Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

An Overview of Conventional and Black Cumin Seeds (Nigella sativa) Therapy in the Management of Nipah Viral Infection

Author(s): Naina Mohamed Pakkir Maideen, Rajkapoor Balasubramanian*, Mohamed Harsath Jahir Hussain, Rupeshkumar Mani, Thirumal Margesan and Vasanth Kumar Solaimalai

Volume 24, Issue 2, 2024

Published on: 25 October, 2023

Article ID: e251023222677 Pages: 10

DOI: 10.2174/0118715265258029231017112421

Price: $65

Abstract

The recent outbreaks of Nipah viral infection were associated with severe respiratory illness, lethal encephalitis, and an extremely high mortality rate. As there are no approved antiviral medications, patients with NiV infections are currently treated with repurposed or investigational antivirals and supportive care. This review examines the potential health benefits of N. sativa in the treatment of NiV infection. To identify relevant studies, the literature was searched in online databases like Medline/PubMed, Google Scholar, Science Direct, and reference lists. Through its antiviral, anti-inflammatory, antioxidant, anticonvulsant, immunomodulatory, bronchodilatory, and other properties, a number of studies have demonstrated that N. sativa is effective against a variety of viral infections, inflammatory conditions, neurological and respiratory illnesses, and other conditions. As a result, in the treatment of NiV-infected patients, N. sativa could be added as an adjuvant treatment alongside repurposed or investigational antivirals and supportive care. The efficacy of N. sativa in the treatment of NiV infection will be determined by the results of upcoming randomized controlled clinical trials.

Graphical Abstract

[1]
Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV. Evolution of nipah virus infection: Past, present, and future considerations. Trop Med Infect Dis 2021; 6(1): 24.
[http://dx.doi.org/10.3390/tropicalmed6010024] [PMID: 33672796]
[2]
Eaton BT, Broder CC, Middleton D, Wang LF. Hendra and Nipah viruses: Different and dangerous. Nat Rev Microbiol 2006; 4(1): 23-35.
[http://dx.doi.org/10.1038/nrmicro1323] [PMID: 16357858]
[3]
Dawes BE, Freiberg AN. Henipavirus infection of the central nervous system. Pathol Dis 2019; 77(2): ftz023.
[http://dx.doi.org/10.1093/femspd/ftz023]
[4]
Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6): e01875-17.
[http://dx.doi.org/10.1128/JCM.01875-17] [PMID: 29643201]
[5]
Aditi SM, Shariff M. Nipah virus infection: A review. Epidemiol Infect 2019; 147: e95.
[http://dx.doi.org/10.1017/S0950268819000086] [PMID: 30869046]
[6]
Soman Pillai V, Krishna G, Valiya Veettil M. Nipah virus: Past outbreaks and future containment. Viruses 2020; 12(4): 465.
[http://dx.doi.org/10.3390/v12040465] [PMID: 32325930]
[7]
Yob JM, Field H, Rashdi AM, et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 2001; 7(3): 439-41.
[http://dx.doi.org/10.3201/eid0703.017312] [PMID: 11384522]
[8]
Yadav PD, Sahay RR, Balakrishnan A, et al. Nipah virus outbreak in Kerala State, India amidst of COVID-19 pandemic. Front Public Health 2022; 10: 818545.
[http://dx.doi.org/10.3389/fpubh.2022.818545] [PMID: 35252095]
[9]
Islam MR, Dhar PS, Rahman MM. Newly outbreak of Nipah virus: epidemiology, symptoms, transmission, diagnostic testing, treatment, and global health concern. Int J Surg 2023; 109(3): 507-8.
[http://dx.doi.org/10.1097/JS9.0000000000000050] [PMID: 37093080]
[10]
World Health Organization (WHO). Disease Outbreak News-Nipah Virus Infection Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON442 (Accessed on 26th June 2023).
[11]
Paul D, Mohanty A, Shah A, Kumar Padhi B, Sah R. Outbreak of an emerging zoonotic Nipah virus: An emerging concern. J Biosaf Biosec 2023; 5(2): 57-9.
[http://dx.doi.org/10.1016/j.jobb.2023.04.002] [PMID: 37131986]
[12]
Goh KJ, Tan CT, Chew NK, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000; 342(17): 1229-35.
