Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Characterization of Ceria Powders as a Continuous Search for New Rare-earth Based Materials for Radiation Dosimetry

Author(s): Silas Cardoso dos Santos*, Orlando Rodrigues Júnior and Letícia Lucente Campos

Volume 17, Issue 5, 2024

Published on: 02 May, 2024

Page: [444 - 456] Pages: 13

DOI: 10.2174/2666145417666230823091126

Price: $65

Abstract

Background: Ceria (CeO2) belongs to rare-earth series and due to its profitable properties, presents a wide commercial use such as catalysis, energy, biological, biomedical, and pharmaceutical. The features of the starting materials in the form of free powders influence notably the processing, formation, as well as characteristics of the final structures\bodies obtained by colloidal processing. This study aims to characterize CeO2 powders. The results obtained are worthwhile data to advance toward new rare-earth based materials for radiation dosimetry.

Methods: CeO2 powders were evaluated by the following techniques: PCS, SEM, XRD, FT-IR, EPR, IPC, and pycnometric density (ρ). The stability of particles in aqueous solvent was evaluated by zeta potential (ζ) determination.

Results: CeO2 powders exhibited cubic C-type form, Fm-3m space group, a mean particle size (d50)of 19.3nm, and a pycnometric density (ρ) of 7.01g.cm-3. Based on the results of zeta potential determination, CeO2 powders exhibited high stability at pH 6.4 with ζ- value of |34.0|mV.

Conclusion: The evaluation of CeO2 powders was reported. The results presented and discussed in this study contribute to advance in the search of new rare-earth based materials for radiation dosimetry.

[1]
Agosteo S. Overview of novel techniques for radiation protection and dosimetry. Radiat Meas 2010; 45(10): 1171-7.
[http://dx.doi.org/10.1016/j.radmeas.2010.06.042]
[2]
Bartlett DT. 100 years of solid state dosimetry and radiation protection dosimetry. Radiat Meas 2008; 43(2-6): 133-8.
[http://dx.doi.org/10.1016/j.radmeas.2007.08.004]
[3]
Poston JW. Dosimetry. New York: Academic Press 2003; pp. 603-50.
[4]
Ito R, Kondo Y, Nakano M, Kajiyama T, Kobayashi Y. Cardiac resynchronization therapy device implantation using suspended personal radiation protection system: Examination of radiation protection effectiveness by dosimetry at 51 exposure sites. Heart Rhythm 2023; 4(5): 333-5.
[5]
Bossuyt E, Nevens D, Weytjens R, Taieb Mokaddem A, Verellen D. Assessing the impact of adaptations to the clinical workflow in radiotherapy using transit in vivo dosimetry. Phys Imaging Radiat Oncol 2023; 25: 100420.
[http://dx.doi.org/10.1016/j.phro.2023.100420] [PMID: 36820237]
[6]
Baffa O, Nicolucci P, Candeias M, Trompier F, Kinoshita A. Alanine/electron spin resonance dosimetry for environmental qualification of electric equipment in a nuclear power plant. Radiat Phys Chem 2022; 193: 109934.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109934]
[7]
Kuntz F, Strasser A. The specifics of dosimetry for food irradiation applications. Radiat Phys Chem 2016; 129: 46-9.
[http://dx.doi.org/10.1016/j.radphyschem.2016.08.023]
[8]
Kuess P, Sejkora N, Klampfer A, et al. Characterising potential space suit textiles in proton beams using radiotherapy-based dosimetry. Adv Space Res 2022; 70: 1925-34.
[9]
Razavi R, Amiri M. Rare-earth-based nanocomposites. In: Zinatloo-Ajabshir SBT-ARE-BCN, Ed. Elsevier Ser Adv Ceram Mater. Elsevier 2022; pp. 339-64.
[10]
Rare-Earth Phosphors: Fundamentals and applications 2017; 803581-8.
[11]
Ballauri S, Sartoretti E, Novara C, et al. Wide range temperature stability of palladium on ceria-praseodymia catalysts for complete methane oxidation. Catal Today 2022; 390-391: 185-97.
[http://dx.doi.org/10.1016/j.cattod.2021.11.035]
[12]
Kishimoto A, Umemura T, Kondo S, Teranishi T. Ceria-based solid electrolyte exhibits superior mechanical and electric properties compared to zirconia-based solid electrolyte. Ceram Int 2022; 48(15): 21824-31.
[http://dx.doi.org/10.1016/j.ceramint.2022.04.166]
[13]
Saravanan G, Ramachandran K, Gajendiran J, Padmini E. Effect of ceria concentration of Strontium titanate on the structural, optical, dielectric and electrical properties. Chem Phys Lett 2020; 746: 137314.
[http://dx.doi.org/10.1016/j.cplett.2020.137314]
[14]
Yuan X, Chen C, Lei H, Zhang Z. Synthesis, characterization of CeO2@ZIF-8 composite abrasives and their chemical mechanical polishing behavior on glass substrate. Ceram Int 2023; 49(3): 5189-98.
[http://dx.doi.org/10.1016/j.ceramint.2022.10.037]
[15]
Gao S, Li Y, Guo W, et al. Morphology effect of ceria support with hierarchical structure on the catalytic performance for nickel-based catalysts in dry reforming of methane. Molecular Catalysis 2022; 533: 112766.
[http://dx.doi.org/10.1016/j.mcat.2022.112766]
[16]
Marghoob MU, Noureen A, Raza A, Khan WS, Iftikhar M, Sher F. Synthesis and toxicity assessment of environment friendly high yield ceria nanoparticles for biosafety. J Environ Chem Eng 2022; 10(1): 107029.
[http://dx.doi.org/10.1016/j.jece.2021.107029]
[17]
Haeussler A, Abanades S. Additive manufacturing and two-step redox cycling of ordered porous ceria structures for solar-driven thermochemical fuel production. Chem Eng Sci 2021; 246: 116999.
[http://dx.doi.org/10.1016/j.ces.2021.116999]
[18]
Suzuki K, Miyazaki H, Yuzuriha Y, Maru Y, Izu N. Characterization of a novel gas sensor using sintered ceria nanoparticles for hydrogen detection in vacuum conditions. Sens Actuators B Chem 2017; 250: 617-22.
[http://dx.doi.org/10.1016/j.snb.2017.05.008]
[19]
Kim E, Hong J, Hong S, et al. Improvement of oxide removal rate in chemical mechanical polishing by forming oxygen vacancy in ceria abrasives via ultraviolet irradiation. Mater Chem Phys 2021; 273: 124967.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124967]
[20]
Sood K, Tiwari P, Dhall S, Basu S. Understanding electrocatalytic activity of titanium and samarium doped ceria as anode material for solid oxide fuel cells. J Electroanal Chem 2022; 925: 116902.
[http://dx.doi.org/10.1016/j.jelechem.2022.116902]
[21]
Xu Z, Liu Y, Ren F, Yang F, Ma D. Development of functional nanostructures and their applications in catalysis and solar cells. Coord Chem Rev 2016; 320-321: 153-80.
[http://dx.doi.org/10.1016/j.ccr.2016.03.002]
[22]
Joshi M, Sandhoo R, Adak B. Nano-ceria and nano-zirconia reinforced polyurethane nanocomposite-based coated textiles with enhanced weather resistance. Prog Org Coat 2022; 165: 106744.
[http://dx.doi.org/10.1016/j.porgcoat.2022.106744]
[23]
Lord MS, Jung M, Teoh WY, et al. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials 2012; 33(31): 7915-24.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.024] [PMID: 22841920]
[24]
Santos SC, Rodrigues O Jr, Campos LL. EPR response of yttria micro rods activated by europium. J Alloys Compd 2018; 764: 136-41.
[http://dx.doi.org/10.1016/j.jallcom.2018.06.063]
[25]
Santos SC, Rodrigues O Jr, Campos LL. Towards a new promising dosimetric material from formation of thulium-yttria nanoparticles with EPR response. Mater Chem Phys 2021; 259: 124005.
[http://dx.doi.org/10.1016/j.matchemphys.2020.124005]
[26]
Duret B, Perez E, Arneodo S, Payré B, Picard C, Franceschi S. Physicochemical study of aqueous dispersions of organogel particles: Role of the ingredients and formulation process leading to colloidal hydrogels. Colloids Surf A Physicochem Eng Asp 2023; 661: 130905.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130905]
[27]
Ito S, Nishiguchi A, Taguchi T. Effect of particle size on the tissue adhesion and particle floatation of a colloidal wound dressing for endoscopic treatments. Acta Biomater 2023; 159: 83-94.
[http://dx.doi.org/10.1016/j.actbio.2023.01.041] [PMID: 36706853]
[28]
Vu TTT, Nguyen PH, Pham TV, et al. Comparative effects of crystalline, poorly crystalline and freshly formed iron oxides on the colloidal properties of polystyrene microplastics. Environ Pollut 2022; 306: 119474.
[http://dx.doi.org/10.1016/j.envpol.2022.119474] [PMID: 35577263]
[29]
Huo W, Zhang X, Gan K, Chen Y, Xu J, Yang J. Effect of zeta potential on properties of foamed colloidal suspension. J Eur Ceram Soc 2019; 39(2-3): 574-83.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2018.08.035]
[30]
Hwang KM, Cho CH, Yoo SD, Cha KI, Park ES. Continuous twin screw granulation: Impact of the starting material properties and various process parameters. Powder Technol 2019; 356: 847-57.
[http://dx.doi.org/10.1016/j.powtec.2019.08.062]
[31]
Liu J, Liu D, Ding W, Li X, Zhang J. Synthesis of multicomponent colloidal nanoparticles. Oxford: Elsevier 2023; pp. 226-52.
[32]
Amer AA, El-Didamony H, El-Sokkary TM, Wahdan MI. Wahdan, Synthesis and characterization of some calcium aluminate phases from nano-size starting materials, Boletín La Soc. Española Cerámica y Vidr 2022; 61: 98-106.
[33]
Doebelin N, Kleeberg R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J Appl Cryst 2015; 48(5): 1573-80.
[http://dx.doi.org/10.1107/S1600576715014685] [PMID: 26500466]
[34]
Merkys A, Vaitkus A, Grybauskas A, Konovalovas A, Quirós M, Gražulis S. Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. J Cheminform 2023; 15(1): 25.
[http://dx.doi.org/10.1186/s13321-023-00692-1] [PMID: 36814296]
[35]
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 2011; 44(6): 1272-6.
[http://dx.doi.org/10.1107/S0021889811038970]
[36]
Wedd M, Ward-Smith S, Rawle A. Particle Size Analysis. Oxford: Academic Press 2019; pp. 144-57.
[37]
Tscharnuter W. Photon Correlation Spectroscopy in Particle Sizing. In: United States of America: John Wiley & Sons Ltd 2000.
[http://dx.doi.org/10.1002/9780470027318.a1512]
[38]
Coutures JP, Verges R, Foex M. Comparison of solidification temperatures of different rare earth sesquioxides; effect of atmosphere. Rev Int Des Hautes Temp Des Refract 1975; 12: 181-5.
[39]
Li JG, Ikegami T, Mori T. Low temperature processing of dense samarium-doped CeO2 ceramics: Sintering and grain growth behaviors. Acta Mater 2004; 52(8): 2221-8.
[http://dx.doi.org/10.1016/j.actamat.2004.01.014]
[40]
Liaqat F. ul Haq I, Saira F, Qaisar S. Development of glucose sensor based on cobalt and nickel doped ceria nanostructures. Mater Sci Eng B 2023; 289: 116231.
[http://dx.doi.org/10.1016/j.mseb.2022.116231]
[41]
Kim E, Lee J, Bae C, Seok H, Kim HU, Kim T. Effects of trivalent lanthanide (La and Nd) doped ceria abrasives on chemical mechanical polishing. Powder Technol 2022; 397: 117025.
[http://dx.doi.org/10.1016/j.powtec.2021.11.069]
[42]
Zamiri R, Salehizadeh SA, Ahangar HA, Shabani M, Rebelo A, Ferreira JMF. Dielectric and optical properties of Ni- and Fe-doped CeO2 Nanoparticles. Appl Phys, A Mater Sci Process 2019; 125(6): 393.
[http://dx.doi.org/10.1007/s00339-019-2689-3]
[43]
Elayaraja M, Punithavathy IK, Jothibas M, Muthuvel A, Jeyakumar SJ. Effect of rare-earth metal ion Ce3+ on the structural, optical and photocatalytic properties of CdO nanoparticles. Nanotechnology for Environmental Engineering 2020; 5(3): 25.
[http://dx.doi.org/10.1007/s41204-020-00091-z]
[44]
Almeida JMA, Santos PEC, Cardoso LP, Meneses CT. A simple method to obtain Fe-doped CeO2 nanocrystals at room temperature. J Magn Magn Mater 2013; 327: 185-8.
[http://dx.doi.org/10.1016/j.jmmm.2012.09.007]
[45]
Parvathy S, Venkatraman BR. Synthesis and characterization of various metal ions doped CeO 2 nanoparticles derived from the Azadirachta indica leaf extracts. Chem Sci Trans 2017; 6: 513-22.
[46]
Johnson Jeyakumar S, Dhanushkodi T, Kartharinal Punithavathy I, Jothibas M. A facile route to synthesis of hexagonal shaped CeO2 nanoparticles. J Mater Sci Mater Electron 2017; 28(4): 3740-5.
[http://dx.doi.org/10.1007/s10854-016-5982-3]
[47]
Singh S, Ly A, Das S, Sakthivel TS, Barkam S, Seal S. Cerium oxide nanoparticles at the nano-bio interface: Sizedependent cellular uptake. Artif Cells Nanomed Biotechnol 2018; 46(sup3): 956-63.
[http://dx.doi.org/10.1080/21691401.2018.1521818] [PMID: 30314412]
[48]
Fotovvat B, Behzadnasab M, Mirabedini SM, Mohammadloo HE. Anti-corrosion performance and mechanical properties of epoxy coatings containing microcapsules filled with linseed oil and modified ceria nanoparticles. Colloids Surf A Physicochem Eng Asp 2022; 648: 129157.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129157]
[49]
Liu Q, He J, Yang W, et al. Mesoporous ceria nanoparticles for ultra-fast and highly flexible photo-fenton catalytic reaction. J Photochem Photobiol Chem 2023; 435: 114309.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114309]
[50]
Dupont A, Largeteau A, Parent C, Le Garrec B, Heintz JM. Influence of the yttria powder morphology on its densification ability. J Eur Ceram Soc 2005; 25(12): 2097-103.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.016]
[51]
Esteki S, Saeidi R, Dini G, Milani M. Fabrication of silicon carbide ceramics by combination of slip casting and spark plasma sintering. Mater Chem Phys 2023; 297: 127418.
[http://dx.doi.org/10.1016/j.matchemphys.2023.127418]
[52]
Lee JK, Lau GY, Sabharwal M, Weber AZ, Peng X, Tucker MC. Titanium porous-transport layers for PEM water electrolysis prepared by tape casting. J Power Sources 2023; 559: 232606.
[http://dx.doi.org/10.1016/j.jpowsour.2022.232606]
[53]
Iugai IA, Steksova YP, Vedyagin AA, et al. MgO/carbon nanofibers composite coatings on porous ceramic surface for CO2 capture. Surf Coat Tech 2020; 25: 126208.
[54]
Wick-Joliat R, Tschamper M, Kontic R, Penner D. Water-soluble sacrificial 3D printed molds for fast prototyping in ceramic injection molding. Addit Manuf 2021; 48: 102408.
[http://dx.doi.org/10.1016/j.addma.2021.102408]
[55]
Peng Y, Shang J, Liu C, et al. A universal replica molding strategy based on natural bio-templates for fabrication of robust superhydrophobic surfaces. Colloids Surf A Physicochem Eng Asp 2023; 660.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130879]
[56]
Guduru R, Khizroev S. Magnetic field-controlled release of paclitaxel drug from functionalized magnetoelectric nanoparticles. Part Part Syst Charact 2014; 31(5): 605-11.
[http://dx.doi.org/10.1002/ppsc.201300238]
[57]
Ding G, He R, Zhang K, Xia M, Feng C, Fang D. Dispersion and stability of SiC ceramic slurry for stereolithography. Ceram Int 2020; 46(4): 4720-9.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.203]
[58]
Ozkan B, Sameni F, Karmel S, Engstrøm DS, Sabet E. Binder stabilization and rheology optimization for vat-photopolymerization 3D printing of silica-based ceramic mixtures. J Eur Ceram Soc 2023; 43(4): 1649-62.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2022.11.032]
[59]
Wang Y, He Z, Yang J, et al. Effects of graphene dispersion in hot pressing UO2-graphene nanosheet ceramic matrix composites. Ceram Int 2022; 48(20): 30779-87.
[http://dx.doi.org/10.1016/j.ceramint.2022.07.029]
[60]
Du W, Lu K, He B, et al. Direct tape casting of Al2O3/AlN slurry for AlON transparent ceramic wafers via one-step reaction sintering. J Eur Ceram 2023; pp. 3538-43.
[61]
Mao J, Wang S, Xuan T, et al. High-solid content, low viscosity and long-term stability Mn-Co-Ni-O ceramic slurry for the fabrication of free-standing ultrathin NTC sheets. Ceram Int 2022; 48(19): 27493-500.
[http://dx.doi.org/10.1016/j.ceramint.2022.06.042]
[62]
Feher G. Sensitivity considerations in microwave paramagnetic resonance absorption techniques. Bell Syst Tech J 1957; 36(2): 449-84.
[http://dx.doi.org/10.1002/j.1538-7305.1957.tb02406.x]
[63]
Weil JA, Bolton JR, Wertz J. Electron Paramagnetic Resonance. In: New York: Elementary Theory and Practical Applications 1994.
[64]
Aboukais A, Zhilinskaya EA, Lamonier JF, Filimonov IN. EPR study of ceria–silica and ceria–alumina catalysts: Localization of superoxide radical anions. Colloids Surf A Physicochem Eng Asp 2005; 260(1-3): 199-207.
[http://dx.doi.org/10.1016/j.colsurfa.2005.02.036]
[65]
Dyrek K, Adamski A, Sojka Z. EPR study of the mobility of paramagnetic species on the surface and in the bulk of solids. Spectrochim Acta A Mol Biomol Spectrosc 1998; 54(14): 2337-48.
[http://dx.doi.org/10.1016/S1386-1425(98)00214-5]
[66]
Aboukaïs A, Aouad S, El-Ayadi H, et al. Physicochemical characterization of Au/CeO2 solid. Part 1: The deposition–precipitation preparation method. Mater Chem Phys 2012; 137(1): 34-41.
[http://dx.doi.org/10.1016/j.matchemphys.2012.07.022]
[67]
Carter E, Carley AF, Murphy DM. Evidence for O2- radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J Phys Chem C 2007; 111(28): 10630-8.
[http://dx.doi.org/10.1021/jp0729516]
[68]
Flouty R, Abi-Aad E, Siffert S, Aboukaïs A. Influence of molybdenum on ceria activity and CO2 selectivity in propene total oxidation. Kinet Catal 2004; 45(2): 219-26.
[http://dx.doi.org/10.1023/B:KICA.0000023795.58615.b2]
[69]
Che M, Dyrek K, Louis C. EPR studies on the formation of atomic oxygen(1-) (O-) ions on reduced silica-supported molybdenum catalysts prepared by the grafting method. J Phys Chem 1985; 89(21): 4526-30.
[http://dx.doi.org/10.1021/j100267a022]
[70]
Cemmi A, Di Sarcina I, D’Orsi B. Gamma radiation-induced effects on paper irradiated at absorbed doses common for cultural heritage preservation. Radiat Phys Chem 2023; 202: 110452.
[http://dx.doi.org/10.1016/j.radphyschem.2022.110452]
[71]
Shiryaeva ES, Panfutov OD, Tyurin DA, Feldman VI. Radiation-induced transformations of isolated phosphine molecules at cryogenic temperatures: Spectroscopic and chemical aspects. Radiat Phys Chem 2023; 206: 110786.
[http://dx.doi.org/10.1016/j.radphyschem.2023.110786]
[72]
Zhang D, He J, Zhou M. Radiation-assisted strategies provide new perspectives to improve the nanoparticle delivery to tumor. Adv Drug Deliv Rev 2023; 193: 114642.
[http://dx.doi.org/10.1016/j.addr.2022.114642] [PMID: 36529190]
[73]
Froidevaux P, Grilj V, Bailat C, Geyer WR, Bochud F, Vozenin MC. FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiat Phys Chem 2023; 205: 110733.
[http://dx.doi.org/10.1016/j.radphyschem.2022.110733]
[74]
Santos SC, Rodrigues O Jr, Campos LL. EPR dosimetry of yttria micro rods. J Alloys Compd 2018; 742: 263-70.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.315]
[75]
Santos SC, Rodrigues O Jr, Campos LL. Colloidal processing of thulium-yttria microceramics. J Phys Chem Solids 2022; 161: 110420.
[http://dx.doi.org/10.1016/j.jpcs.2021.110420]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy