Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In-silico Docking and Dynamics Simulation Analysis of Peroxisome Proliferator-Activated Receptor-Gamma and β-Carotene

Author(s): Divya Jindal, Parasuraman Aiya Subramani, Kalpana Panati, Praveen Kumar Pasala, Rajeswara Reddy Saddala and Venkata Ramireddy Narala*

Volume 21, Issue 15, 2024

Published on: 31 October, 2023

Page: [3198 - 3205] Pages: 8

DOI: 10.2174/0115701808267878231026044212

Price: $65

Abstract

Background: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) plays a crucial role in regulating lipid and glucose metabolism, cancer, and inflammation, making it an attractive target for drug development. Meanwhile, β-Carotene, known for its antioxidant, anticancer and antiinflammatory properties, holds promise for modulating PPAR-γ activity. Understanding their interaction is crucial.

Objective: This study aims to explore the therapeutic potential of β-carotene in modulating PPAR-γ activity by investigating their binding interactions.

Methods: Screening of bioactive compounds from PubChem was conducted using GlideXP to identify potential PPAR-γ (PDB: 2PRG) ligands. During this screening, both protein and bioactive compounds were prepared following established protocols. Subsequently, the compounds were docked into the ligand binding domain (LBD) of the protein using XP docking. Rosiglitazone was used as an internal control. β-Carotene emerged as a lead based on Lipinski’s rule, docking score, free energy, and LBD interactions. Molinspiration analysis assessed its drug likeness. Molecular dynamics (MD) simulations utilizing Desmond with OPLS 2005 force field were employed to examine the dynamics and stability of the PPAR-γ/β-carotene complex.

Results: β-carotene had strong hydrophobic interactions with specific residues within the ligandbinding domain of PPAR-γ. The calculated binding affinity (-9.07 kcal/mol) indicated a strong interaction between β-carotene and PPAR-γ, suggesting that β-carotene may modulate the activity of PPAR-γ. On a time scale of 100 ns, the MD simulations provided insights into the conformational changes, flexibility, and intermolecular interactions within the complex.

Conclusion: In silico docking and dynamics simulation analyses show that PPAR-γ and β-carotene can form a stable complex, suggesting potential implications for metabolic modulation.

[1]
Rodríguez-García, C.; Sánchez-Quesada, C.; Martínez-Ramírez, M.J.; Gaforio, J.J. PPARγ gene as a possible link between acquired and congenital lipodystrophy and its modulation by dietary fatty acids. Nutrients, 2022, 14(22), 4742.
[http://dx.doi.org/10.3390/nu14224742] [PMID: 36432429]
[2]
Brum, I.S.C.; Mafra, D.; Moreira, L.S.G.; Teixeira, K.T.R.; Stockler-Pinto, M.B.; Cardozo, L.F.M.F.; Borges, N.A. Consumption of oils and anthocyanins may positively modulate PPAR-γ expression in chronic noncommunicable diseases: A systematic review. Nutr. Res., 2022, 105, 66-76.
[http://dx.doi.org/10.1016/j.nutres.2022.06.004] [PMID: 35905655]
[3]
Hernandez-Quiles, M.; Broekema, M.F.; Kalkhoven, E. PPARgamma in metabolism, immunity, and cancer: Unified and diverse mechanisms of action. Front. Endocrinol., 2021, 12, 624112.
[http://dx.doi.org/10.3389/fendo.2021.624112] [PMID: 33716977]
[4]
Yanase, T.; Yashiro, T.; Takitani, K.; Kato, S.; Taniguchi, S.; Takayanagi, R.; Nawata, H. Differential expression of PPAR γ1 and γ2 isoforms in human adipose tissue. Biochem. Biophys. Res. Commun., 1997, 233(2), 320-324.
[http://dx.doi.org/10.1006/bbrc.1997.6446] [PMID: 9144532]
[5]
Schaiff, W.T.; Barak, Y.; Sadovsky, Y. The pleiotropic function of PPARγ in the placenta. Mol. Cell. Endocrinol., 2006, 249(1-2), 10-15.
[http://dx.doi.org/10.1016/j.mce.2006.02.009] [PMID: 16574314]
[6]
Jain, N.; Bhansali, S.; Kurpad, A.V.; Hawkins, M.; Sharma, A.; Kaur, S.; Rastogi, A.; Bhansali, A. Effect of a Dual PPAR α/γ agonist on insulin sensitivity in patients of type 2 diabetes with hypertriglyceridemia- randomized double-blind placebo-controlled trial. Sci. Rep., 2019, 9(1), 19017.
[http://dx.doi.org/10.1038/s41598-019-55466-3] [PMID: 31831868]
[7]
Lal, S.; Shekher, A.; Puneet; Narula, A.S.; Abrahamse, H.; Gupta, S.C. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol. Res., 2021, 163, 105302.
[http://dx.doi.org/10.1016/j.phrs.2020.105302] [PMID: 33246167]
[8]
Heudobler, D.; Rechenmacher, M.; Lüke, F.; Vogelhuber, M.; Pukrop, T.; Herr, W.; Ghibelli, L.; Gerner, C.; Reichle, A. Peroxisome Proliferator-Activated Receptors (PPAR)γ agonists as master modulators of tumor tissue. Int. J. Mol. Sci., 2018, 19(11), 3540.
[http://dx.doi.org/10.3390/ijms19113540] [PMID: 30424016]
[9]
Mrowka, P.; Glodkowska-Mrowka, E. PPARγ agonists in combination cancer therapies. Curr. Cancer Drug Targets, 2020, 20(3), 197-215.
[http://dx.doi.org/10.2174/1568009619666191209102015] [PMID: 31814555]
[10]
Chi, T.; Wang, M.; Wang, X.; Yang, K.; Xie, F.; Liao, Z.; Wei, P. PPAR-γ modulators as current and potential cancer treatments. Front. Oncol., 2021, 11, 737776.
[http://dx.doi.org/10.3389/fonc.2021.737776] [PMID: 34631571]
[11]
Zhao, W.; Shi, G.; Gu, H.; Nguyen, B.N. Role of PPARγ in the nutritional and pharmacological actions of carotenoids. Res. Rep. Biochem., 2016, 13.
[http://dx.doi.org/10.2147/RRBC.S83258]
[12]
Zhang, X.; Zhao, W.; Hu, L.; Zhao, L.; Huang, J. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Arch. Biochem. Biophys., 2011, 512(1), 96-106.
[http://dx.doi.org/10.1016/j.abb.2011.05.004] [PMID: 21620794]
[13]
Cui, Y.; Lu, Z.; Bai, L.; Shi, Z.; Zhao, W.; Zhao, B. β-Carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor γ expression and reactive oxygen species production in MCF-7 cancer cells. Eur. J. Cancer, 2007, 43(17), 2590-2601.
[http://dx.doi.org/10.1016/j.ejca.2007.08.015] [PMID: 17911009]
[14]
Bae, S.; Lim, J.W.; Kim, H. β-carotene inhibits expression of matrix metalloproteinase-10 and invasion in Helicobacter pylori-infected gastric epithelial cells. Molecules, 2021, 26(6), 1567.
[http://dx.doi.org/10.3390/molecules26061567] [PMID: 33809289]
[15]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19]
[16]
Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; Shoichet, B.K. A practical guide to large-scale docking. Nat. Protoc., 2021, 16(10), 4799-4832.
[http://dx.doi.org/10.1038/s41596-021-00597-z] [PMID: 34561691]
[17]
Asiamah, I. Applications of molecular docking in natural products-based drug discovery; Scientific African, 2023, p. 20.
[18]
Joseph-McCarthy, D.; Baber, J.C.; Feyfant, E.; Thompson, D.C.; Humblet, C. Lead optimization via high-throughput molecular docking. Curr. Opin. Drug Discov. Devel., 2007, 10(3), 264-274.
[PMID: 17554852]
[19]
Gusev, F.; Gutkin, E.; Kurnikova, M.G.; Isayev, O. Active learning guided drug design lead optimization based on relative binding free energy modeling. J. Chem. Inf. Model., 2023, 63(2), 583-594.
[http://dx.doi.org/10.1021/acs.jcim.2c01052] [PMID: 36599125]
[20]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[21]
Mazumder, R.; Kaushik, K.K.; Debnath, A.; Patel, M. A brief study on drug repurposing: New way of boosting drug discovery. Lett. Drug Des. Discov., 2023, 20(3), 264-278.
[http://dx.doi.org/10.2174/1570180819666220901170016]
[22]
Alavi, A.; Sharma, V. Role of docking in anticancer drug discovery. Lett. Drug Des. Discov., 2023, 20(10), 1490-1511.
[http://dx.doi.org/10.2174/1570180820666221111151104]
[23]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. In: Prog. Med. Chem; , 2021; 60, pp. 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004]
[24]
Zheng, L. Molecular dynamics and simulation. In: Encyclopedia of Bioinformatics and Computational Biology; , 2019; pp. 550-566.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.20284-7]
[25]
Sakano, T.; Mahamood, M.I.; Yamashita, T.; Fujitani, H. Molecular dynamics analysis to evaluate docking pose prediction. Biophys. Physicobiol., 2016, 13(0), 181-194.
[http://dx.doi.org/10.2142/biophysico.13.0_181] [PMID: 27924273]
[26]
Mangat, H.K.; Rani, M.; Pathak, R.K.; Yadav, I.S.; Utreja, D.; Chhuneja, P.K.; Chhuneja, P. Virtual screening, molecular dynamics and binding energy-MM-PBSA studies of natural compounds to identify potential EcR inhibitors against Bemisia tabaci Gennadius. PLoS One, 2022, 17(1), e0261545.
[http://dx.doi.org/10.1371/journal.pone.0261545] [PMID: 35061725]
[27]
Kawasaki, H.; Soma, N.; Kretsinger, R.H. Molecular dynamics study of the changes in conformation of calmodulin with calcium binding and/or target recognition. Sci. Rep., 2019, 9(1), 10688.
[http://dx.doi.org/10.1038/s41598-019-47063-1] [PMID: 31337841]
[28]
Bassani, D.; Moro, S. Past, present, and future perspectives on computer-aided drug design methodologies. Molecules, 2023, 28(9), 3906.
[http://dx.doi.org/10.3390/molecules28093906] [PMID: 37175316]
[29]
Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem., 2013, 113(18), 2110-2142.
[http://dx.doi.org/10.1002/qua.24481]
[30]
Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol., 2002, 320(3), 597-608.
[http://dx.doi.org/10.1016/S0022-2836(02)00470-9] [PMID: 12096912]
[31]
Tran, P-T. Discovery of 1H-indazole-6-amine derivatives as anticancer agents: Simple but effective. Lett. Drug Des. Discov., 2023, 20(5), 581-588.
[http://dx.doi.org/10.2174/1570180819666220512144819]
[32]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[33]
Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 2015.
[34]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[35]
Subramani, P.A.; Shaik, F.B.; Michael, R.D.; Panati, K.; Narala, V.R. Thiamine: A natural Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activator. Lett. Drug Des. Discov., 2022, 19(10), 888-896.
[http://dx.doi.org/10.2174/1570180819666220127121403]
[36]
Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.; Maple, J.R.; Murphy, R.; Philipp, D.M.; Repasky, M.P.; Zhang, L.Y.; Berne, B.J.; Friesner, R.A.; Gallicchio, E.; Levy, R.M. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem., 2005, 26(16), 1752-1780.
[http://dx.doi.org/10.1002/jcc.20292] [PMID: 16211539]
[37]
Metibemu, D.S.; Ogungbe, I.V. Carotenoids in drug discovery and medicine: Pathways and molecular targets implicated in human diseases. Molecules, 2022, 27(18), 6005.
[http://dx.doi.org/10.3390/molecules27186005] [PMID: 36144741]
[38]
The ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study: Design, methods, participant characteristics, and compliance. Ann. Epidemiol., 1994, 4(1), 1-10.
[http://dx.doi.org/10.1016/1047-2797(94)90036-1] [PMID: 8205268]
[39]
Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med., 1994, 330(15), 1029-1035.
[http://dx.doi.org/10.1056/NEJM199404143301501] [PMID: 8127329]
[40]
Hagymási, K.; Egresi, A.; Lengyel, G. Antioxidánsok-antioxidánssokk: tények és kérdések, 2015. Orv. Hetil., 2015, 156(47), 1884-1887.
[http://dx.doi.org/10.1556/650.2015.30302] [PMID: 26568100]
[41]
Corbi, G.; Ali, S.; Intrieri, M.; Modaferri, S.; Calabrese, V.; Davinelli, S.; Scapagnini, G. Association between beta-carotene supplementation and mortality: A systematic review and meta-analysis of randomized controlled trials. Front. Med., 2022, 9, 872310.
[http://dx.doi.org/10.3389/fmed.2022.872310] [PMID: 35928292]
[42]
Shareck, M.; Rousseau, M.C.; Koushik, A.; Siemiatycki, J.; Parent, M.E. Inverse association between dietary intake of selected carotenoids and Vitamin C and risk of lung cancer. Front. Oncol., 2017, 7, 23.
[http://dx.doi.org/10.3389/fonc.2017.00023] [PMID: 28293540]
[43]
Yang, J.; Qian, S.; Na, X.; Zhao, A. Association between dietary and supplemental antioxidants intake and lung cancer risk: Evidence from a cancer screening trial. Antioxidants, 2023, 12(2), 338.
[http://dx.doi.org/10.3390/antiox12020338] [PMID: 36829901]
[44]
Rohini, A.; Agrawal, N.; Kumar, H.; Nath, V.; Kumar, V. Norbixin, an apocarotenoid derivative activates PPARγ in cardiometabolic syndrome: Validation by in silico and in vivo experimental assessment. Life Sci., 2018, 209, 69-77.
[45]
Zhao, H.; Gu, H.; Zhang, H.; Li, J.H.; Zhao, W.E. PPARγ-dependent pathway in the growth-inhibitory effects of K562 cells by carotenoids in combination with rosiglitazone. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(1), 545-555.
[http://dx.doi.org/10.1016/j.bbagen.2013.09.005] [PMID: 24036327]
[46]
Lobo, G.P.; Amengual, J.; Li, H.N.M.; Golczak, M.; Bonet, M.L.; Palczewski, K.; von Lintig, J. β,β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner. J. Biol. Chem., 2010, 285(36), 27891-27899.
[http://dx.doi.org/10.1074/jbc.M110.132571] [PMID: 20573961]
[47]
Bohn, T.; Desmarchelier, C.; El, S.N.; Keijer, J.; van Schothorst, E.; Rühl, R.; Borel, P. β-Carotene in the human body: Metabolic bioactivation pathways-from digestion to tissue distribution and excretion. Proc. Nutr. Soc., 2019, 78(1), 68-87.
[http://dx.doi.org/10.1017/S0029665118002641] [PMID: 30747092]
[48]
Matrisciano, F.; Pinna, G. The strategy of targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the treatment of neuropsychiatric disorders. Adv. Exp. Med. Biol., 2023, 1411, 513-535.

© 2024 Bentham Science Publishers | Privacy Policy