[http://dx.doi.org/10.1056/NEJM200004273421701] [PMID: 10781618]
[13]
Luby SP, Gurley ES, Hossain MJ, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus. Clin Infect Dis 2009; 49(11): 1743-8.
[http://dx.doi.org/10.1086/647951] [PMID: 19886791]
[14]
Nikolay B, Salje H, Hossain MJ, et al. Transmission of Nipah virus—14 years of investigations in Bangladesh. N Engl J Med 2019; 380(19): 1804-14.
[http://dx.doi.org/10.1056/NEJMoa1805376] [PMID: 31067370]
[15]
Ambat AS, Zubair SM, Prasad N, et al. Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making. J Infect Public Health 2019; 12(5): 634-9.
[http://dx.doi.org/10.1016/j.jiph.2019.02.013] [PMID: 30808593]
[16]
Mire CE, Satterfield BA, Geisbert JB, et al. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: Implications for antibody therapy. Sci Rep 2016; 6(1): 30916.
[http://dx.doi.org/10.1038/srep30916] [PMID: 27484128]
[17]
Siva SR, Chong HT, Tan CT. Ten year clinical and serological outcomes of Nipah virus infection. Neurol Asia 2009; 14: 53-8.
[18]
Hossain MJ, Gurley ES, Montgomery JM, et al. Clinical presentation of nipah virus infection in Bangladesh. Clin Infect Dis 2008; 46(7): 977-84.
[http://dx.doi.org/10.1086/529147] [PMID: 18444812]
[19]
Arunkumar G, Chandni R, Mourya DT, et al. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. J Infect Dis 2019; 219(12): 1867-78.
[http://dx.doi.org/10.1093/infdis/jiy612] [PMID: 30364984]
[20]
Ajith Kumar AK, Anoop Kumar AS. Deadly Nipah outbreak in Kerala: Lessons learned for the future. Indian J Crit Care Med 2018; 22(7): 475-6.
[http://dx.doi.org/10.4103/ijccm.IJCCM_282_18] [PMID: 30111920]
[21]
Chandni R, Renjith TP, Fazal A, et al. Clinical manifestations of nipah virus-infected patients who presented to the emergency department during an outbreak in Kerala State in India, May 2018. Clin Infect Dis 2020; 71(1): 152-7.
[http://dx.doi.org/10.1093/cid/ciz789] [PMID: 31627214]
[22]
Chandran P, Thomas B, Lilabi MP, et al. Nipah virus infection in Kozhikode, Kerala, South India, in 2018: Epidemiology of an outbreak of an emerging disease. Indian J Community Med 2019; 44(4): 383-7.
[http://dx.doi.org/10.4103/ijcm.IJCM_198_19] [PMID: 31802805]
[23]
Pallivalappil B, Ali A, Thulaseedharan NK, et al. Dissecting an outbreak: A clinico-epidemiological study of Nipah virus infection in Kerala, India, 2018. J Glob Infect Dis 2020; 12(1): 21-7.
[http://dx.doi.org/10.4103/jgid.jgid_4_19] [PMID: 32165798]
[24]
Montgomery JM, Hossain MJ, Gurley E, et al. Risk factors for Nipah virus encephalitis in Bangladesh. Emerg Infect Dis 2008; 14(10): 1526-32.
[http://dx.doi.org/10.3201/eid1410.060507] [PMID: 18826814]
[25]
Kenmoe S, Demanou M, Bigna JJ, et al. Case fatality rate and risk factors for Nipah virus encephalitis: A systematic review and meta-analysis. J Clin Virol 2019; 117: 19-26.
[http://dx.doi.org/10.1016/j.jcv.2019.05.009] [PMID: 31132674]
[26]
Dabra A, Arya P, Guarve K. Nipah Virus (NiV): Diagnosis, pathophysiology and treatment. Asian J Pharm Pharmacol 2018; 4(6): 739-41.
[http://dx.doi.org/10.31024/ajpp.2018.4.6.3]
[27]
Singh RK, Dhama K, Chakraborty S, et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies: A comprehensive review. Vet Q 2019; 39(1): 26-55.
[http://dx.doi.org/10.1080/01652176.2019.1580827] [PMID: 31006350]
[28]
Parveen S, Islam MS, Begum M, et al. It’s not only what you say, it’s also how you say it: Communicating Nipah virus prevention messages during an outbreak in Bangladesh. BMC Public Health 2016; 16(1): 726.
[http://dx.doi.org/10.1186/s12889-016-3416-z] [PMID: 27495927]
[29]
Ashraf L. Interventions for prevention of Nipah virus transmission and infection in Bangladesh. Arch Public Health 2020; 6(1): 66-8.
[30]
Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29(1): e2010.
[http://dx.doi.org/10.1002/rmv.2010] [PMID: 30251294]
[31]
Banerjee S, Gupta N, Kodan P, et al. Nipah virus disease: A rare and intractable disease. Intractable Rare Dis Res 2019; 8(1): 1-8.
[http://dx.doi.org/10.5582/irdr.2018.01130] [PMID: 30881850]
[32]
Beaucourt S, Vignuzzi M. Ribavirin: A drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr Opin Virol 2014; 8: 10-5.
[http://dx.doi.org/10.1016/j.coviro.2014.04.011] [PMID: 24846716]
[33]
Chong HT, Kamarulzaman A, Tan CT, et al. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001; 49(6): 810-3.
[http://dx.doi.org/10.1002/ana.1062] [PMID: 11409437]
[34]
Banerjee S, Niyas VKM, Soneja M, et al. First experience of ribavirin postexposure prophylaxis for Nipah virus, tried during the 2018 outbreak in Kerala, India. J Infect 2019; 78(6): 491-503.
[http://dx.doi.org/10.1016/j.jinf.2019.03.005] [PMID: 30851290]
[35]
Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol 2010; 91(3): 765-72.
[http://dx.doi.org/10.1099/vir.0.017269-0] [PMID: 19889926]
[36]
Georges-Courbot MC, Contamin H, Faure C, et al. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 2006; 50(5): 1768-72.
[http://dx.doi.org/10.1128/AAC.50.5.1768-1772.2006] [PMID: 16641448]
[37]
Łagocka R, Dziedziejko V, Kłos P, Pawlik A. Favipiravir in therapy of viral infections. J Clin Med 2021; 10(2): 273.
[http://dx.doi.org/10.3390/jcm10020273] [PMID: 33451007]
[38]
Dawes BE, Kalveram B, Ikegami T, et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep 2018; 8(1): 7604.
[http://dx.doi.org/10.1038/s41598-018-25780-3] [PMID: 29765101]
[39]
Shah A, Parmar B, Ghodawala M, Seth A. In silico drug discovery of novel small lead compounds targeting nipah virus attachment glycoprotein. J IntegHeal Sci 2018; 6(2): 60-3.
[http://dx.doi.org/10.4103/JIHS.JIHS_21_18]
[40]
Lipin R, Dhanabalan AK, Gunasekaran K, Solomon RV. Piperazine-substituted derivatives of favipiravir for Nipah virus inhibition: What do in silico studies unravel? SN Appl Sci 2021; 3(1): 110.
[http://dx.doi.org/10.1007/s42452-020-04051-9] [PMID: 33458565]
[41]
Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep 2017; 7(1): 43395.
[http://dx.doi.org/10.1038/srep43395] [PMID: 28262699]
[42]
Lo MK, Feldmann F, Gary JM, et al. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci Transl Med 2019; 11(494): eaau9242.
[http://dx.doi.org/10.1126/scitranslmed.aau9242] [PMID: 31142680]
[43]
Tit-oon P, Tharakaraman K, Artpradit C, et al. Prediction of the binding interface between monoclonal antibody m102.4 and Nipah attachment glycoprotein using structure-guided alanine scanning and computational docking. Sci Rep 2020; 10(1): 18256.
[http://dx.doi.org/10.1038/s41598-020-75056-y] [PMID: 33106487]
[44]
Zhu Z, Bossart KN, Bishop KA, et al. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis 2008; 197(6): 846-53.
[http://dx.doi.org/10.1086/528801] [PMID: 18271743]
[45]
Bossart KN, Zhu Z, Middleton D, et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 2009; 5(10): e1000642.
