org/10.1007/s00592-007-0007-6] [PMID: 17767370]
[52]
Lei Y, Devarapu SK, Motrapu M, et al. Interleukin-1β inhibition for chronic kidney disease in obese mice with type 2 diabetes. Front Immunol 2019; 10: 1223.
[http://dx.doi.org/10.3389/fimmu.2019.01223] [PMID: 31191559]
[53]
Issafras H, Corbin JA, Goldfine ID, Roell MK. Detailed mechanistic analysis of gevokizumab, an allosteric anti-IL-1β antibody with differential receptor-modulating properties. J Pharmacol Exp Ther 2014; 348(1): 202-15.
[http://dx.doi.org/10.1124/jpet.113.205443] [PMID: 24194526]
[54]
Perez-Gomez M, Sanchez-Niño M, Sanz A, et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J Clin Med 2015; 4(6): 1325-47.
[http://dx.doi.org/10.3390/jcm4061325] [PMID: 26239562]
[55]
Ziyadeh FN. Different roles for TGF-β and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy. Diabetes Res Clin Pract 2008; 82 (Suppl. 1): S38-41.
[http://dx.doi.org/10.1016/j.diabres.2008.09.016] [PMID: 18842317]
[56]
Benigni A, Zoja C, Corna D, et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 2003; 14(7): 1816-24.
[http://dx.doi.org/10.1097/01.ASN.0000074238.61967.B7] [PMID: 12819241]
[57]
Voelker J, Berg PH, Sheetz M, et al. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol 2017; 28(3): 953-62.
[http://dx.doi.org/10.1681/ASN.2015111230] [PMID: 27647855]
[58]
Han DC, Hoffman BB, Hong SW, Guo J, Ziyadeh FN. Therapy with antisense TGF-β1 oligodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice. Am J Physiol Renal Physiol 2000; 278(4): F628-34.
[http://dx.doi.org/10.1152/ajprenal.2000.278.4.F628] [PMID: 10751224]
[59]
Assadiasl S, Mojtahedi H, Nicknam MH. JAK inhibitors in solid organ transplantation. J Clin Pharmacol 2023; jcph.2325.
[http://dx.doi.org/10.1002/jcph.2325] [PMID: 37500063]
[60]
Berthier CC, Zhang H, Schin M, et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 2009; 58(2): 469-77.
[http://dx.doi.org/10.2337/db08-1328] [PMID: 19017763]
[61]
Assadiasl S, Fatahi Y, Mosharmovahed B, Mohebbi B, Nicknam MH. Baricitinib: From rheumatoid arthritis to COVID‐19. J Clin Pharmacol 2021; 61(10): 1274-85.
[http://dx.doi.org/10.1002/jcph.1874] [PMID: 33870531]
[62]
Tuttle KR, Brosius FC III, Adler SG, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant 2018; 33(11): 1950-9.
[http://dx.doi.org/10.1093/ndt/gfx377] [PMID: 29481660]
[63]
Abdolmohammadi K, Pakdel FD, Aghaei H, et al. Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach. Biomed Pharmacother 2019; 109: 1196-205.
[http://dx.doi.org/10.1016/j.biopha.2018.10.137] [PMID: 30551369]
[64]
Liu Y, Tang SCW. Recent progress in stem cell therapy for diabetic nephropathy. Kidney Dis 2016; 2(1): 20-7.
[http://dx.doi.org/10.1159/000441913] [PMID: 27536688]
[65]
Narayanan K, Schumacher KM, Tasnim F, et al. Human embryonic stem cells differentiate into functional renal proximal tubular–like cells. Kidney Int 2013; 83(4): 593-603.
[http://dx.doi.org/10.1038/ki.2012.442] [PMID: 23389418]
[66]
Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 2014; 16(1): 118-26.
[http://dx.doi.org/10.1038/ncb2894] [PMID: 24335651]
[67]
Song B, Smink AM, Jones CV, et al. The directed differentiation of human iPS cells into kidney podocytes. PLoS One 2012; 7(9): e46453.
[http://dx.doi.org/10.1371/journal.pone.0046453] [PMID: 23029522]
[68]
Bharadwaj S, Liu G, Shi Y, et al. Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology. Stem Cells 2013; 31(9): 1840-56.
[http://dx.doi.org/10.1002/stem.1424] [PMID: 23666768]
[69]
Zavvar M, Yahyapoor A, Baghdadi H, et al. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches. Int Immunopharmacol 2022; 107: 108655.
[http://dx.doi.org/10.1016/j.intimp.2022.108655] [PMID: 35248946]
[70]
Wu HJ, Yiu WH, Li RX, et al. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis. PLoS One 2014; 9(3): e90883.
[http://dx.doi.org/10.1371/journal.pone.0090883] [PMID: 24646687]
[71]
Ezquer ME, Ezquer FE, Arango-Rodríguez ML, Conget PA. MSC transplantation: A promising therapeutic strategy to manage the onset and progression of diabetic nephropathy. Biol Res 2012; 45(3): 289-96.
[http://dx.doi.org/10.4067/S0716-97602012000300010] [PMID: 23283438]
[72]
Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant 2013; 19(4): 538-46.
[http://dx.doi.org/10.1016/j.bbmt.2013.01.001] [PMID: 23295166]
[73]
Zhou H, Tian HM, Long Y, et al. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. Chin Med J (Engl) 2009; 122(21): 2573-9.
[PMID: 19951572]
[74]
Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 2006; 103(46): 17438-43.
[http://dx.doi.org/10.1073/pnas.0608249103] [PMID: 17088535]
[75]
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 2016; 6(1): 34842.
[http://dx.doi.org/10.1038/srep34842] [PMID: 27721418]
[76]
Ebrahim N, Ahmed I, Hussien N, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells 2018; 7(12): 226.
[http://dx.doi.org/10.3390/cells7120226] [PMID: 30467302]
[77]
Bi Y, Stuelten CH, Kilts T, et al. Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem 2005; 280(34): 30481-9.
[http://dx.doi.org/10.1074/jbc.M500573200] [PMID: 15964849]
[78]
Kume S, Kato S, Yamagishi S, et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 2005; 20(9): 1647-58.
[http://dx.doi.org/10.1359/JBMR.050514] [PMID: 16059636]
[79]
Secchiero P, Melloni E, Corallini F, et al. Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells. Stem Cells 2008; 26(11): 2955-63.
[http://dx.doi.org/10.1634/stemcells.2008-0512] [PMID: 18772312]
[80]
Eller K, Kirsch A, Wolf AM, et al. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 2011; 60(11): 2954-62.
[http://dx.doi.org/10.2337/db11-0358] [PMID: 21911743]
[81]
Zheng D, Wang Y, Cao Q, et al. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. Nephron, Exp Nephrol 2011; 118(4): e87-99.
[http://dx.doi.org/10.1159/000321034] [PMID: 21311199]
[82]
Petrovsky N. Immunomodulation with microbial vaccines to prevent type 1 diabetes mellitus. Nat Rev Endocrinol 2010; 6(3): 131-8.
[http://dx.doi.org/10.1038/nrendo.2009.273] [PMID: 20173774]
[83]
Hyöty H, Leon F, Knip M. Developing a vaccine for type 1 diabetes by targeting coxsackievirus B. Expert Rev Vaccines 2018; 17(12): 1071-83.
[http://dx.doi.org/10.1080/14760584.2018.1548281] [PMID: 30449209]
[84]
Cavelti-Weder C, Timper K, Seelig E, et al. Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol Ther 2016; 24(5): 1003-12.
[http://dx.doi.org/10.1038/mt.2015.227] [PMID: 26686385]
[85]
Miller TW, Shirley TL, Wolfgang WJ, Kang X, Messer A. DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther 2003; 7(5): 572-9.
[http://dx.doi.org/10.1016/S1525-0016(03)00063-7] [PMID: 12718899]
[86]
Roesti ES, Boyle CN, Zeman DT, et al. Vaccination against amyloidogenic aggregates in pancreatic islets prevents development of type 2 diabetes mellitus. Vaccines 2020; 8(1): 116.
[http://dx.doi.org/10.3390/vaccines8010116] [PMID: 32131431]
[87]
Azegami T, Nakayama T, Hayashi K, et al. Vaccination against receptor for advanced glycation end products attenuates the progression of diabetic kidney disease. Diabetes 2021; 70(9): 2147-58.
[http://dx.doi.org/10.2337/db20-1257] [PMID: 34155040]
[88]
Celec P, Hodosy J, Gardlík R, et al. The effects of anti-inflammatory and anti-angiogenic DNA vaccination on diabetic nephropathy in rats. Hum Gene Ther 2012; 23(2): 158-66.
[http://dx.doi.org/10.1089/hum.2011.030] [PMID: 21939398]
[89]
Mashitah MW, Azizah N, Samsu N, et al. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice. Diabetes Metab Syndr Obes 2015; 8: 347-55.
[PMID: 26346342]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy