Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Integrating Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Paeoniflorin Exerts Antidepressant Effects

Author(s): Lili Su, Zixian Wang, Pengli Guo, Zhongmei He, Jianming Li, Yan Zhao, Ying Zong, Weijia Chen* and Rui Du*

Volume 21, Issue 15, 2024

Published on: 27 October, 2023

Page: [3206 - 3220] Pages: 15

DOI: 10.2174/0115701808269296231019055844

Price: $65

Abstract

Background: Paeoniflorin has been proven to have neuroprotective and antidepressant effects in several studies. However, there is currently no comprehensive elaboration of its antidepressant effects through network pharmacology combined with transcriptomics analysis. The purpose of this study is to explore the potential mechanisms by which paeoniflorin exerts its antidepressant effects using network pharmacology and transcriptomics sequencing approaches.

Methods: We utilized metascape to enrich the intersecting targets for paeoniflorin and depression for enrichment analyses. Additionally, we employed Cytoscape software to construct target pathway networks. For the screening of differentially expressed genes (DEGs) altered by paeoniflorin, we sequenced mRNA from the hippocampal tissue of CUMS model mice using the BMKCloud platform. We further enriched their biological functions and signaling pathways by using the Omishare database. The study utilized a combination of network pharmacology and transcriptomics analysis to evaluate the interactions between paeoniflorin and key targets. The results were then verified through a molecular docking process and a subsequent Western blot experiment.

Results: According to a comprehensive analysis, paeoniflorin has 19 key targets that are closely related to its therapeutic effect. Molecular docking revealed that paeoniflorin has a high affinity for HIF-1α, VEGFA, and other targets. Furthermore, protein expression and immunofluorescence staining analysis showed that paeoniflorin significantly increased the expression level of HIF-1α and VEGFA in the hippocampus of depression model mice.

Conclusion: These findings suggest that paeoniflorin may have therapeutic potential in depression through the activation of the HIF-1α-VEGFA pathway.

[1]
Goldstein, Z.; Rosen, B.; Howlett, A.; Anderson, M.; Herman, D. Interventions for paternal perinatal depression: A systematic review. J. Affect. Disord., 2020, 265, 505-510.
[http://dx.doi.org/10.1016/j.jad.2019.12.029] [PMID: 32090778]
[2]
Van Niel, M.S.; Payne, J.L. Perinatal depression: A review. Cleve. Clin. J. Med., 2020, 87(5), 273-277.
[http://dx.doi.org/10.3949/ccjm.87a.19054] [PMID: 32357982]
[3]
Cao, C.; He, X.; Wang, W.; Zhang, L.; Lin, H.; Du, L. Kinetic distribution of paeoniflorin in cortex of normal and cerebral ischemia-reperfusion rats after intravenous administration ofPaeoniae Radix extract. Biomed. Chromatogr., 2006, 20(12), 1283-1288.
[http://dx.doi.org/10.1002/bmc.658] [PMID: 17006964]
[4]
Jiang, Z.; Chen, J.; Chen, J.; Lei, Z.; Chen, H.; Wu, J.; Bai, X.; Wanyan, P.; Yu, Q. Anti-inflammatory effects of paeoniflorin caused by regulation of the hif1a/miR-210/caspase1/GSDMD signaling pathway in astrocytes: A novel strategy for hypoxia-induced brain injury in rats. Immunopharmacol. Immunotoxicol., 2021, 43(4), 410-418.
[http://dx.doi.org/10.1080/08923973.2021.1924194] [PMID: 34114917]
[5]
Guo, K.; Zhang, Y.; Li, L.; Zhang, J.; Rong, H.; Liu, D.; Wang, J.; Jin, M.; Luo, N.; Zhang, X. Neuroprotective effect of paeoniflorin in the mouse model of Parkinson’s disease through α-synuclein/protein kinase C δ subtype signaling pathway. Neuroreport, 2021, 32(17), 1379-1387.
[http://dx.doi.org/10.1097/WNR.0000000000001739] [PMID: 34718250]
[6]
Li, Y.; Zheng, X.; Xia, S.; Li, Y.; Deng, H.; Wang, X.; Chen, Y.; Yue, Y.; He, J.; Cao, Y. Paeoniflorin ameliorates depressive-like behavior in prenatally stressed offspring by restoring the HPA axis- and glucocorticoid receptor- associated dysfunction. J. Affect. Disord., 2020, 274, 471-481.
[http://dx.doi.org/10.1016/j.jad.2020.05.078] [PMID: 32663978]
[7]
Cheng, J.; Chen, M.; Wan, H.Q.; Chen, X.Q.; Li, C.F.; Zhu, J.X.; Liu, Q.; Xu, G.H.; Yi, L.T. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. J. Ethnopharmacol., 2021, 274, 114046.
[http://dx.doi.org/10.1016/j.jep.2021.114046] [PMID: 33753146]
[8]
Tian, D.D.; Wang, M.; Liu, A.; Gao, M.R.; Qiu, C.; Yu, W.; Wang, W.J.; Zhang, K.; Yang, L.; Jia, Y.Y.; Yang, C.B.; Wu, Y.M. Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway. Mol. Neurobiol., 2021, 58(2), 761-776.
[http://dx.doi.org/10.1007/s12035-020-02144-5] [PMID: 33025508]
[9]
Zhou, Y.; Wang, M.; Yan, S.; Kong, J.; Xie, P. Paeoniflorin prevents depression like behavior in rats by suppressing mitophagy mediated nod like receptor protein 3 inflammasome signaling. Pharmacogn. Mag., 2021, 17(74), 327-333.
[http://dx.doi.org/10.4103/pm.pm_85_20]
[10]
Mao, Q.Q.; Zhong, X.M.; Qiu, F.M.; Li, Z.Y.; Huang, Z. Protective effects of paeoniflorin against corticosterone-induced neurotoxicity in PC12 cells. Phytother. Res., 2012, 26(7), 969-973.
[http://dx.doi.org/10.1002/ptr.3673] [PMID: 22131171]
[11]
Zhong, X.; Li, G.; Qiu, F.; Huang, Z. Paeoniflorin Ameliorates Chronic Stress-Induced Depression-Like Behaviors and Neuronal Damages in Rats via Activation of the ERK-CREB Pathway. Front. Psychiatry, 2019, 9, 772.
[http://dx.doi.org/10.3389/fpsyt.2018.00772] [PMID: 30692946]
[12]
Hong, C.; Cao, J.; Wu, C.F.; Kadioglu, O.; Schuffler, A.; Kauhl, U.; Klauck, S.M.; Opatz, T.; Thines, E.; Paul, N.W.; Efferth, T. The Chinese herbal formula Free and Easy Wanderer ameliorates oxidative stress through KEAP1-NRF2/HO-1 pathway; Sci Rep-Uk, 2017, p. 7.
[13]
Chen, J.; Zhu, W.; Zeng, X.; Yang, K.; Peng, H.; Hu, L. Paeoniflorin exhibits antidepressant activity in rats with postpartum depression via the TSPO and BDNF mTOR pathways. Acta Neurobiol. Exp. (Warsz.), 2022, 82(3), 347-357.
[http://dx.doi.org/10.55782/ane-2022-033] [PMID: 36214717]
[14]
Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules, 2017, 22(7), 1135.
[http://dx.doi.org/10.3390/molecules22071135] [PMID: 28686181]
[15]
Yang, X.; Kui, L.; Tang, M.; Li, D.; Wei, K.; Chen, W.; Miao, J.; Dong, Y. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. Front. Genet., 2020, 11, 19.
[http://dx.doi.org/10.3389/fgene.2020.00019] [PMID: 32117438]
[16]
Cheng, M.; Li, T.; Hu, E.; Yan, Q.; Li, H.; Wang, Y.; Luo, J.; Tang, T. A novel strategy of integrating network pharmacology and transcriptome reveals antiapoptotic mechanisms of Buyang Huanwu Decoction in treating intracerebral hemorrhage. J. Ethnopharmacol., 2023, 319(Pt 1), 117123.
[17]
Zhang, W.; Sang, S.; Peng, C.; Li, G.Q.; Ou, L.; Feng, Z.; Zou, Y.; Yuan, Y.; Yao, M. Network Pharmacology and Transcriptomic Sequencing Analyses Reveal the Molecular Mechanism of Sanguisorba officinalis Against Colorectal Cancer. Front. Oncol., 2022, 12, 807718.
[18]
Kong, J.; Sun, S.; Min, F.; Hu, X.; Zhang, Y.; Cheng, Y.A-O.; Li, H.; Wang, X.; Liu, X. Integrating Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Hydroxysafflor Yellow A in Delaying Liver Aging. Int. J. Mol. Sci., 2022, 23(22), 14281.
[http://dx.doi.org/10.3390/ijms232214281]
[19]
Liu, Z.; Sun, Y.; Zhen, H.; Nie, C. Network Pharmacology Integrated with Transcriptomics Deciphered the Potential Mechanism of Codonopsis pilosula against Hepatocellular Carcinoma. Evid. Based Complement. Alternat. Med., 2022, 2022, 1340194.
[20]
ChemSource. Professional chemical search engine. Available From: https://www.chemsrc.com/
[21]
ChemSource. Explore Chemistry. Available From: https://pubchem.ncbi.nlm.nih.gov/
[22]
SIB. SwissTargetPrediction. 2019. Available From: http://www.swisstargetprediction.ch/
[23]
Comparative Toxicogenomics Database. Illuminating how chemicals affect human health. 2023. Available From: https://ctdbase.org/
[24]
GeneCards®. The Human Gene Database. 2023. Available From: https://www.genecards.org
[25]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010(0), baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[26]
OMIM. An Online Catalog of Human Genes and Genetic Disorders. 2023. Available From: https://www.omim.org
[27]
Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online Mendelian Inheritance in Man (OMIM ®): Victor MCKUSICK 's magnum opus. Am. J. Med. Genet. A., 2021, 185(11), 3259-3265.
[http://dx.doi.org/10.1002/ajmg.a.62407] [PMID: 34169650]
[28]
DrugBank. Building the foundation for better health outcomes. 2023. Available From: https://go.drugbank.com/
[29]
[30]
UniProt Available From: http:ww.uniprot.org/
[31]
STRING. Welcome to STRING. 2023. Available From: https://string-db.org/
[32]
Metascape. Multiple Gene List. 2023. Available From: https://metascape.org/
[33]
Bioinformatics. Available From: http://www.bioinformatics.com.cn/login/
[34]
Sun, X.; Zhang, T.; Zhao, Y.; Cai, E.; Zhu, H.; Liu, S. Panaxynol attenuates CUMS-induced anxiety and depressive-like behaviors via regulating neurotransmitters, synapses and the HPA axis in mice. Food Funct., 2020, 11(2), 1235-1244.
[http://dx.doi.org/10.1039/C9FO03104A] [PMID: 32048672]
[35]
Li, J.; Huang, S.; Huang, W.; Wang, W.; Wen, G.; Gao, L.; Fu, X.; Wang, M.; Liang, W.; Kwan, H.Y.; Zhao, X.; Lv, Z. Paeoniflorin ameliorates interferon-alpha-induced neuroinflammation and depressive-like behaviors in mice. Oncotarget, 2017, 8(5), 8264-8282.
[http://dx.doi.org/10.18632/oncotarget.14160] [PMID: 28030814]
[36]
BMKCloud. Eukaryotes have platforms for transcriptome analysis of reference genomes. 2023. Available From: https://international.biocloud.net/
[37]
RCSB Protein Data Bank. RCSB Protein Data Bank (RCSB PDB). 2023. Available From: https://www.rcsb.org/pdb/home/home.do
[38]
Ting, E.Y.C.; Yang, A.C.; Tsai, S.J. Role of Interleukin-6 in Depressive Disorder. Int. J. Mol. Sci., 2020, 21(6), 2194.
[http://dx.doi.org/10.3390/ijms21062194] [PMID: 32235786]
[39]
Nutt, D.J. Relationship of neurotransmitters to the symptoms of major depressive disorder. J. Clin. Psychiatry, 2008, 69(Suppl. E1), 4-7.
[PMID: 18494537]
[40]
Koenig, H.G. Depression in the medically ill: A common and serious disorder. Int. J. Psychiatry Med., 2008, 30(4), 295-297.
[41]
Zhang, Z.; Deng, T.; Wu, M.; Zhu, A.; Zhu, G. Botanicals as modulators of depression and mechanisms involved. Chin. Med., 2019, 14, 24.
[42]
Wang, Y.; Zhang, F.; Li, X.; Li, X.; Wang, J.; He, J.; Wu, X.; Chen, S.; Zhang, Y. A.-O.; Li, Y. A.-O.
[43]
Wu, W.; Zhang, Z.; Li, F.; Deng, Y.; Lei, M.A-O.; Long, H.; Hou, J.; Wu, W. A Network-Based Approach to Explore the Mechanisms of Uncaria Alkaloids in Treating Hypertension and Alleviating Alzheimer’s Disease. Int. J. Mol. Sci., 2020, 21(5), 1766.
[http://dx.doi.org/10.3390/ijms21051766]
[44]
Kumar, S.A-O.; Shih, C.M.; Tsai, L.A-O.; Dubey, R.A-O.; Gupta, D.; Chakraborty, T.; Sharma, N.; Singh, A.V.; Swarup, V.A-O.; Singh, H.A-O. Transcriptomic Profiling Unravels Novel Deregulated Gene Signatures Associated with Acute Myocardial Infarction: A Bioinformatics Approach. Genes (Basel)., 2022, 13(12), 2123.
[http://dx.doi.org/10.3390/genes13122321]
[45]
Xie, Z.; Huang, S.; Xie, S.; Zhou, W.; Li, C.; Xing, Z.; Wang, Z.; Wu, Z.; Li, M. Potential Correlation Between Depression-like Behavior and the Mitogen-Activated Protein Kinase Pathway in the Rat Hippocampus Following Spinal Cord Injury. World Neurosurg., 2021, 154, e29-e38.
[http://dx.doi.org/10.1016/j.wneu.2021.06.093] [PMID: 34271150]
[46]
Zhang, S.; Jiang, M.; Yan, S.; Liang, M.; Wang, W.; Yuan, B.; Xu, Q. Network Pharmacology-Based and Experimental Identification of the Effects of Paeoniflorin on Major Depressive Disorder. Front. Pharmacol., 2022, 12, 793012.
[http://dx.doi.org/10.3389/fphar.2021.793012] [PMID: 35185541]
[47]
Gao, F.; Yang, S.; Wang, J.; Zhu, G. cAMP-PKA cascade: An outdated topic for depression? Biomed. Pharmacother., 2022, 150, 113030.
[http://dx.doi.org/10.1016/j.biopha.2022.113030] [PMID: 35486973]
[48]
Zhao, D.; Zhang, J.; Wang, X. Effects of paeoniflorin and paeoniflorin on hippocampal monoamine neurotransmitters, cAMP, and cGMP in rats with chronic restraint stress and liver depression. World Traditional Chinese Medicine, 2018, 13(01), 146-150.
[49]
Shim, J.; Madsen, J. VEGF Signaling in Neurological Disorders. Int. J. Mol. Sci., 2018, 19(1), 275.
[http://dx.doi.org/10.3390/ijms19010275] [PMID: 29342116]
[50]
Kaelin, W.G., Jr; Ratcliffe, P.J. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell, 2008, 30(4), 393-402.
[http://dx.doi.org/10.1016/j.molcel.2008.04.009] [PMID: 18498744]
[51]
Kang, I.; Kondo, D.; Kim, J.; Lyoo, I.K.; Yurgelun-Todd, D.; Hwang, J.; Renshaw, P.F. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med. Hypotheses, 2021, 146, 110398.
[http://dx.doi.org/10.1016/j.mehy.2020.110398] [PMID: 33246695]
[52]
Haratizadeh, S.; Ranjbar, M.; Basiri, M.; Nozari, M. Astrocyte responses to postnatal erythropoietin and nano-erythropoietin treatments in a valproic acid-induced animal model of autism. J. Chem. Neuroanat., 2023, 130, 102257.
[http://dx.doi.org/10.1016/j.jchemneu.2023.102257] [PMID: 36918074]
[53]
Deyama, S.; Bang, E.; Wohleb, E.S.; Li, X.Y.; Kato, T.; Gerhard, D.M.; Dutheil, S.; Dwyer, J.M.; Taylor, S.R.; Picciotto, M.R.; Duman, R.S. Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine. Am. J. Psychiatry, 2019, 176(5), 388-400.
[http://dx.doi.org/10.1176/appi.ajp.2018.17121368] [PMID: 30606046]
[54]
Li, G.; Zhao, M.; Cheng, X.; Zhao, T.; Feng, Z.; Zhao, Y.; Fan, M.; Zhu, L. FG-4592 Improves Depressive-Like Behaviors through HIF-1-Mediated Neurogenesis and Synapse Plasticity in Rats. Neurotherapeutics, 2020, 17(2), 664-675.
[http://dx.doi.org/10.1007/s13311-019-00807-3] [PMID: 31820273]

© 2025 Bentham Science Publishers | Privacy Policy