[http://dx.doi.org/10.1371/journal.ppat.1000642] [PMID: 19888339]
[46]
Geisbert TW, Mire CE, Geisbert JB, et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci Transl Med 2014; 6(242): 242ra82.
[http://dx.doi.org/10.1126/scitranslmed.3008929] [PMID: 24964990]
[47]
Playford EG, Munro T, Mahler SM, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study. Lancet Infect Dis 2020; 20(4): 445-54.
[http://dx.doi.org/10.1016/S1473-3099(19)30634-6] [PMID: 32027842]
[48]
Dang HV, Chan YP, Park YJ, et al. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat Struct Mol Biol 2019; 26(10): 980-7.
[http://dx.doi.org/10.1038/s41594-019-0308-9] [PMID: 31570878]
[49]
Mire CE, Chan YP, Borisevich V, et al. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal nipah virus and hendra virus infection. J Infect Dis 2020; 221(4): S471-9.
[http://dx.doi.org/10.1093/infdis/jiz515] [PMID: 31686101]
[50]
Tilburt J, Kaptchuk TJ. Herbal medicine research and global health: An ethical analysis. Bull World Health Organ 2008; 86(8): 594-9.
[http://dx.doi.org/10.2471/BLT.07.042820] [PMID: 18797616]
[51]
Welz AN, Emberger-Klein A, Menrad K. Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Altern Med 2018; 18(1): 92.
[http://dx.doi.org/10.1186/s12906-018-2160-6] [PMID: 29544493]
[52]
World Health Organization. WHO global report on traditional and complementary medicine. 2019. Available from: https://www.who.int/publications-detail/who-global-report-on-traditional-and-complementary-medicine-2019 (Accessed on 26th June 2023).
[53]
Maideen NMP. Prophetic Medicine-Nigella Sativa (Black cumin seeds): Potential herb for COVID-19? J Pharmacopuncture 2020; 23(2): 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[54]
Ahmad MF, Ahmad FA, Ashraf SA, et al. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25: 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[55]
Maideen NMP, Balasubramanian R, Ramanathan S. Nigella Sativa (Black Seeds), A potential herb for the pharmacotherapeutic management of hypertension: A review. Curr Cardiol Rev 2021; 17(4): e230421187786.
[http://dx.doi.org/10.2174/1573403X16666201110125906] [PMID: 33172379]
[56]
Maideen NMP. Antidiabetic Activity of Nigella Sativa (Black Seeds) and its active constituent (thymoquinone): A review of human and experimental animal studies. Chonnam Med J 2021; 57(3): 169-75.
[http://dx.doi.org/10.4068/cmj.2021.57.3.169] [PMID: 34621636]
[57]
Maideen NMP. Nigella Sativa (Black seeds): Potential herb to help weight loss. Curr Tradit Med 2022; 8(4): e091121197833.
[http://dx.doi.org/10.2174/2215083807666211109115834]
[58]
Maideen NM. Effects of Nigella sativa (Black seeds) supplementation on plasma lipid profile in human subjects : A review. Curr Nutrac 2022; 3.
[59]
Mohamed N. Probable beneficial effects of black seeds (Nigella sativa) in the management of langya henipavirus infection. Food and Health 2022; 4(4): 17.
[http://dx.doi.org/10.53388/FH20221101017]
[60]
Khan SH, Ansari J, Haq A, Abbas G. Black cumin seeds as phytogenic product in broiler diets and its effects on performance, blood constituents, immunity and caecal microbial population. Ital J Anim Sci 2012; 11(4): e77.
[http://dx.doi.org/10.4081/ijas.2012.e77]
[61]
Khan AU, Tipu MY, Shafee M, et al. In-ovo antiviral effect of Nigella sativa extract against Newcastle Disease Virus in experimentally infected chicken embryonated eggs. Pak Vet J 2018; 38(4): 434-7.
[http://dx.doi.org/10.29261/pakvetj/2018.075]
[62]
Ashraf S, Ashraf S, Ashraf M, et al. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multi-center placebo-controlled randomized clinical trial. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.30.20217364]
[63]
Koshak AE, Koshak EA, Mobeireek AF, et al. Nigella sativa supplementation accelerates recovery from mild COVID-19: First randomized controlled clinical trial (RCT). OSF Preprints 2020.
[http://dx.doi.org/10.31219/osf.io/urb6f]
[64]
Koshak AE, Koshak EA, Mobeireek AF, et al. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complement Ther Med 2021; 61: 102769.
[http://dx.doi.org/10.1016/j.ctim.2021.102769] [PMID: 34407441]
[65]
Al-Haidari KA, Faiq T, Ghareeb O. Clinical trial of black seeds against covid-19 in Kirkuk city/Iraq. Ind J Forensic Med Toxicol 2021; 15: 3393-9.
[66]
Al-Haidari KA, Faiq TN, Ghareeb OA. Preventive value of black seed in people at risk of infection with COVID-19. Pak J Med Health Sci 2021; 15: 384-7.
[67]
Maideen NMP. Potential of black seeds (Nigella sativa) in the management of COVID-19 among children. Int J Med Devi Adjuv treatm 2021; 4: e366.
[68]
Maideen NM, Rajkapoor B, Sudha M, Mirunalini G, Mohamed R. Therapeutic potentials of black seeds (Nigella sativa) in the management of COVOD-19: A review of clinical and In-silico studies. Antiinfect Agents 2022; 20: e020822207222.
[69]
Pakkir Maideen NM, Hassan Jumale A, Ramadan Barakat I, Khalifa Albasti A. Potential of black seeds (Nigella sativa) in the management of long COVID or post-acute sequelae of COVID-19 (PASC) and Persistent COVID-19 Symptoms: An insight. Infect Disord Drug Targets 2023; 23(4): e230223213955.
[http://dx.doi.org/10.2174/1871526523666230223112045] [PMID: 36825730]
[70]
Maideen NM. Miracle herb to cure HIV- black seeds (Nigella sativa): A review. Int J Med Rev 2021; 8(3): 116-21.
[71]
Barakat EMF, El Wakeel LM, Hagag RS. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol 2013; 19(16): 2529-36.
[http://dx.doi.org/10.3748/wjg.v19.i16.2529] [PMID: 23674855]
[72]
Abdel-Moneim A, Morsy BM, Mahmoud AM, Abo-Seif MA, Zanaty MI. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI J 2013; 12: 943-55.
[PMID: 27298610]
[73]
Umar S, Munir MT, Subhan S, et al. WITHDRAWN: Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J Saudi Soc Agric Sci 2016.
[http://dx.doi.org/10.1016/j.jssas.2016.09.004]
[74]
Umar S, Rehman A, Younus M, et al. Effects of Nigella sativa on immune responses and pathogenesis of avian influenza (H9N2) virus in turkeys. J Appl Poult Res 2016; 25(1): 95-103.
[http://dx.doi.org/10.3382/japr/pfv070]
[75]
Salem ML, Hossain MS. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol 2000; 22(9): 729-40.
[http://dx.doi.org/10.1016/S0192-0561(00)00036-9] [PMID: 10884593]
[76]
Aqil K, Khan MR, Aslam A, et al. In vitro antiviral activity of Nigella sativa against Peste des Petits Ruminants (PPR) Virus. Pak J Zool 2018; 50(6): 2223-8.
[http://dx.doi.org/10.17582/journal.pjz/2018.50.6.2223.2228]
[77]
Mohamed EF. Inhibition of Broad bean mosaic virus (BBMV) using extracts of Nigella (Nigella sativa L.) and Zizyphus (Zizyphus spina-christi Mill.) plants. Am J Sci 2011; 7(12): 727-34.
[78]
Elbeshehy EKF. Inhibitor activity of different medicinal plants extracts from Thuja orientalis, Nigella sativa L., Azadirachta indica and Bougainvillea spectabilis against Zucchini yellow mosaic virus (ZYMV) infecting Citrullus lanatus. Biotechnol Biotechnol Equip 2017; 31(2): 270-9.
[http://dx.doi.org/10.1080/13102818.2017.1279572]
[79]
Maurya S, Marimuthu P, Singh A, Rao GP, Singh G. Antiviral activity of essential oils and acetone extracts of medicinal plants against papaya ring spot virus. J Essent Oil-Bear Plants 2005; 8(3): 233-8.
[http://dx.doi.org/10.1080/0972060X.2005.10643452]
[80]
Mohamed A, Shoker A, Bendjelloul F, et al. Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor. Biomed Sci Instrum 2003; 39: 440-5.
[PMID: 12724933]
[81]
Mohamed A, Afridi DM, Garani O, Tucci M. Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed Sci Instrum 2005; 41: 388-93.
[PMID: 15850137]
[82]
Fahmy HM, Noor NA, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa as an anti-inflammatory and promising remyelinating agent in the cortex and hippocampus of experimental autoimmune encephalomyelitis-induced rats. J Basic Appl Zool 2014; 67(5): 182-95.
[http://dx.doi.org/10.1016/j.jobaz.2014.08.005]
[83]
Noor NA, Fahmy HM, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats. Int J Clin Exp Pathol 2015; 8(6): 6269-86.
[PMID: 26261504]
[84]
Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 2017; 435(1-2): 149-62.
[http://dx.doi.org/10.1007/s11010-017-3064-3] [PMID: 28551846]
[85]
Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A. Thymoquinone improves cognitive and hippocampal long-term potentiation deficits due to hepatic encephalopathy in rats. Iran J Basic Med Sci 2021; 24(7): 881-91.
[PMID: 34712417]
[86]
Hajipour S, Sarkaki A, Dianat M, Rashno M, Khorsandi LS, Farbood Y. The effects of thymoquinone on memory impairment and inflammation in rats with hepatic encephalopathy induced by thioacetamide. Metab Brain Dis 2021; 36(5): 991-1002. a
[http://dx.doi.org/10.1007/s11011-021-00688-6] [PMID: 33620578]
[87]
Ullah I, Badshah H, Naseer MI, Lee HY, Kim MO. Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromolecular Med 2015; 17(1): 35-46.
[http://dx.doi.org/10.1007/s12017-014-8337-3] [PMID: 25429759]
[88]
Shao Y, Feng Y, Xie Y, et al. Protective effects of thymoquinone against convulsant activity induced by lithium-pilocarpine in a model of status epilepticus. Neurochem Res 2016; 41(12): 3399-406.
[http://dx.doi.org/10.1007/s11064-016-2074-y] [PMID: 27752802]
[89]
Shao Y, Li B, Huang Y, Luo Q, Xie Y, Chen Y. Thymoquinone attenuates brain injury via an antioxidative pathway in a status epilepticus rat model. Transl Neurosci 2017; 8(1): 9-14.
[http://dx.doi.org/10.1515/tnsci-2017-0003] [PMID: 28400978]
[90]
Alhebshi AH, Gotoh M, Suzuki I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun 2013; 433(4): 362-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.139] [PMID: 23537659]
[91]
Morsy BM, Safwat GM, Hussein DA, Samy RM. The protective effect of Nigella Sativa oil extract against neurotoxicity induced by Valproic acid. Int J Bioassays 2017; 6(9): 5474.
[http://dx.doi.org/10.21746/ijbio.2017.9.2]
[92]
Kandeil MA, Mahmoud MO, Abdel-Razik ARH, Gomaa SB. Thymoquinone and geraniol alleviate cisplatin-induced neurotoxicity in rats through downregulating the p38 MAPK/STAT-1 pathway and oxidative stress. Life Sci 2019; 228: 145-51.
[http://dx.doi.org/10.1016/j.lfs.2019.04.065] [PMID: 31047895]
[93]
Etemad L, Roohbakhsh A, Moshiri M, Salehi Kakhki A, Iranshahy M, Amin F. Thymoquinone abrogates methamphetamine-induced striatal neurotoxicity and hyperlocomotor activity in mice. Res Pharm Sci 2021; 16(4): 391-9.
[http://dx.doi.org/10.4103/1735-5362.319577] [PMID: 34447447]
[94]
Gülşen İ, Ak H, Çölçimen N, et al. Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurg 2016; 86: 243-9.
[http://dx.doi.org/10.1016/j.wneu.2015.09.052] [PMID: 26428323]
[95]
Sandhu KS, Rana AC. Evaluation of antiparknsons activity of Nigella sativa(Kalonji) seeds in chlorpromazine induced experimental animal model. Int J Pharm Pharm Sci 2013; 5: 884-8.
[96]
Sedaghat R, Roghani M, Khalili M. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iran J Pharm Res 2014; 13(1): 227-34.
[PMID: 24734075]
[97]
Bawani SS, Anandhi DU. GC-MS Analysis of Nigella sativa seed extract and its ameliorative effects on transgenic drosophila model of parkinson disease. Int J Innov Sci Res Technol 2021; 6(4): 16-22.
[98]
Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 2012; 23(3): 241-9.
[http://dx.doi.org/10.1097/FBP.0b013e3283534301] [PMID: 22470103]
[99]
Ibrahim AbdEl Fattah L, Zickri MB, Aal LA, Heikal O, Osama E. The effect of thymoquinone, α7 receptor agonist and α7 receptor allosteric modulator on the cerebral cortex in experimentally induced Alzheimer’s disease in relation to MSCs activation. Int J Stem Cells 2016; 9(2): 230-8.
[http://dx.doi.org/10.15283/ijsc16021] [PMID: 27572711]
[100]
Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017; 96: 173-84.
[http://dx.doi.org/10.1016/j.cyto.2017.04.015] [PMID: 28432986]
[101]
Hosseini M, Zakeri S, Khoshdast S, et al. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide: Induced depression like behavior in rats. J Pharm Bioallied Sci 2012; 4(3): 219-25.
[http://dx.doi.org/10.4103/0975-7406.99052] [PMID: 22923964]
[102]
Aquib M, Najmi AK, Akhtar M. Antidepressant effect of thymoquinone in animal models of depression. Drug Res 2015; 65(9): 490-4.
[PMID: 25207705]
[103]
Fahmy HM, Khadrawy YA, Abd-El Daim TM, et al. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol Behav 2020; 222: 112934.
[http://dx.doi.org/10.1016/j.physbeh.2020.112934] [PMID: 32353367]
[104]
Boskabady MH, Javan H, Sajady M, Rakhshandeh H. The possible prophylactic effect of Nigella sativa seed extract in asthmatic patients. Fundam Clin Pharmacol 2007; 21(5): 559-66.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00509.x] [PMID: 17868210]
[105]
Boskabady MH, Mohsenpoor N, Takaloo L. Antiasthmatic effect of Nigella sativa in airways of asthmatic patients. Phytomedicine 2010; 17(10): 707-13.
[http://dx.doi.org/10.1016/j.phymed.2010.01.002] [PMID: 20149611]
[106]
Ahmad J, Khan RA, Malik MA. Study of Nigella sativa oil in the management of wheeze associated lower respiratory tract illness in children. Afr J Pharm Pharmacol 2009; 3(5): 248-51.
[107]
Montazeri RS, Fatahi S, Sohouli MH, et al. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: A systematic review and meta‐analysis of randomized controlled trials. J Food Biochem 2021; 45(4): e13625.
[http://dx.doi.org/10.1111/jfbc.13625] [PMID: 33559935]
[108]
Malekian S, Ghassab-Abdollahi N, Mirghafourvand M, Farshbaf-Khalili A. The effect of Nigella sativa on oxidative stress and inflammatory biomarkers: A systematic review and meta-analysis. J Complement Integr Med 2021; 18(2): 235-59.
[http://dx.doi.org/10.1515/jcim-2019-0198] [PMID: 34187123]
[109]
Tavakoly R, Arab A, Vallianou N, et al. The effect of Nigella sativa L. supplementation on serum C-reactive protein: A systematic review and meta‐analysis of randomized controlled trials. Complement Ther Med 2019; 45: 149-55.
[http://dx.doi.org/10.1016/j.ctim.2019.06.008] [PMID: 31331553]
[110]
Mohit M, Farrokhzad A, Faraji SN, Heidarzadeh-Esfahani N, Kafeshani M. Effect of Nigella sativa L. supplementation on inflammatory and oxidative stress indicators: A systematic review and meta-analysis of controlled clinical trials. Complement Ther Med 2020; 54: 102535.
[http://dx.doi.org/10.1016/j.ctim.2020.102535] [PMID: 33183658]
[111]
Mihoubi W, Sahli E, Rezgui F, et al. Whole and purified aqueous extracts of Nigella sativa L. seeds attenuate apoptosis and the overproduction of reactive oxygen species triggered by p53 over-expression in the yeast Saccharomyces cerevisiae. Cells 2022; 11(5): 869.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy