Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Marine Polysaccharides for Gene Delivery: Approaches and Prospective

Author(s): Shubham Kumar Thakur, Priyanshi Goyal and Rishabha Malviya*

Volume 17, Issue 5, 2024

Published on: 24 October, 2023

Page: [427 - 443] Pages: 17

DOI: 10.2174/0126661454257825231012191447

Price: $65

Abstract

Polysaccharides from marine sources have been increasingly used in recent research due to their availability, affordability, biocompatibility, and biodegradability. These features make them promising candidates for use in nanotechnology in a wide variety of drug delivery systems, including those for gene therapy, tissue engineering, cancer therapy, wound dressing, biosensors, and water purification. Marine polysaccharides are of particular interest due to their distinct physicochemical and biological properties like chitin, alginate, carrageenan, fucoidan, and chitosan has inspired an array of nanostructures. This article summarizes the history, chemical composition, biological functions, and nanomedical uses of these marine polysaccharides. Marine polysaccharides are the topic of this review due to their potential utility in gene transfer.

Next »
[1]
Appeltans W, Ahyong ST, Anderson G, et al. The magnitude of global marine species diversity. Curr Biol 2012; 22(23): 2189-202.
[http://dx.doi.org/10.1016/j.cub.2012.09.036] [PMID: 23159596]
[2]
Zhang G, Li J, Zhu T, Gu Q, Li D. Advanced tools in marine natural drug discovery. Curr Opin Biotechnol 2016; 42: 13-23.
[http://dx.doi.org/10.1016/j.copbio.2016.02.021] [PMID: 26954946]
[3]
Kong DX, Jiang YY, Zhang HY. Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 2010; 15(21-22): 884-6.
[http://dx.doi.org/10.1016/j.drudis.2010.09.002] [PMID: 20869461]
[4]
Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 2014; 12(2): 1066-101.
[http://dx.doi.org/10.3390/md12021066] [PMID: 24549205]
[5]
Cardoso M, Costa R, Mano J. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[6]
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov 2009; 8(1): 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[7]
Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 2008; 12(3): 306-17.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.016] [PMID: 18423384]
[8]
Simon C, Daniel R. Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 2009; 85(2): 265-76.
[http://dx.doi.org/10.1007/s00253-009-2233-z] [PMID: 19760178]
[9]
Xiong ZQ, Wang JF, Hao YY, Wang Y. Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 2013; 11(12): 700-17.
[http://dx.doi.org/10.3390/md11030700] [PMID: 23528949]
[10]
Ashforth EJ, Fu C, Liu X, et al. Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 2010; 27(11): 1709-19.
[http://dx.doi.org/10.1039/c0np00008f] [PMID: 20922218]
[11]
Arpicco S, Battaglia L, Brusa P, et al. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Deliv Sci Technol 2016; 32: 298-312.
[http://dx.doi.org/10.1016/j.jddst.2015.09.004]
[12]
Pereira D. Valentão P, Andrade P. Nano- and microdelivery systems for marine bioactive lipids. Mar Drugs 2014; 12(12): 6014-27.
[http://dx.doi.org/10.3390/md12126014] [PMID: 25522314]
[13]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[14]
El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004; 94(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.013] [PMID: 14684267]
[15]
Olefsky JM. Gene therapy for rats and mice. Nature 2000; 408(6811): 420-1.
[http://dx.doi.org/10.1038/35044177] [PMID: 11100710]
[16]
Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet 2005; 54: 1-20.
[http://dx.doi.org/10.1016/S0065-2660(05)54001-X] [PMID: 16096005]
[17]
Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther 2012; 19(6): 694-700.
[http://dx.doi.org/10.1038/gt.2012.20] [PMID: 22402323]
[18]
Lehrman S. Virus treatment questioned after gene therapy death. Nature 1999; 401(6753): 517-8.
[http://dx.doi.org/10.1038/43977] [PMID: 10524611]
[19]
Sun JY, Anand-Jawa V, Chatterjee S, Wong KK Jr. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 2003; 10(11): 964-76.
[http://dx.doi.org/10.1038/sj.gt.3302039] [PMID: 12756417]
[20]
Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 2016; 14(3): 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[21]
de Jesus Raposo M, de Morais A, de Morais R. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[22]
Raemdonck K, Martens TF, Braeckmans K, Demeester J, De Smedt SC. Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev 2013; 65(9): 1123-47.
[http://dx.doi.org/10.1016/j.addr.2013.05.002] [PMID: 23680381]
[23]
Dumitriu S. Polysaccharides: structural diversity and functional versatility. CRC press 2004.
[http://dx.doi.org/10.1201/9781420030822]
[24]
Goodarzi N, Varshochian R, Kamalinia G, Atyabi F, Dinarvand R. A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydr Polym 2013; 92(2): 1280-93.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.036] [PMID: 23399156]
[25]
Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev 2012; 41(7): 2623-40.
[http://dx.doi.org/10.1039/C1CS15239D] [PMID: 22085917]
[26]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[27]
Kosaraju SL. Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Crit Rev Food Sci Nutr 2005; 45(4): 251-8.
[http://dx.doi.org/10.1080/10408690490478091] [PMID: 16047493]
[28]
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 2013; 65(9): 1148-71.
[http://dx.doi.org/10.1016/j.addr.2013.04.016] [PMID: 23639519]
[29]
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65(9): 1234-70.
[http://dx.doi.org/10.1016/j.addr.2013.07.005] [PMID: 23872012]
[30]
Cao X, Hou D, Wang L, et al. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res 2016; 49(1): 32.
[http://dx.doi.org/10.1186/s40659-016-0093-4] [PMID: 27378167]
[31]
Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 2014; 193: 162-73.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.014] [PMID: 24845128]
[32]
Yang L, Wang P, Wang H, et al. Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs 2013; 11(6): 1961-76.
[http://dx.doi.org/10.3390/md11061961] [PMID: 23752353]
[33]
Li Q, Dunn ET, Grandmaison EW, Goosen MFA. Applications and properties of chitosan. J Bioact Compat Polym 1992; 7(4): 370-97.
[http://dx.doi.org/10.1177/088391159200700406]
[34]
Leung TCY, Wong CK, Xie Y. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan. Mater Chem Phys 2010; 121(3): 402-5.
[http://dx.doi.org/10.1016/j.matchemphys.2010.02.026]
[35]
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 2015; 13(3): 1133-74.
[http://dx.doi.org/10.3390/md13031133] [PMID: 25738328]
[36]
Mano JF. Stimuli‐responsive polymeric systems for biomedical applications. Adv Eng Mater 2008; 10(6): 515-27.
[http://dx.doi.org/10.1002/adem.200700355]
[37]
Saneja A, Nehate C, Alam N, Gupta PN. Recent advances in chitosan-based nanomedicines for cancer chemotherapy. In: Chitin and chitosan for regenerative medicine. 2016; pp. 229-59.
[38]
Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm 2012; 81(3): 463-9.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.007] [PMID: 22561955]
[39]
Ravi Kumar MNV. A review of chitin and chitosan applications. React Funct Polym 2000; 46(1): 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[40]
Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 2009; 76(2): 167-82.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.002]
[41]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[42]
Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci 2009; 34(7): 641-78.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[43]
Jang MK, Kong BG, Jeong YI, Lee CH, Nah JW. Physicochemical characterization of? -chitin? -chitin, and? -chitin separated from natural resources. J Polym Sci A Polym Chem 2004; 42(14): 3423-32.
[http://dx.doi.org/10.1002/pola.20176]
[44]
Qin Y, Lu X, Sun N, Rogers RD. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 2010; 12(6): 968-71.
[http://dx.doi.org/10.1039/c003583a]
[45]
Barber PS, Griggs CS, Bonner JR, Rogers RD. Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 2013; 15(3): 601-7.
[http://dx.doi.org/10.1039/c2gc36582k]
[46]
Shamshina JL, Zavgorodnya O, Choudhary H, Frye B, Newbury N, Rogers RD. In search of stronger/cheaper chitin nanofibers through electrospinning of chitin–cellulose composites using an ionic liquid platform. ACS Sustain Chem& Eng 2018; 6(11): 14713-22.
[http://dx.doi.org/10.1021/acssuschemeng.8b03269]
[47]
Setoguchi T, Kato T, Yamamoto K, Kadokawa J. Facile production of chitin from crab shells using ionic liquid and citric acid. Int J Biol Macromol 2012; 50(3): 861-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.007] [PMID: 22108289]
[48]
Wang WT, Zhu J, Wang XL, Huang Y, Wang YZ. Dissolution behavior of chitin in ionic liquids. J Macromol Sci Part B Phys 2010; 49(3): 528-41.
[http://dx.doi.org/10.1080/00222341003595634]
[49]
Li J, Huang WC, Gao L, Sun J, Liu Z, Mao X. Efficient enzymatic hydrolysis of ionic liquid pretreated chitin and its dissolution mechanism. Carbohydr Polym 2019; 211: 329-35.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.027] [PMID: 30824097]
[50]
Uto T, Idenoue S, Yamamoto K, Kadokawa J. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. Phys Chem Chem Phys 2018; 20(31): 20669-77.
[http://dx.doi.org/10.1039/C8CP02749H] [PMID: 30059116]
[51]
Tajiri R, Setoguchi T, Wakizono S, Yamamoto K, Kadokawa JI. Preparation of self-assembled chitin nanofibers by regeneration from ion gels using calcium halide· dihydrate/methanol solutions. J Biobased Mater Bioenergy 2013; 7(5): 655-9.
[http://dx.doi.org/10.1166/jbmb.2013.1393]
[52]
Ifuku S, Saimoto H. Chitin nanofibers: preparations, modifications, and applications. Nanoscale 2012; 4(11): 3308-18.
[http://dx.doi.org/10.1039/C2NR30383C] [PMID: 22539071]
[53]
Silva SS, Duarte ARC, Mano JF, Reis RL. Design and functionalization of chitin-based microsphere scaffolds. Green Chem 2013; 15(11): 3252-8.
[http://dx.doi.org/10.1039/c3gc41060a]
[54]
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28(1): 142-50.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.001] [PMID: 19913083]
[55]
Brondani D, Dupont J, Spinelli A, Vieira IC. Development of biosensor based on ionic liquid and corn peroxidase immobilized on chemically crosslinked chitin. Sens Actuators B Chem 2009; 138(1): 236-43.
[http://dx.doi.org/10.1016/j.snb.2008.12.021]
[56]
Xie H, Zhang S, Li S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 2006; 8(7): 630-3.
[http://dx.doi.org/10.1039/b517297g]
[57]
Mallik AK, Shahruzzaman M, Zaman A, et al. Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedical use.In: Functional polysaccharides for biomedical applications. Woodhead Publishing 2019; pp. 131-71.
[http://dx.doi.org/10.1016/B978-0-08-102555-0.00004-2]
[58]
Silva TH, Duarte ARC, Moreira-Silva J, Mano JF, Reis RL. Biomaterials from marine-origin biopolymers. In: Biomimetic Approaches for Biomaterials Development. 2012; pp. 1-23.
[59]
Silva SS, Fernandes EM, Silva-Correia J, et al. Natural-origin materials for tissue engineering and regenerative medicine. Comprehensive Biomaterials 2017; II: 3-5.
[60]
Siew CK, Williams PA, Young NWG. New insights into the mechanism of gelation of alginate and pectin: charge annihilation and reversal mechanism. Biomacromolecules 2005; 6(2): 963-9.
[http://dx.doi.org/10.1021/bm049341l] [PMID: 15762666]
[61]
Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials 2004; 25(16): 3187-99.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.002] [PMID: 14980414]
[62]
Ding C, Zhang M, Zhao F, Zhang S. Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid. Anal Biochem 2008; 378(1): 32-7.
[http://dx.doi.org/10.1016/j.ab.2008.03.036] [PMID: 18406831]
[63]
Shamshina JL, Gurau G, Block LE, et al. Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J Mater Chem B Mater Biol Med 2014; 2(25): 3924-36.
[http://dx.doi.org/10.1039/C4TB00329B] [PMID: 32261644]
[64]
Necas J, Bartosikova L. Carrageenan: a review. Vet Med (Praha) 2013; 58(4): 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[65]
Campo VL, Kawano DF, Silva DB Jr, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis – A review. Carbohydr Polym 2009; 77(2): 167-80.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.020]
[66]
Han DK, Park KD, Ahn KD, Jeong SY, Kim YH. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J Biomed Mater Res 1989; 23(S13) (Suppl.): 87-104.
[http://dx.doi.org/10.1002/jbm.820231309] [PMID: 2722907]
[67]
Tu R, Lu CL, Thyagarajan K, et al. Kinetic study of collagen fixation with polyepoxy fixatives. J Biomed Mater Res 1993; 27(1): 3-9.
[http://dx.doi.org/10.1002/jbm.820270103] [PMID: 8420998]
[68]
Chen JP, Chu IM, Shiao MY, Hsu BRS, Fu SH. Microencapsulation of islets in PEG-amine modified alginate-poly(l-lysine)-alginate microcapsules for constructing bioartificial pancreas. J Ferment Bioeng 1998; 86(2): 185-90.
[http://dx.doi.org/10.1016/S0922-338X(98)80059-7]
[69]
Chandy T, Mooradian DL, Rao GHR. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin. J Appl Polym Sci 1998; 70(11): 2143-53.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19981212)70:11<2143:AID-APP7>3.0.CO;2-L]
[70]
Yong CS, Jung JH, Rhee JD, Kim CK, Choi HG. Physicochemical characterization and evaluation of buccal adhesive tablets containing omeprazole. Drug Dev Ind Pharm 2001; 27(5): 447-55.
[http://dx.doi.org/10.1081/DDC-100104320] [PMID: 11448052]
[71]
Srivastava R, Brown JQ, Zhu H, McShane MJ. Stabilization of glucose oxidase in alginate microspheres with photoreactive diazoresin nanofilm coatings. Biotechnol Bioeng 2005; 91(1): 124-31.
[http://dx.doi.org/10.1002/bit.20469] [PMID: 15849694]
[72]
Miyazaki S, Nakayama A, Oda M, Takada M, Attwood D. Drug release from oral mucosal adhesive tablets of chitosan and sodium alginate. Int J Pharm 1995; 118(2): 257-63.
[http://dx.doi.org/10.1016/0378-5173(94)00396-M]
[73]
Strand BL. Gåserød O, Kulseng B, Espevik T, Skjåk-Bræk G. Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. J Microencapsul 2002; 19(5): 615-30.
[http://dx.doi.org/10.1080/02652040210144243] [PMID: 12433304]
[74]
Murata Y, Sasaki N, Miyamoto E, Kawashima S. Use of floating alginate gel beads for stomach-specific drug delivery. Eur J Pharm Biopharm 2000; 50(2): 221-6.
[http://dx.doi.org/10.1016/S0939-6411(00)00110-7] [PMID: 10962231]
[75]
Choi BY, Park HJ, Hwang SJ, Park JB. Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm 2002; 239(1-2): 81-91.
[http://dx.doi.org/10.1016/S0378-5173(02)00054-6] [PMID: 12052693]
[76]
Yazdani-Pedram M, Lagos A, Retuert PJ. Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polym Bull 2002; 48(1): 93-8.
[http://dx.doi.org/10.1007/s00289-002-0006-2]
[77]
Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials 2002; 23(15): 3193-201.
[http://dx.doi.org/10.1016/S0142-9612(02)00071-6] [PMID: 12102191]
[78]
Chun MK, Cho CS, Choi HK. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release 2002; 81(3): 327-34.
[http://dx.doi.org/10.1016/S0168-3659(02)00078-0] [PMID: 12044571]
[79]
Ahn JS, Choi HK, Cho CS. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan. Biomaterials 2001; 22(9): 923-8.
[http://dx.doi.org/10.1016/S0142-9612(00)00256-8] [PMID: 11311011]
[80]
Shojaei AH, Paulson J, Honary S. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion. J Control Release 2000; 67(2-3): 223-32.
[http://dx.doi.org/10.1016/S0168-3659(00)00216-9] [PMID: 10825556]
[81]
Peniche C, Argüelles-Monal W, Davidenko N, Sastre R, Gallardo A. San Román J. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials 1999; 20(20): 1869-78.
[http://dx.doi.org/10.1016/S0142-9612(99)00048-4] [PMID: 10514063]
[82]
Mumper RJ, Huffman AS, Puolakkainen PA, Bouchard LS, Gombotz WR. Calcium-alginate beads for the oral delivery of transforming growth factor-β1 (TGF-β1): stabilization of TGF-β1 by the addition of polyacrylic acid within acid-treated beads. J Control Release 1994; 30(3): 241-51.
[http://dx.doi.org/10.1016/0168-3659(94)90030-2]
[83]
Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50(1): 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[84]
Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 1996; 17(16): 1553-61.
[http://dx.doi.org/10.1016/0142-9612(95)00307-X] [PMID: 8842358]
[85]
Limer AJ, Rullay AK, Miguel VS, et al. Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. React Funct Polym 2006; 66(1): 51-64.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2005.07.024]
[86]
Zia KM, Tabasum S, Nasif M, et al. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96: 282-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.095] [PMID: 27914965]
[87]
Jiao G, Yu G, Zhang J, Ewart H. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[88]
Therkelsen GH. Carrageenan. In: Industrial Gums. Amsterdam, The Netherlands: Elsevier 1993; pp. 145-80.
[http://dx.doi.org/10.1016/B978-0-08-092654-4.50011-5]
[89]
Kariduraganavar MY, Kittur AA, Kamble RR. Polymer synthesis and processing. In: Natural and Synthetic Biomedical Polymers. Amsterdam, The Netherlands: Elsevier 2014; pp. 1-31.
[http://dx.doi.org/10.1016/B978-0-12-396983-5.00001-6]
[90]
Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym 2014; 103: 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.008] [PMID: 24528694]
[91]
BeMiller JN CarrageenansCarbohydrate Chemistry for Food Scientists. Amsterdam, The Netherlands: Elsevier 2019; pp. 279-91.
[92]
Nguyen BT, Nicolai T, Benyahia L, Chassenieux C. Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydr Polym 2014; 112: 10-5.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.048] [PMID: 25129710]
[93]
Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003; 13(6): 29R-40.
[http://dx.doi.org/10.1093/glycob/cwg058] [PMID: 12626402]
[94]
Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and Bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[95]
Kalsoom Khan A, Saba AU, Nawazish S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8158315] [PMID: 28303171]
[96]
McKim JM, Willoughby JA Sr, Blakemore WR, Weiner ML. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Crit Rev Food Sci Nutr 2019; 59(19): 3054-73.
[http://dx.doi.org/10.1080/10408398.2018.1481822] [PMID: 29902080]
[97]
Venkatesan J, Anil S, Kim SK, Eds. Seaweed Polysaccharides: isolation, biological and biomedical applications. Seaweed Polysaccharides and Their Production and Applications 2017.
[98]
Anastyuk SD, Shevchenko NM, Nazarenko EL, Dmitrenok PS, Zvyagintseva TN. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydr Res 2009; 344(6): 779-87.
[http://dx.doi.org/10.1016/j.carres.2009.01.023] [PMID: 19230864]
[99]
Huang YC, Lam UI. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J Chin Chem Soc (Taipei) 2011; 58(6): 779-85.
[http://dx.doi.org/10.1002/jccs.201190121]
[100]
Balboa EM, Conde E, Moure A, Falqué E. Domínguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 2013; 138(2-3): 1764-85.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.026] [PMID: 23411309]
[101]
Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed ecklonia kurome and their blood-anticoagulant activities. Carbohydr Res 1989; 186(1): 119-29.
[http://dx.doi.org/10.1016/0008-6215(89)84010-8] [PMID: 2720702]
[102]
Kuznetsova TA, Besednova NN, Mamaev AN, Momot AP, Shevchenko NM, Zvyagintseva TN. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea. Bull Exp Biol Med 2003; 136(5): 471-3.
[http://dx.doi.org/10.1023/B:BEBM.0000017096.72246.1f] [PMID: 14968163]
[103]
Yan MD, Yao CJ, Chow JM, et al. Fucoidan elevates microRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Mar Drugs 2015; 13(10): 6099-116.
[http://dx.doi.org/10.3390/md13106099] [PMID: 26404322]
[104]
Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci 2008; 33(11): 1088-118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[105]
Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009; 4(2)022001
[http://dx.doi.org/10.1088/1748-6041/4/2/022001] [PMID: 19261988]
[106]
Rocha de Souza MC, Marques CT, Guerra Dore CM, Ferreira da Silva FR, Oliveira Rocha HA, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 2007; 19(2): 153-60.
[http://dx.doi.org/10.1007/s10811-006-9121-z] [PMID: 19396353]
[107]
Black WAP, Dewar ET, Woodward FN. Manufacture of algal chemicals. IV-Laboratory-scale isolation of fucoidin from brown marine algae. J Sci Food Agric 1952; 3(3): 122-9.
[http://dx.doi.org/10.1002/jsfa.2740030305]
[108]
Kawamoto H, Miki Y, Kimura T, et al. Effects of fucoidan from Mozuku on human stomach cell lines. Food Sci Technol Res 2006; 12(3): 218-22.
[http://dx.doi.org/10.3136/fstr.12.218]
[109]
Yang J, Han S, Zheng H, Dong H, Liu J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 2015; 123: 53-66.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.029] [PMID: 25843834]
[110]
D’Ayala G, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 2008; 13(9): 2069-106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[111]
Kurosaki T, Kitahara T, Kawakami S, et al. The development of a gene vector electrostatically assembled with a polysaccharide capsule. Biomaterials 2009; 30(26): 4427-34.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.041] [PMID: 19473696]
[112]
dos Santos MA, Grenha A. Polysaccharide nanoparticles for protein and Peptide delivery: exploring less-known materials. Adv Protein Chem Struct Biol 2015; 98: 223-61.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.003] [PMID: 25819281]
[113]
Manivasagan P, Bharathiraja S, Bui NQ, et al. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 2016; 91: 578-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.007] [PMID: 27267570]
[114]
Lira MCB, Santos-Magalhães NS, Nicolas V, et al. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm 2011; 79(1): 162-70.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.013] [PMID: 21349331]
[115]
Farkaš V. Fungal cell walls: Their structure, biosynthesis and biotechnological aspects. Acta Biotechnol 1990; 10(3): 225-38.
[http://dx.doi.org/10.1002/abio.370100303]
[116]
Sun P, Li P, Li YM, Wei Q, Tian LH. A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery. J Biomed Mater Res B Appl Biomater 2011; 97B(1): 175-83.
[http://dx.doi.org/10.1002/jbm.b.31801] [PMID: 21290595]
[117]
Zhang Y, Wei W, Lv P, Wang L, Ma G. Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm 2011; 77(1): 11-9.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.016] [PMID: 20933083]
[118]
Prego C. García M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release 2005; 101(1-3): 151-62.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.030] [PMID: 15588901]
[119]
Prego C, Fabre M, Torres D, Alonso MJ. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 2006; 23(3): 549-56.
[http://dx.doi.org/10.1007/s11095-006-9570-8] [PMID: 16525861]
[120]
Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line1 1Abbreviations: AP = apical; BL = basolateral; 2-DOG = 2-deoxyglucose; HBSS = Hanks balanced salt solution; FITC = fluorescein isothiocyanate; HEPES = N-2-hydroxyethyl piperazine-N-4-butanesulfonic acid; HMW = high molecular weight; LMW = low molecular weight; MES = morpholinoethane sulfonic acid; PBS+ = phosphate buffered saline; PEI = polyethylenimine; TEER = transepithelial electrical resistance; TRITC = tetramethylrodamine isothiocyanate. J Nutr Biochem 2002; 13(3): 157-67.
[http://dx.doi.org/10.1016/S0955-2863(01)00208-X] [PMID: 11893480]
[121]
Yeh TH, Hsu LW, Tseng MT, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011; 32(26): 6164-73.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.056] [PMID: 21641031]
[122]
Sonaje K, Lin KJ, Tseng MT, et al. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials 2011; 32(33): 8712-21.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.086] [PMID: 21862121]
[123]
Şenel S, Kremer MJ, Kaş S, Wertz PW, Hıncal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 2000; 21(20): 2067-71.
[http://dx.doi.org/10.1016/S0142-9612(00)00134-4] [PMID: 10966016]
[124]
Dyer AM, Hinchcliffe M, Watts P, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 2002; 19(7): 998-1008.
[http://dx.doi.org/10.1023/A:1016418523014] [PMID: 12180553]
[125]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36(8): 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[126]
Qi LF, Xu ZR, Li Y, Jiang X, Han XY. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 2005; 11(33): 5136-41.
[PMID: 16127742]
[127]
Ponchel G, Irache J. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev 1998; 34(2-3): 191-219.
[http://dx.doi.org/10.1016/S0169-409X(98)00040-4] [PMID: 10837678]
[128]
Bernkopschnürch A. Thiomers: A new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005; 57(11): 1569-82.
[http://dx.doi.org/10.1016/j.addr.2005.07.002] [PMID: 16176846]
[129]
Greene WH. Biochemistry of antimicrobial action. Yale J Biol Med 1977; 50(1): 87.
[130]
Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol 1992; 6(3): 257-72.
[http://dx.doi.org/10.1080/08905439209549838]
[131]
Leuba JL, Stossel P. Chitosan and other polyamines: Antifungal activity and interaction with biological membranes. In: Chitin in nature and technology. 1986; pp. 215-22.
[132]
Park PJ, Je JY, Kim SK. Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem 2003; 51(16): 4624-7.
[http://dx.doi.org/10.1021/jf034039+] [PMID: 14705887]
[133]
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett 2018; 16(1): 101-12.
[http://dx.doi.org/10.1007/s10311-017-0670-y]
[134]
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 2016; 10(1): 27-37.
[135]
Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci 1993; 82(9): 912-7.
[http://dx.doi.org/10.1002/jps.2600820909] [PMID: 8229689]
[136]
Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 2007; 7(8): 2833-41.
[http://dx.doi.org/10.1166/jnn.2007.609] [PMID: 17685304]
[137]
Ahmad Z, Sharma S, Khuller GK. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine 2007; 3(3): 239-43.
[http://dx.doi.org/10.1016/j.nano.2007.05.001] [PMID: 17652032]
[138]
Tue Anh N, Van Phu D, Ngoc Duy N, Duy Du B, Quoc Hien N. Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement. Radiat Phys Chem 2010; 79(4): 405-8.
[http://dx.doi.org/10.1016/j.radphyschem.2009.11.013]
[139]
Yang J, Pan J. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater 2012; 60(12): 4753-8.
[http://dx.doi.org/10.1016/j.actamat.2012.05.037]
[140]
Grenha A, Gomes ME, Rodrigues M, et al. Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A 2010; 92(4): 1265-72.
[PMID: 19322874]
[141]
Rodrigues S, Costa AMR, Grenha A. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 2012; 89(1): 282-9.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.010] [PMID: 24750635]
[142]
Hezaveh H, Muhamad II. The effect of nanoparticles on gastrointestinal release from modified κ-carrageenan nanocomposite hydrogels. Carbohydr Polym 2012; 89(1): 138-45.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.062] [PMID: 24750615]
[143]
Salgueiro AM, Daniel-da-Silva AL, Fateixa S, Trindade T. κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydr Polym 2013; 91(1): 100-9.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.004] [PMID: 23044110]
[144]
Wibowo S, Velazquez G, Savant V, Torres JA. Surimi wash water treatment for protein recovery: effect of chitosan?alginate complex concentration and treatment time on protein adsorption. Bioresour Technol 2005; 96(6): 665-71.
[http://dx.doi.org/10.1016/j.biortech.2004.06.024] [PMID: 15588769]
[145]
Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release 2003; 89(2): 151-65.
[http://dx.doi.org/10.1016/S0168-3659(03)00126-3] [PMID: 12711440]
[146]
Chang PR, Jian R, Yu J, Ma X. Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 2010; 80(2): 420-5.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.041]
[147]
Song Y, Onishi H, Nagai T. Pharmacokinetic characteristics and antitumor activity of the N-succinyl-chitosan-mitomycin C conjugate and the carboxymethyl-chitin-mitomycin C conjugate. Biol Pharm Bull 1993; 16(1): 48-54.
[http://dx.doi.org/10.1248/bpb.16.48] [PMID: 8369752]
[148]
Dev A, Mohan JC, Sreeja V, et al. Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 2010; 79(4): 1073-9.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.038]
[149]
Smitha KT, Anitha A, Furuike T, Tamura H, Nair SV, Jayakumar R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf B Biointerfaces 2013; 104: 245-53.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.031] [PMID: 23337120]
[150]
Gnanadhas DP, Ben Thomas M, Elango M, Raichur AM, Chakravortty D. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother 2013; 68(11): 2576-86.
[http://dx.doi.org/10.1093/jac/dkt252] [PMID: 23798672]
[151]
Smitha KT, Nisha N, Maya S, Biswas R, Jayakumar R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int J Biol Macromol 2015; 74: 36-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.006] [PMID: 25475841]
[152]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[153]
Paques JP, van der Linden E, van Rijn CJM, Sagis LMC. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 2014; 209: 163-71.
[http://dx.doi.org/10.1016/j.cis.2014.03.009] [PMID: 24745976]
[154]
Bozkir A, Saka OM. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv 2004; 11(2): 107-12.
[http://dx.doi.org/10.1080/10717540490280705] [PMID: 15200009]
[155]
Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 2009; 139(2): 146-52.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.018] [PMID: 19567259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy