Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on Nano/Microfluidic Devices for Cell Isolation Techniques: Recent Progress and Advances

Author(s): Hamid Reza Garshasbi and Seyed Morteza Naghib*

Volume 20, Issue 6, 2024

Published on: 20 October, 2023

Page: [717 - 739] Pages: 23

DOI: 10.2174/0115734137264742231001142853

open access plus

Abstract

Micro/nanofluidic devices and systems have gained increasing interest in healthcare applications over the last few decades because of their low cost and ease of customization, with only a small volume of sample fluid required. Many biological queries are now being addressed using various types of single-molecule research. With this rapid rise, the disadvantages of these methods are also becoming obvious. Micro/nanofluidics-based biochemical analysis outperforms traditional approaches in terms of sample volume, turnaround time, ease of operation, and processing efficiency. A complex and multifunctional micro/nanofluidic platform may be used for single-cell manipulation, treatment, detection, and sequencing. We present an overview of the current advances in micro/nanofluidic technology for single-cell research, focusing on cell capture, treatment, and biochemical analyses. The promise of single-cell analysis using micro/ nanofluidics is also highlighted.

Graphical Abstract

[1]
Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M.J.; Lee, K.; Ashammakhi, N.; Dokmeci, M.R.; Di Carlo, D.; Khademhosseini, A. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small, 2020, 16(29), 2000171.
[http://dx.doi.org/10.1002/smll.202000171] [PMID: 32529791]
[2]
Murphy, T.W.; Zhang, Q.; Naler, L.B.; Ma, S.; Lu, C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst, 2018, 143(1), 60-80.
[http://dx.doi.org/10.1039/C7AN01346A] [PMID: 29170786]
[3]
Fung, C.W.; Chan, S.N.; Wu, A.R. Microfluidic single-cell analysis—Toward integration and total on-chip analysis. Biomicrofluidics, 2020, 14(2), 021502.
[http://dx.doi.org/10.1063/1.5131795] [PMID: 32161631]
[4]
Bayareh, M. An updated review on particle separation in passive microfluidic devices. Chem. Eng. Process., 2020, 153, 107984.
[http://dx.doi.org/10.1016/j.cep.2020.107984]
[5]
Sheidaei, Z.; Akbarzadeh, P.; Kashaninejad, N. Advances in numerical approaches for microfluidic cell analysis platforms. J. Sci. Adv. Mater. Devices, 2020, 5(3), 295-307.
[http://dx.doi.org/10.1016/j.jsamd.2020.07.008]
[6]
Whitesides, G.M. The origins and the future of microfluidics. Nature, 2006, 442(7101), 368-373.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[7]
Verpoorte, E.; De Rooij, N.F. Microfluidics meets MEMS. Proc. IEEE, 2003, 91(6), 930-953.
[http://dx.doi.org/10.1109/JPROC.2003.813570]
[8]
Mohammed, M.I.; Alam, M.N.H.; Kouzani, A.; Gibson, I. Fabrication of microfluidic devices: Improvement of surface quality of CO2 laser machined poly(methylmethacrylate) polymer. J. Micromech. Microeng., 2017, 27(1), 015021.
[http://dx.doi.org/10.1088/0960-1317/27/1/015021]
[9]
Hong, T.F.; Ju, W.J.; Wu, M.C.; Tai, C.H.; Tsai, C.H.; Fu, L.M. Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid. Nanofluidics, 2010, 9(6), 1125-1133.
[http://dx.doi.org/10.1007/s10404-010-0633-0]
[10]
Owens, C.E.; Hart, A.J. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip, 2018, 18(6), 890-901.
[http://dx.doi.org/10.1039/C7LC00951H] [PMID: 29372201]
[11]
Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev., 2010, 39(3), 1153-1182.
[http://dx.doi.org/10.1039/b820557b] [PMID: 20179830]
[12]
Ahmed, I.; Iqbal, H.M.N.; Akram, Z. Microfluidics engineering: Recent trends, valorization, and applications. Arab. J. Sci. Eng., 2018, 43(1), 23-32.
[http://dx.doi.org/10.1007/s13369-017-2662-4]
[13]
Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24(21), 3563-3576.
[http://dx.doi.org/10.1002/elps.200305584] [PMID: 14613181]
[14]
Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng., 2001, 3(1), 335-373.
[http://dx.doi.org/10.1146/annurev.bioeng.3.1.335] [PMID: 11447067]
[15]
Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics, 2014, 8(4), 044118.
[http://dx.doi.org/10.1063/1.4893772] [PMID: 25379103]
[16]
Sosa-Hernández, J.E.; Villalba-Rodríguez, A.M.; Romero-Castillo, K.D.; Aguilar-Aguila-Isaías, M.A.; García-Reyes, I.E.; Hernández-Antonio, A.; Ahmed, I.; Sharma, A.; Parra-Saldívar, R.; Iqbal, H.M.N. Organs-on-a-chip module: A review from the development and applications perspective. Micromachines, 2018, 9(10), 536.
[http://dx.doi.org/10.3390/mi9100536] [PMID: 30424469]
[17]
Tang, W.; Zhu, S.; Jiang, D.; Zhu, L.; Yang, J.; Xiang, N. Channel innovations for inertial microfluidics. Lab Chip, 2020, 20(19), 3485-3502.
[http://dx.doi.org/10.1039/D0LC00714E] [PMID: 32910129]
[18]
Gossett, D.R.; Weaver, W.M.; Mach, A.J.; Hur, S.C.; Tse, H.T.K.; Lee, W.; Amini, H.; Di Carlo, D. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem., 2010, 397(8), 3249-3267.
[http://dx.doi.org/10.1007/s00216-010-3721-9] [PMID: 20419490]
[19]
Tsao, C.W. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines, 2016, 7(12), 225.
[http://dx.doi.org/10.3390/mi7120225] [PMID: 30404397]
[20]
Sivaramakrishnan, M.; Kothandan, R.; Govindarajan, D.K.; Meganathan, Y.; Kandaswamy, K. Active microfluidic systems for cell sorting and separation. Curr. Opin. Biomed. Eng., 2020, 13, 60-68.
[http://dx.doi.org/10.1016/j.cobme.2019.09.014]
[21]
Wang, Y.; Chen, Z.; Bian, F.; Shang, L.; Zhu, K.; Zhao, Y. Advances of droplet-based microfluidics in drug discovery. Expert Opin. Drug Discov., 2020, 15(8), 969-979.
[http://dx.doi.org/10.1080/17460441.2020.1758663] [PMID: 32352844]
[22]
Kovalishina, О.R.S.H.I.V.I.O.V. Experience in auditing the quality and safety of medical activities in a medical organization in the section “Epidemiological safety. Roszdravnadzora Gazette., 2017, 4, 9-15.
[23]
Sechi, D.; Greer, B.; Johnson, J.; Hashemi, N. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem., 2013, 85(22), 10733-10737.
[http://dx.doi.org/10.1021/ac4014868] [PMID: 24147735]
[24]
Lisowski, P.; Zarzycki, P.K. Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia, 2013, 76(19-20), 1201-1214.
[http://dx.doi.org/10.1007/s10337-013-2413-y] [PMID: 24078738]
[25]
Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19606-19611.
[http://dx.doi.org/10.1073/pnas.0810903105] [PMID: 19064929]
[26]
Channon, R.B.; Nguyen, M.P.; Henry, C.S.; Dandy, D.S. Multilayered microfluidic paper-based devices: Characterization, modeling, and perspectives. Anal. Chem., 2019, 91(14), 8966-8972.
[http://dx.doi.org/10.1021/acs.analchem.9b01112] [PMID: 31276368]
[27]
Liu, H.; Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc., 2011, 133(44), 17564-17566.
[http://dx.doi.org/10.1021/ja2071779] [PMID: 22004329]
[28]
Noh, H.; Phillips, S.T. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal. Chem., 2010, 82(10), 4181-4187.
[http://dx.doi.org/10.1021/ac100431y] [PMID: 20411969]
[29]
Ma, J.; Yan, S.; Miao, C.; Li, L.; Shi, W.; Liu, X.; Luo, Y.; Liu, T.; Lin, B.; Wu, W.; Lu, Y. Paper microfluidics for cell analysis. Adv. Healthc. Mater., 2019, 8(1), 1801084.
[http://dx.doi.org/10.1002/adhm.201801084] [PMID: 30474359]
[30]
McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res., 2002, 35(7), 491-499.
[http://dx.doi.org/10.1021/ar010110q] [PMID: 12118988]
[31]
David, S.; Walt, R.; Stubbs, J.; Andersson-svahn, H.; Gilligan, M.; Wilson, E. Lab on a Chip Lab on a Chip. Lab Chip, 2014, 1037-1043.
[32]
Alrifaiy, A.; Lindahl, O.A.; Ramser, K. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 2012, 4(3), 1349-1398.
[http://dx.doi.org/10.3390/polym4031349]
[33]
van Midwoud, P.M.; Janse, A.; Merema, M.T.; Groothuis, G.M.M.; Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem., 2012, 84(9), 3938-3944.
[http://dx.doi.org/10.1021/ac300771z] [PMID: 22444457]
[34]
Mehling, M.; Tay, S. Microfluidic cell culture. Curr. Opin. Biotechnol., 2014, 25, 95-102.
[http://dx.doi.org/10.1016/j.copbio.2013.10.005] [PMID: 24484886]
[35]
Wu, M.H.; Huang, S.B.; Lee, G.B. Microfluidic cell culture systems for drug research. Lab Chip, 2010, 10(8), 939-956.
[http://dx.doi.org/10.1039/b921695b] [PMID: 20358102]
[36]
Berthier, E.; Young, E.W.K.; Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip, 2012, 12(7), 1224-1237.
[http://dx.doi.org/10.1039/c2lc20982a] [PMID: 22318426]
[37]
Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron., 2015, 63, 218-231.
[http://dx.doi.org/10.1016/j.bios.2014.07.029] [PMID: 25105943]
[38]
Liu, K.; Fan, Z.H. Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst, 2011, 136(7), 1288-1297.
[http://dx.doi.org/10.1039/c0an00969e] [PMID: 21274478]
[39]
Bhattacharyya, A.; Klapperich, C.M. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal. Chem., 2006, 78(3), 788-792.
[http://dx.doi.org/10.1021/ac051449j] [PMID: 16448052]
[40]
Nevitt, M. Selecting and designing with the right thermoplastic polymer for your microfluidic chip: a close look into cyclo-olefin polymer, Microfluid. BioMEMS. Med. Microsystems XI., 2013, 8615, 86150F.
[http://dx.doi.org/10.1117/12.2002122]
[41]
Liu, J.; Chen, C.F.; Tsao, C.W.; Chang, C.C.; Chu, C.C.; DeVoe, D.L. Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed-phase polymethacrylate monoliths. Anal. Chem., 2009, 81(7), 2545-2554.
[http://dx.doi.org/10.1021/ac802359e] [PMID: 19267447]
[42]
Bayat, M.; Taherpour, A.A.; Elahi, S.M.; Fellowes, T. Separation of anticancer medicines carmustine, lomustine, semustine and melphalan by PAMAM dendrimer: a theoretical study. J. Indian Chem. Soc., 2018, 15(6), 1223-1234.
[http://dx.doi.org/10.1007/s13738-018-1320-4]
[43]
Vilkner, T.; Janasek, D.; Manz, A. Micro total analysis systems. Recent developments. Anal. Chem., 2004, 76(12), 3373-3386.
[http://dx.doi.org/10.1021/ac040063q] [PMID: 15193114]
[44]
Morens, D.M.; Folkers, G.K.; Fauci, A.S. Newly emerging and newly recognized infections. Nature, 2004, 430, 242-249.
[http://dx.doi.org/10.1038/nature02759] [PMID: 15241422]
[45]
Harrison, D.J.; Manz, A.; Fan, Z.; Luedi, H.; Widmer, H.M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem., 1992, 64(17), 1926-1932.
[http://dx.doi.org/10.1021/ac00041a030]
[46]
Beebe, D.J.; Moore, J.S.; Yu, Q.; Liu, R.H.; Kraft, M.L.; Jo, B.H.; Devadoss, C. Microfluidic tectonics: A comprehensive construction platform for microfluidic systems. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13488-13493.
[http://dx.doi.org/10.1073/pnas.250273097] [PMID: 11087831]
[47]
Lagally, E.T.; Simpson, P.C.; Mathies, R.A. Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B Chem., 2000, 63(3), 138-146.
[http://dx.doi.org/10.1016/S0925-4005(00)00350-6]
[48]
Zourob, M.; Mohr, S.; Brown, B.; Fielden, P.; McDonnell, M.; Goddard, N. Bacteria detection using disposable optical leaky waveguide sensors. Biosens. Bioelectron., 2005, 21(2), 293-302.
[http://dx.doi.org/10.1016/j.bios.2004.10.013] [PMID: 16023956]
[49]
Mujika, M.; Arana, S.; Castaño, E.; Tijero, M.; Vilares, R.; Ruano-López, J.M.; Cruz, A.; Sainz, L.; Berganza, J. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens. Bioelectron., 2009, 24(5), 1253-1258.
[http://dx.doi.org/10.1016/j.bios.2008.07.024] [PMID: 18760584]
[50]
Yadavalli, V.K.; Pishko, M.V. Biosensing in microfluidic channels using fluorescence polarization. Anal. Chim. Acta, 2004, 507(1), 123-128.
[http://dx.doi.org/10.1016/j.aca.2003.12.029]
[51]
Tamarin, O.; Comeau, S.; Déjous, C.; Moynet, D.; Rebière, D.; Bezian, J.; Pistré, J. Real time device for biosensing: Design of a bacteriophage model using love acoustic waves. Biosens. Bioelectron., 2003, 18(5-6), 755-763.
[http://dx.doi.org/10.1016/S0956-5663(03)00022-8] [PMID: 12706589]
[52]
Mason, H.Y.; Lloyd, C.; Dice, M.; Sinclair, R.; Ellis, W., Jr; Powers, L. Taxonomic identification of microorganisms by capture and intrinsic fluorescence detection. Biosens. Bioelectron., 2003, 18(5-6), 521-527.
[http://dx.doi.org/10.1016/S0956-5663(03)00010-1] [PMID: 12706558]
[53]
Gómez-Sjöberg, R.; Morisette, D.T.; Bashir, R. Impedance microbiology-on-a-chip: Microfluidic bioprocessor for rapid detection of bacterial metabolism. J. Microelectromech. Syst., 2005, 14(4), 829-838.
[http://dx.doi.org/10.1109/JMEMS.2005.845444]
[54]
Boehm, D.A.; Gottlieb, P.A.; Hua, S.Z. On-chip microfluidic biosensor for bacterial detection and identification. Sens. Actuators B Chem., 2007, 126(2), 508-514.
[http://dx.doi.org/10.1016/j.snb.2007.03.043]
[55]
Han, T.; Wren, M.; DuBois, K.; Therkorn, J.; Mainelis, G. Application of ATP-based bioluminescence for bioaerosol quantification: Effect of sampling method. J. Aerosol Sci., 2015, 90, 114-123.
[http://dx.doi.org/10.1016/j.jaerosci.2015.08.003] [PMID: 26806982]
[56]
Silley, P.; Forsythe, S. Impedance microbiology-a rapid change for microbiologists. J. Appl. Bacteriol., 1996, 80(3), 233-243.
[57]
Xiang, Q.; Hu, G.; Gao, Y.; Li, D. Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens. Bioelectron., 2006, 21(10), 2006-2009.
[http://dx.doi.org/10.1016/j.bios.2005.09.019] [PMID: 16289606]
[58]
Rider, T.H.; Petrovick, M.S.; Nargi, F.E.; Harper, J.D.; Schwoebel, E.D.; Mathews, R.H.; Blanchard, D.J.; Bortolin, L.T.; Young, A.M.; Chen, J.; Hollis, M.A.A. B cell-based sensor for rapid identification of pathogens. Science, 2003, 301, 213-215.
[http://dx.doi.org/10.1126/science.1084920]
[59]
Yi, C.; Zhang, Q.; Li, C.W.; Yang, J.; Zhao, J.; Yang, M. Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal. Bioanal. Chem., 2006, 384(6), 1259-1268.
[http://dx.doi.org/10.1007/s00216-005-0252-x] [PMID: 16795144]
[60]
Gaits, F.; Hahn, K. Shedding light on cell signaling: Interpretation of FRET biosensors. Sci. STKE, 2003, 2003(165), PE3.
[http://dx.doi.org/10.1126/stke.2003.165.pe3] [PMID: 12527820]
[61]
Chen, L.; Choo, J. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis, 2008, 29(9), 1815-1828.
[http://dx.doi.org/10.1002/elps.200700554] [PMID: 18384070]
[62]
Cheng, I.F.; Lin, C.C.; Lin, D.Y.; Chang, H.C. A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria. Biomicrofluidics, 2010, 4(3), 034104.
[http://dx.doi.org/10.1063/1.3474638] [PMID: 20806000]
[63]
SalmanOgli, A.; Nasseri, B.; Kohneh shahri, M.Y.; Piskin, E. Plasmon – plasmon interaction effect on effective medium electrical conductivity (an effective agent for photothermal therapy). Curr. Appl. Phys., 2016, 16(11), 1498-1505.
[http://dx.doi.org/10.1016/j.cap.2016.08.021]
[64]
Salmanogli, A.; Nasseri, B. Pişkin, E. Plasmon-plasmon interaction effect on reproducible surface-enhanced Raman scattering for dye molecule detection. Sens. Actuators A Phys., 2017, 262, 87-98.
[http://dx.doi.org/10.1016/j.sna.2017.05.013]
[65]
McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000, 21(1), 27-40.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27:AID-ELPS27>3.0.CO;2-C] [PMID: 10634468]
[66]
Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron., 2018, 117, 112-128.
[http://dx.doi.org/10.1016/j.bios.2018.05.050] [PMID: 29890393]
[67]
Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. Int. Ed., 1998, 37(5), 550-575.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550:AID-ANIE550>3.0.CO;2-G] [PMID: 29711088]
[68]
Gou, Y.; Jia, Y.; Wang, P.; Sun, C. Progress of inertial microfluidics in principle and application. Sensors, 2018, 18(6), 1762.
[http://dx.doi.org/10.3390/s18061762] [PMID: 29857563]
[69]
Chen, X.; Zhang, L. Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens. Actuators B Chem., 2018, 254, 648-659.
[http://dx.doi.org/10.1016/j.snb.2017.07.139]
[70]
Marie, R.; Pedersen, J.N.; Mir, K.U.; Bilenberg, B.; Kristensen, A. Concentrating and labeling genomic DNA in a nanofluidic array. Nanoscale, 2018, 10(3), 1376-1382.
[http://dx.doi.org/10.1039/C7NR06016E] [PMID: 29300409]
[71]
Duan, C.; Wang, W.; Xie, Q. Review article: Fabrication of nanofluidic devices. Biomicrofluidics, 2013, 7(2), 026501.
[http://dx.doi.org/10.1063/1.4794973] [PMID: 23573176]
[72]
Morikawa, K.; Kazoe, Y.; Takagi, Y.; Tsuyama, Y.; Pihosh, Y.; Tsukahara, T.; Kitamori, T. Advanced top-down fabrication for a fused silica nanofluidic device. Micromachines, 2020, 11(11), 995.
[http://dx.doi.org/10.3390/mi11110995] [PMID: 33182488]
[73]
Takahashi, K.; Hattori, A.; Suzuki, I.; Ichiki, T.; Yasuda, K. Non-destructive on-chip cell sorting system with real-time microscopic image processing. J. Nanobiotechnology, 2004, 2(1), 5.
[http://dx.doi.org/10.1186/1477-3155-2-5] [PMID: 15176978]
[74]
Wang, L.; Flanagan, L.A.; Jeon, N.L.; Monuki, E.; Lee, A.P. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip, 2007, 7(9), 1114-1120.
[http://dx.doi.org/10.1039/b705386j] [PMID: 17713608]
[75]
Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip, 2008, 8(2), 198-220.
[http://dx.doi.org/10.1039/b715524g] [PMID: 18231657]
[76]
Baret, J.C.; Miller, O.J.; Taly, V.; Ryckelynck, M.; El-Harrak, A.; Frenz, L.; Rick, C.; Samuels, M.L.; Hutchison, J.B.; Agresti, J.J.; Link, D.R.; Weitz, D.A.; Griffiths, A.D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab Chip, 2009, 9(13), 1850-1858.
[http://dx.doi.org/10.1039/b902504a] [PMID: 19532959]
[77]
Mazutis, L.; Gilbert, J.; Ung, W.L.; Weitz, D.A.; Griffiths, A.D.; Heyman, J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc., 2013, 8(5), 870-891.
[http://dx.doi.org/10.1038/nprot.2013.046] [PMID: 23558786]
[78]
Collins, D.J.; Neild, A.; deMello, A.; Liu, A.Q.; Ai, Y. The Poisson distribution and beyond: Methods for microfluidic droplet production and single cell encapsulation. Lab Chip, 2015, 15(17), 3439-3459.
[http://dx.doi.org/10.1039/C5LC00614G] [PMID: 26226550]
[79]
Zborowski, M.; Chalmers, J.J. Rare cell separation and analysis by magnetic sorting. Anal. Chem., 2011, 83(21), 8050-8056.
[http://dx.doi.org/10.1021/ac200550d] [PMID: 21812408]
[80]
Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry, 1990, 11(2), 231-238.
[http://dx.doi.org/10.1002/cyto.990110203] [PMID: 1690625]
[81]
Xia, N.; Hunt, T.P.; Mayers, B.T.; Alsberg, E.; Whitesides, G.M.; Westervelt, R.M.; Ingber, D.E. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices, 2006, 8(4), 299-308.
[http://dx.doi.org/10.1007/s10544-006-0033-0] [PMID: 17003962]
[82]
Chang, C.L.; Huang, W.; Jalal, S.I.; Chan, B.D.; Mahmood, A.; Shahda, S.; O’Neil, B.H.; Matei, D.E.; Savran, C.A. Circulating tumor cell detection using a parallel flow micro-aperture chip system. Lab Chip, 2015, 15(7), 1677-1688.
[http://dx.doi.org/10.1039/C5LC00100E] [PMID: 25687986]
[83]
Abedini-Nassab, R.; Joh, D.Y.; Van Heest, M.A.; Yi, J.S.; Baker, C.; Taherifard, Z.; Margolis, D.M.; Garcia, J.V.; Chilkoti, A.; Murdoch, D.M.; Yellen, B.B. Characterizing the switching thresholds of magnetophoretic transistors. Adv. Mater., 2015, 27(40), 6176-6180.
[http://dx.doi.org/10.1002/adma.201502352] [PMID: 26349853]
[84]
Shields, C.W., IV; Livingston, C.E.; Yellen, B.B.; López, G.P.; Murdoch, D.M. Magnetographic array for the capture and enumeration of single cells and cell pairs. Biomicrofluidics, 2014, 8(4), 041101.
[http://dx.doi.org/10.1063/1.4885840] [PMID: 25379081]
[85]
Lenshof, A.; Magnusson, C.; Laurell, T. Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip, 2012, 12(7), 1210-1223.
[http://dx.doi.org/10.1039/c2lc21256k] [PMID: 22362021]
[86]
Gao, L.; Wyatt Shields, C., IV; Johnson, L.M.; Graves, S.W.; Yellen, B.B.; López, G.P. Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems. Biomicrofluidics, 2015, 9(1), 014105.
[http://dx.doi.org/10.1063/1.4905875] [PMID: 25713687]
[87]
Jakobsson, O.; Grenvall, C.; Nordin, M.; Evander, M.; Laurell, T. Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip, 2014, 14(11), 1943-1950.
[http://dx.doi.org/10.1039/C3LC51408K] [PMID: 24763517]
[88]
Li, P.; Mao, Z.; Peng, Z.; Zhou, L.; Chen, Y.; Huang, P.H.; Truica, C.I.; Drabick, J.J.; El-Deiry, W.S.; Dao, M.; Suresh, S.; Huang, T.J. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA, 2015, 112(16), 4970-4975.
[http://dx.doi.org/10.1073/pnas.1504484112] [PMID: 25848039]
[89]
Ren, L.; Chen, Y.; Li, P.; Mao, Z.; Huang, P.H.; Rufo, J.; Guo, F.; Wang, L.; McCoy, J.P.; Levine, S.J.; Huang, T.J. A high-throughput acoustic cell sorter. Lab Chip, 2015, 15(19), 3870-3879.
[http://dx.doi.org/10.1039/C5LC00706B] [PMID: 26289231]
[90]
Schmid, L.; Weitz, D.A.; Franke, T. Sorting drops and cells with acoustics: Acoustic microfluidic fluorescence-activated cell sorter. Lab Chip, 2014, 14(19), 3710-3718.
[http://dx.doi.org/10.1039/C4LC00588K] [PMID: 25031157]
[91]
Petersson, F.; Nilsson, A.; Holm, C.; Jönsson, H.; Laurell, T. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst, 2004, 129(10), 938-943.
[http://dx.doi.org/10.1039/B409139F] [PMID: 15457327]
[92]
Shields, C.W., IV; Sun, D.; Johnson, K.A.; Duval, K.A.; Rodriguez, A.V.; Gao, L.; Dayton, P.A.; López, G.P. Nucleation and growth synthesis of siloxane gels to form functional, monodisperse, and acoustically programmable particles. Angew. Chem. Int. Ed., 2014, 53(31), 8070-8073.
[http://dx.doi.org/10.1002/anie.201402471] [PMID: 24853411]
[93]
Shields, C.W., IV; Johnson, L.M.; Gao, L.; López, G.P. Elastomeric negative acoustic contrast particles for capture, acoustophoretic transport, and confinement of cells in microfluidic systems. Langmuir, 2014, 30(14), 3923-3927.
[http://dx.doi.org/10.1021/la404677w] [PMID: 24673242]
[94]
Johnson, L.M.; Gao, L.; Shields, C.W., IV; Smith, M.; Efimenko, K.; Cushing, K.; Genzer, J.; López, G.P. Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnology, 2013, 11(1), 22.
[http://dx.doi.org/10.1186/1477-3155-11-22] [PMID: 23809852]
[95]
Shi, J.; Huang, H.; Stratton, Z.; Huang, Y.; Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip, 2009, 9(23), 3354-3359.
[http://dx.doi.org/10.1039/b915113c] [PMID: 19904400]
[96]
Lin, S.C.S.; Mao, X.; Huang, T.J. Surface acoustic wave (SAW) acoustophoresis: Now and beyond. Lab Chip, 2012, 12(16), 2766-2770.
[http://dx.doi.org/10.1039/c2lc90076a] [PMID: 22781941]
[97]
Lau, A.Y.; Lee, L.P.; Chan, J.W. An integrated optofluidic platform for Raman-activated cell sorting. Lab Chip, 2008, 8(7), 1116-1120.
[http://dx.doi.org/10.1039/b803598a] [PMID: 18584087]
[98]
Chiou, E.P.Y.; Wu, M.C. Optoelectronic tweezers. Syst. Biomed. Appl. Microfluid. Opt. Surf. Chem., 2010, 9780199219, 317-345.
[http://dx.doi.org/10.1093/acprof:oso/9780199219698.003.0009]
[99]
Chiou, P.Y.; Ohta, A.T.; Wu, M.C. Massively parallel manipulation of single cells and microparticles using optical images. Nature, 2005, 436(7049), 370-372.
[http://dx.doi.org/10.1038/nature03831] [PMID: 16034413]
[100]
Shields, C.W., IV; Ohiri, K.A.; Szott, L.M.; López, G.P. Translating microfluidics: Cell separation technologies and their barriers to commercialization. Cytometry B Clin. Cytom., 2017, 92(2), 115-125.
[http://dx.doi.org/10.1002/cyto.b.21388] [PMID: 27282966]
[101]
Holmes, K.L.; Fontes, B.; Hogarth, P.; Konz, R.; Monard, S.; Pletcher, C.H., Jr; Wadley, R.B.; Schmid, I.; Perfetto, S.P. International Society for the Advancement of Cytometry cell sorter biosafety standards. Cytometry A, 2014, 85(5), 434-453.
[http://dx.doi.org/10.1002/cyto.a.22454] [PMID: 24634405]
[102]
Perfetto, S.P.; Ambrozak, D.R.; Koup, R.A.; Roederer, M. Measuring containment of viable infectious cell sorting in high-velocity cell sorters. Cytometry, 2003, 52A(2), 122-130.
[http://dx.doi.org/10.1002/cyto.a.10033] [PMID: 12655656]
[103]
Ma, Z.; Zhou, Y.; Collins, D.J.; Ai, Y. Fluorescence activated cell sorting via a focused traveling surface acoustic beam. Lab Chip, 2017, 17(18), 3176-3185.
[http://dx.doi.org/10.1039/C7LC00678K] [PMID: 28815231]
[104]
Cirulis, J.T.; Strasser, B.C.; Scott, J.A.; Ross, G.M. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability Cytom. Part A, 2012, 81 A,, 618-626.
[http://dx.doi.org/10.1002/cyto.a.22066]
[105]
Pereira, H.; Schulze, P.S.C.; Schüler, L.M.; Santos, T.; Barreira, L.; Varela, J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res., 2018, 30, 113-120.
[http://dx.doi.org/10.1016/j.algal.2017.12.013]
[106]
Martin, A.; Wu, W.T.; Kameneva, M.V.; Antaki, J.F. Development of a high-throughput magnetic separation device for malaria-infected erythrocytes. Ann. Biomed. Eng., 2017, 45(12), 2888-2898.
[http://dx.doi.org/10.1007/s10439-017-1925-2] [PMID: 28924724]
[107]
Kumar, V.; Rezai, P. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles. Biomed. Microdevices, 2017, 19(2), 39.
[http://dx.doi.org/10.1007/s10544-017-0178-z] [PMID: 28466285]
[108]
Lee, J.J.; Jeong, K.J.; Hashimoto, M.; Kwon, A.H.; Rwei, A.; Shankarappa, S.A.; Tsui, J.H.; Kohane, D.S. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett., 2014, 14(1), 1-5.
[http://dx.doi.org/10.1021/nl3047305] [PMID: 23367876]
[109]
Shen, Y.; Yalikun, Y.; Tanaka, Y. Recent advances in microfluidic cell sorting systems. Sens. Actuators B Chem., 2018, 282, 268-281.
[http://dx.doi.org/10.1016/j.snb.2018.11.025]
[110]
Zhang, J.; Yuan, D.; Zhao, Q.; Yan, S.; Tang, S.Y.; Tan, S.H.; Guo, J.; Xia, H.; Nguyen, N.T.; Li, W. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sens. Actuators B Chem., 2018, 267, 14-25.
[http://dx.doi.org/10.1016/j.snb.2018.04.020]
[111]
Hanson, C.; Vargis, E. Alternative cDEP design to facilitate cell isolation for identification by raman spectroscopy. Sensors, 2017, 17(2), 327.
[http://dx.doi.org/10.3390/s17020327] [PMID: 28208767]
[112]
Pham, P.; Texier, I.; Larrea, A.S.; Blanc, R.; Revol-Cavalier, F.; Grateau, H.; Perraut, F. Numerical design of a 3-D microsystem for bioparticle dielectrophoresis: The Pyramidal Microdevice. J. Electrost., 2007, 65(8), 511-520.
[http://dx.doi.org/10.1016/j.elstat.2006.11.008]
[113]
Kirby, B.J. Micro- and Nanoscale: Fluid Transport in Microfluidic devices; Cambridge Univ. Press, 2010.
[114]
Zhang, C.; Khoshmanesh, K.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem., 2010, 396(1), 401-420.
[http://dx.doi.org/10.1007/s00216-009-2922-6] [PMID: 19578834]
[115]
Liu, L.; Chen, K.; Xiang, N.; Ni, Z. Dielectrophoretic manipulation of nanomaterials: A review. Electrophoresis, 2019, 40(6), 873-889.
[http://dx.doi.org/10.1002/elps.201800342] [PMID: 30289988]
[116]
Vaishampayan, V.; Kapoor, A.; Gumfekar, S.P. Enhancement in the limit of detection of lab-on-chip microfluidic devices using functional nanomaterials. CJCE, 2023, 101(9), 5208-5221.
[http://dx.doi.org/10.1002/cjce.24915]
[117]
Farahinia, A.; Zhang, W.J.; Badea, I. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review. J. Sci. Adv. Mater. Devices, 2021, 6(3), 303-320.
[http://dx.doi.org/10.1016/j.jsamd.2021.03.005]
[118]
Rival, A.; Jary, D.; Delattre, C.; Fouillet, Y.; Castellan, G.; Bellemin-Comte, A.; Gidrol, X. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip, 2014, 14(19), 3739-3749.
[http://dx.doi.org/10.1039/C4LC00592A] [PMID: 25080028]
[119]
Sinha, H.; Quach, A.B.V.; Vo, P.Q.N.; Shih, S.C.C. An automated microfluidic gene-editing platform for deciphering cancer genes. Lab Chip, 2018, 18(15), 2300-2312.
[http://dx.doi.org/10.1039/C8LC00470F] [PMID: 29989627]
[120]
Hiramoto, K.; Ino, K.; Nashimoto, Y.; Ito, K.; Shiku, H. Electric and electrochemical microfluidic devices for cell analysis. Front Chem., 2019, 7, 396.
[http://dx.doi.org/10.3389/fchem.2019.00396] [PMID: 31214576]
[121]
Leibacher, I.; Schatzer, S.; Dual, J. Impedance matched channel walls in acoustofluidic systems. Lab Chip, 2014, 14(3), 463-470.
[http://dx.doi.org/10.1039/C3LC51109J] [PMID: 24310918]
[122]
Sivanantha, N.; Ma, C.; Collins, D.J.; Sesen, M.; Brenker, J.; Coppel, R.L.; Neild, A.; Alan, T. Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics. Appl. Phys. Lett., 2014, 105(10), 103704.
[http://dx.doi.org/10.1063/1.4895472]
[123]
Leibacher, I.; Reichert, P.; Dual, J. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab Chip, 2015, 15(13), 2896-2905.
[http://dx.doi.org/10.1039/C5LC00083A] [PMID: 26037897]
[124]
Vuillermet, G.; Gires, P.Y.; Casset, F.; Poulain, C. Chladni patterns in a liquid at microscale. Phys. Rev. Lett., 2016, 116(18), 184501.
[http://dx.doi.org/10.1103/PhysRevLett.116.184501] [PMID: 27203325]
[125]
Piyasena, M.E.; Suthanthiraraj, P.P.A.; Applegate, R.W.; Goumas, A.M.; Woods, T.A.; Lo, G.P.; Graves, S.W. Multinode acoustic focusing for parallel flow cytometry. Anal. Chem., 2012, 84(4), 1831-1839.
[http://dx.doi.org/10.1021/ac200963n]
[126]
Ng, J.W.; Collins, D.J.; Devendran, C.; Ai, Y.; Neild, A. Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves. Microfluid. Nanofluidics, 2016, 20(11), 151.
[http://dx.doi.org/10.1007/s10404-016-1814-2]
[127]
Destgeer, G.; Jung, J.H.; Park, J.; Ahmed, H.; Park, K.; Ahmad, R.; Sung, H.J. Acoustic impedance-based manipulation of elastic microspheres using travelling surface acoustic waves. RSC Advances, 2017, 7(36), 22524-22530.
[http://dx.doi.org/10.1039/C7RA01168G]
[128]
Mao, Z.; Xie, Y.; Guo, F.; Ren, L.; Huang, P.H.; Chen, Y.; Rufo, J.; Costanzo, F.; Huang, T.J. Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab Chip, 2016, 16(3), 515-524.
[http://dx.doi.org/10.1039/C5LC00707K] [PMID: 26698361]
[129]
Sriphutkiat, Y.; Zhou, Y. Particle accumulation in a microchannel and its reduction by a standing surface acoustic wave (SSAW). Sensors, 2017, 17(12), 106.
[http://dx.doi.org/10.3390/s17010106] [PMID: 28067852]
[130]
Nam, J.; Kim, J.Y.; Lim, C.S. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves). AIP Adv., 2017, 7(1), 015314.
[http://dx.doi.org/10.1063/1.4975397]
[131]
Lee, J.; Rhyou, C.; Kang, B.; Lee, H. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes. J. Phys. D Appl. Phys., 2017, 50(16), 165401.
[http://dx.doi.org/10.1088/1361-6463/aa62d5]
[132]
Guo, F.; Mao, Z.; Chen, Y.; Xie, Z.; Lata, J.P.; Li, P.; Ren, L.; Liu, J.; Yang, J.; Dao, M.; Suresh, S.; Huang, T.J. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA, 2016, 113(6), 1522-1527.
[http://dx.doi.org/10.1073/pnas.1524813113] [PMID: 26811444]
[133]
Kishor, R.; Ma, Z.; Sreejith, S.; Seah, Y.P.; Wang, H.; Ai, Y.; Wang, Z.; Lim, T.T.; Zheng, Y. Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system. Sens. Actuators B Chem., 2017, 252, 568-576.
[http://dx.doi.org/10.1016/j.snb.2017.06.006]
[134]
Franke, T.; Braunmüller, S.; Schmid, L.; Wixforth, A.; Weitz, D.A. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip, 2010, 10(6), 789-794.
[http://dx.doi.org/10.1039/b915522h] [PMID: 20221569]
[135]
Ma, Z.; Collins, D.J.; Ai, Y. Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave. Anal. Chem., 2016, 88(10), 5316-5323.
[http://dx.doi.org/10.1021/acs.analchem.6b00605] [PMID: 27086552]
[136]
Bourquin, Y.; Syed, A.; Reboud, J.; Ranford-Cartwright, L.C.; Barrett, M.P.; Cooper, J.M. Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics. Angew. Chem. Int. Ed., 2014, 53(22), 5587-5590.
[http://dx.doi.org/10.1002/anie.201310401] [PMID: 24677583]
[137]
Destgeer, G.; Ha, B.H.; Jung, J.H.; Sung, H.J. Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip, 2014, 14(24), 4665-4672.
[http://dx.doi.org/10.1039/C4LC00868E] [PMID: 25312065]
[138]
Collins, D.J.; Ma, Z.; Ai, Y. Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields. Anal. Chem., 2016, 88(10), 5513-5522.
[http://dx.doi.org/10.1021/acs.analchem.6b01069] [PMID: 27102956]
[139]
Laurell, T.; Petersson, F.; Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev., 2007, 36(3), 492-506.
[http://dx.doi.org/10.1039/B601326K] [PMID: 17325788]
[140]
Xie, Y.; Mao, Z.; Bachman, H.; Li, P.; Zhang, P.; Ren, L.; Wu, M.; Huang, T.J. Acoustic cell separation based on density and mechanical properties. J. Biomech. Eng., 2020, 142(3), 031005.
[http://dx.doi.org/10.1115/1.4046180] [PMID: 32006021]
[141]
Ren, L.; Yang, S.; Zhang, P.; Qu, Z.; Mao, Z.; Huang, P.H.; Chen, Y.; Wu, M.; Wang, L.; Li, P.; Huang, T.J. Standing surface acoustic wave (SSAW)-based fluorescence-activated cell sorter. Small, 2018, 14(40), 1801996.
[http://dx.doi.org/10.1002/smll.201801996] [PMID: 30168662]
[142]
Nawaz, A.A.; Chen, Y.; Nama, N.; Nissly, R.H.; Ren, L.; Ozcelik, A.; Wang, L.; McCoy, J.P.; Levine, S.J.; Huang, T.J. Acoustofluidic fluorescence activated cell sorter. Anal. Chem., 2015, 87(24), 12051-12058.
[http://dx.doi.org/10.1021/acs.analchem.5b02398] [PMID: 26331909]
[143]
Guldiken, R.; Jo, M.C.; Gallant, N.D.; Demirci, U.; Zhe, J. Sheathless size-based acoustic particle separation. Sensors, 2012, 12(1), 905-922.
[http://dx.doi.org/10.3390/s120100905] [PMID: 22368502]
[144]
Li, S.; Ding, X.; Guo, F.; Chen, Y.; Lapsley, M.I.; Lin, S.C.S.; Wang, L.; McCoy, J.P.; Cameron, C.E.; Huang, T.J. An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal. Chem., 2013, 85(11), 5468-5474.
[http://dx.doi.org/10.1021/ac400548d] [PMID: 23647057]
[145]
Ding, X.; Peng, Z.; Lin, S.C.S.; Geri, M.; Li, S.; Li, P.; Chen, Y.; Dao, M.; Suresh, S.; Huang, T.J. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA, 2014, 111(36), 12992-12997.
[http://dx.doi.org/10.1073/pnas.1413325111] [PMID: 25157150]
[146]
Zhao, S.; Wu, M.; Yang, S.; Wu, Y.; Gu, Y.; Chen, C.; Ye, J.; Xie, Z.; Tian, Z.; Bachman, H.; Huang, P.H.; Xia, J.; Zhang, P.; Zhang, H.; Huang, T.J. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab Chip, 2020, 20(7), 1298-1308.
[http://dx.doi.org/10.1039/D0LC00106F] [PMID: 32195522]
[147]
Rambach, R.W.; Skowronek, V.; Franke, T. Localization and shaping of surface acoustic waves using PDMS posts: application for particle filtering and washing. RSC Advances, 2014, 4(105), 60534-60542.
[http://dx.doi.org/10.1039/C4RA13002B]
[148]
Collins, D.J.; Neild, A.; Ai, Y. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab Chip, 2016, 16(3), 471-479.
[http://dx.doi.org/10.1039/C5LC01335F] [PMID: 26646200]
[149]
Collins, D.J.; Ma, Z.; Han, J.; Ai, Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip, 2017, 17(1), 91-103.
[http://dx.doi.org/10.1039/C6LC01142J] [PMID: 27883136]
[150]
Austin, P.P.; Piyasena, M.E.; Woods, T.A.; Naivar, M.A.; Graves, S.W.; Lo, G.P. One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods, 2012, 57(3), 259-271.
[http://dx.doi.org/10.1016/j.ymeth.2012.02.013]
[151]
Grenvall, C.; Antfolk, C.; Bisgaard, C.Z.; Laurell, T. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration. Lab Chip, 2014, 14(24), 4629-4637.
[http://dx.doi.org/10.1039/C4LC00982G] [PMID: 25300357]
[152]
Meng, Z.; Petrov, G.I.; Yakovlev, V.V. Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements. Analyst, 2015, 140(21), 7160-7164.
[http://dx.doi.org/10.1039/C5AN01700A] [PMID: 26347908]
[153]
Xue, X.; Hong, X.; Li, Z.; Deng, C.X.; Fu, J. Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation. Biomaterials, 2017, 134, 22-30.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.039] [PMID: 28453955]
[154]
Chen, Y.; Nawaz, A.A.; Zhao, Y.; Huang, P.H.; McCoy, J.P.; Levine, S.J.; Wang, L.; Huang, T.J. Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab Chip, 2014, 14(5), 916-923.
[http://dx.doi.org/10.1039/C3LC51139A] [PMID: 24406848]
[155]
Zmijan, R.; Jonnalagadda, U.S.; Carugo, D.; Kochi, Y.; Lemm, E.; Packham, G.; Glynne-jones, P. RSC Advances focussing. RSC Advances, 2015, 5, 83206-83216.
[http://dx.doi.org/10.1039/C5RA19497K] [PMID: 29456838]
[156]
Yang, R.J.; Fu, L.M.; Hou, H.H. Review and perspectives on microfluidic flow cytometers. Sens. Actuators B Chem., 2018, 266, 26-45.
[http://dx.doi.org/10.1016/j.snb.2018.03.091]
[157]
Li, S.; Guo, F.; Chen, Y.; Ding, X.; Li, P.; Wang, L.; Cameron, C.E.; Huang, T.J. Standing surface acoustic wave based cell coculture. Anal. Chem., 2014, 86(19), 9853-9859.
[http://dx.doi.org/10.1021/ac502453z] [PMID: 25232648]
[158]
Sajeesh, P.; Sen, A.K. Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluidics, 2014, 17(1), 1-52.
[http://dx.doi.org/10.1007/s10404-013-1291-9]
[159]
Zhang, H.; Qu, X.; Chen, H.; Kong, H.; Ding, R.; Chen, D.; Zhang, X.; Pei, H.; Santos, H.A.; Hai, M.; Weitz, D.A. Fabrication of calcium phosphate-based nanocomposites incorporating DNA origami, gold nanorods, and anticancer drugs for biomedical applications. Adv. Healthc. Mater., 2017, 6(20), 1700664.
[http://dx.doi.org/10.1002/adhm.201700664] [PMID: 28941223]
[160]
Kong, L.; Jin, X.; Hu, D.; Feng, L.; Chen, D.; Li, H. Functional delivery vehicle of organic nanoparticles in inorganic crystals. Chin. Chem. Lett., 2019, 30(12), 2351-2354.
[http://dx.doi.org/10.1016/j.cclet.2019.08.007]
[161]
Liu, Y.; Yang, G.; Jin, S.; Zhang, R.; Chen, P.; Tengjisi, L.; Wang, L.; Chen, D.; Weitz, D.A.; Zhao, C.X. J-aggregate-based FRET monitoring of drug release from polymer nanoparticles with high drug loading. Angew. Chem. Int. Ed., 2020, 59(45), 20065-20074.
[http://dx.doi.org/10.1002/anie.202008018] [PMID: 32743867]
[162]
Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, 77(3), 977-1026.
[http://dx.doi.org/10.1103/RevModPhys.77.977]
[163]
Song, H.; Tice, J.D.; Ismagilov, R.F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed., 2003, 42(7), 768-772.
[http://dx.doi.org/10.1002/anie.200390203] [PMID: 12596195]
[164]
Mengeaud, V.; Josserand, J.; Girault, H.H. Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem., 2002, 74(16), 4279-4286.
[http://dx.doi.org/10.1021/ac025642e] [PMID: 12199603]
[165]
Xiong, S.; Chen, X. Numerical simulation of three-dimensional passive micromixer with variable-angle grooves and baffles. Surf. Rev. Lett., 2021, 28(5), 2150037.
[http://dx.doi.org/10.1142/S0218625X21500372]
[166]
Xiong, S.; Chen, X. Numerical study of a threedimensional electroosmotic micromixer with Koch fractal curve structure. J. Chem. Technol. Biotechnol., 2021, 96(7), 1909-1917.
[http://dx.doi.org/10.1002/jctb.6711]
[167]
Xiong, S.; Chen, X.; Chen, H.; Chen, Y.; Zhang, W. Numerical study on an electroosmotic micromixer with rhombic structure. J. Dispers. Sci. Technol., 2021, 42(9), 1331-1337.
[http://dx.doi.org/10.1080/01932691.2020.1748644]
[168]
Iwasaki, W.; Yamanaka, K.; Sugiyama, D.; Teshima, Y.; Briones-Nagata, M.P.; Maeki, M.; Yamashita, K.; Takahashi, M.; Miyazaki, M. Simple separation of good quality bovine oocytes using a microfluidic device. Sci. Rep., 2018, 8(1), 14273.
[http://dx.doi.org/10.1038/s41598-018-32687-6] [PMID: 30250059]
[169]
Franke, T.; Abate, A.R.; Weitz, D.A.; Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip, 2009, 9(18), 2625-2627.
[http://dx.doi.org/10.1039/b906819h] [PMID: 19704975]
[170]
Utada, A.S.; Fernandez-Nieves, A.; Stone, H.A.; Weitz, D.A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett., 2007, 99(9), 094502.
[http://dx.doi.org/10.1103/PhysRevLett.99.094502] [PMID: 17931011]
[171]
Wu, B.; Yang, C.; Li, B.; Feng, L.; Hai, M.; Zhao, C.X.; Chen, D.; Liu, K.; Weitz, D.A. Active encapsulation in biocompatible nanocapsules. Small, 2020, 16(30), 2002716.
[http://dx.doi.org/10.1002/smll.202002716] [PMID: 32578400]
[172]
Chu, L.Y.; Utada, A.S.; Shah, R.K.; Kim, J.W.; Weitz, D.A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed., 2007, 46(47), 8970-8974.
[http://dx.doi.org/10.1002/anie.200701358] [PMID: 17847154]
[173]
Shah, R.K.; Shum, H.C.; Rowat, A.C.; Lee, D.; Agresti, J.J.; Utada, A.S.; Chu, L.Y.; Kim, J.W.; Fernandez-Nieves, A.; Martinez, C.J.; Weitz, D.A. Designer emulsions using microfluidics. Mater. Today, 2008, 11(4), 18-27.
[http://dx.doi.org/10.1016/S1369-7021(08)70053-1]
[174]
Shang, L.; Cheng, Y.; Zhao, Y. Emerging droplet microfluidics. Chem. Rev., 2017, 117(12), 7964-8040.
[http://dx.doi.org/10.1021/acs.chemrev.6b00848] [PMID: 28537383]
[175]
Kim, S.H.; Nam, J.; Kim, J.W.; Kim, D.H.; Han, S.H.; Weitz, D.A. Formation of polymersomes with double bilayers templated by quadruple emulsions. Lab Chip, 2013, 13(7), 1351-1356.
[http://dx.doi.org/10.1039/c3lc41112e] [PMID: 23380918]
[176]
Wang, Z.; Wu, C.; Fan, T.; Han, X.; Wang, Q.; Lei, J.; Yang, J. Electroformation and collection of giant liposomes on an integrated microchip. Chin. Chem. Lett., 2019, 30(2), 353-358.
[http://dx.doi.org/10.1016/j.cclet.2018.12.001]
[177]
Link, D.R.; Grasland-Mongrain, E.; Duri, A.; Sarrazin, F.; Cheng, Z.; Cristobal, G.; Marquez, M.; Weitz, D.A. Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed., 2006, 45(16), 2556-2560.
[http://dx.doi.org/10.1002/anie.200503540] [PMID: 16544359]
[178]
Zare, R.N.; Kim, S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng., 2010, 12(1), 187-201.
[http://dx.doi.org/10.1146/annurev-bioeng-070909-105238] [PMID: 20433347]
[179]
Brouzes, E.; Medkova, M.; Savenelli, N.; Marran, D.; Twardowski, M.; Hutchison, J.B.; Rothberg, J.M.; Link, D.R.; Perrimon, N.; Samuels, M.L. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14195-14200.
[http://dx.doi.org/10.1073/pnas.0903542106] [PMID: 19617544]
[180]
Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Yuan Hsin, H.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science, 2010, 328, 1662-1668.
[http://dx.doi.org/10.1126/science.1188302]
[181]
Ingber, D.E. Reverse engineering human pathophysiology with organs-on-chips. Cell, 2016, 164(6), 1105-1109.
[http://dx.doi.org/10.1016/j.cell.2016.02.049] [PMID: 26967278]
[182]
Shuler, M.L. Advances in organ-, body-, and disease-on-a-chip systems. Lab Chip, 2019, 19(1), 9-10.
[http://dx.doi.org/10.1039/C8LC90089B] [PMID: 30284573]
[183]
Skardal, A.; Aleman, J.; Forsythe, S.; Rajan, S.; Murphy, S.; Devarasetty, M.; Pourhabibi Zarandi, N.; Nzou, G.; Wicks, R.; Sadri-Ardekani, H.; Bishop, C.; Soker, S.; Hall, A.; Shupe, T.; Atala, A. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication, 2020, 12(2), 025017.
[http://dx.doi.org/10.1088/1758-5090/ab6d36] [PMID: 32101533]
[184]
Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol., 2019, 37(4), 407-419.
[http://dx.doi.org/10.1038/s41587-019-0040-3] [PMID: 30804536]
[185]
Jiang, K.; Jokhun, D.S.; Lim, C.T. Microfluidic detection of human diseases: From liquid biopsy to COVID-19 diagnosis. J. Biomech., 2021, 117, 110235.
[http://dx.doi.org/10.1016/j.jbiomech.2021.110235] [PMID: 33486262]
[186]
Xing, W.; Liu, Y.; Wang, H.; Li, S.; Lin, Y.; Chen, L.; Zhao, Y.; Chao, S.; Huang, X.; Ge, S.; Deng, T.; Zhao, T.; Li, B.; Wang, H.; Wang, L.; Song, Y.; Jin, R.; He, J.; Zhao, X.; Liu, P.; Li, W.; Cheng, J.; High-Throughput, A.A. High-throughput, multi-index isothermal amplification platform for rapid detection of 19 types of common respiratory viruses including SARS-CoV-2. Engineering, 2020, 6(10), 1130-1140.
[http://dx.doi.org/10.1016/j.eng.2020.07.015] [PMID: 33520332]
[187]
Wolfe, D.B.; Conroy, R.S.; Garstecki, P.; Mayers, B.T.; Fischbach, M.A.; Paul, K.E.; Prentiss, M.; Whitesides, G.M. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl. Acad. Sci. USA, 2004, 101(34), 12434-12438.
[http://dx.doi.org/10.1073/pnas.0404423101] [PMID: 15314232]
[188]
Wang, H.; Park, M.; Dong, R.; Kim, J.; Cho, Y-K.; Tlusty, T.; Granick, S. Boosted molecular mobility during common chemical reactions. Science, 2020, 369, 537-541.
[http://dx.doi.org/10.1126/science.aba8425]
[189]
Mea, H.J.; Delgadillo, L.; Wan, J. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 14790-14797.
[http://dx.doi.org/10.1073/pnas.1917289117] [PMID: 32541054]
[190]
Chen, L.; Xiao, Y.; Wu, Q.; Yan, X.; Zhao, P.; Ruan, J.; Shan, J.; Chen, D.; Weitz, D.A.; Ye, F. Emulsion designer using microfluidic three dimensional droplet printing in droplet. Small, 2021, 17(39), 2102579.
[http://dx.doi.org/10.1002/smll.202102579] [PMID: 34390183]
[191]
Gaut, N.J.; Adamala, K.P. Toward artificial photosynthesis. Science, 2020, 368, 587-588.
[http://dx.doi.org/10.1126/science.abc1226]
[192]
Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491), 181-189.
[http://dx.doi.org/10.1038/nature13118] [PMID: 24622198]
[193]
Taylor, A.M.; Dieterich, D.C.; Ito, H.T.; Kim, S.A.; Schuman, E.M. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron, 2010, 66(1), 57-68.
[http://dx.doi.org/10.1016/j.neuron.2010.03.022] [PMID: 20399729]
[194]
Pang, L.; Ding, J.; Liu, X.X.; Fan, S.K. Digital microfluidics for cell manipulation. Trends Analyt. Chem., 2019, 117, 291-299.
[http://dx.doi.org/10.1016/j.trac.2019.06.008]
[195]
Tang, W.; Jiang, D.; Li, Z.; Zhu, L.; Shi, J.; Yang, J.; Xiang, N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis, 2019, 40(6), 930-954.
[http://dx.doi.org/10.1002/elps.201800361] [PMID: 30311661]
[196]
Lee, W.; Tseng, P.; Di Carlo, D. Microfluidic Cell Sorting and Separation Technology 2017, 1-14.
[http://dx.doi.org/10.1007/978-3-319-44139-9_1]
[197]
Oh, S.; Jung, S.H.; Seo, H.; Min, M.K.; Kim, B.; Hahn, Y.K.; Kang, J.H.; Choi, S. Magnetic activated cell sorting (MACS) pipette tip for immunomagnetic bacteria separation. Sens. Actuators B Chem., 2018, 272, 324-330.
[http://dx.doi.org/10.1016/j.snb.2018.05.146]
[198]
Cheng, Y.; Ye, X.; Ma, Z.; Xie, S.; Wang, W. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood. Biomicrofluidics, 2016, 10(1), 014118.
[http://dx.doi.org/10.1063/1.4941985] [PMID: 26909124]
[199]
Jackson, E.L.; Lu, H. Advances in microfluidic cell separation and manipulation. Curr. Opin. Chem. Eng., 2013, 2(4), 398-404.
[http://dx.doi.org/10.1016/j.coche.2013.10.001] [PMID: 24701393]
[200]
Jeanbart, L.; Swartz, M.A. Engineering opportunities in cancer immunotherapy. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14467-14472.
[http://dx.doi.org/10.1073/pnas.1508516112] [PMID: 26598681]
[201]
Swartz, M.A.; Hirosue, S.; Hubbell, J.A. Engineering approaches to immunotherapy. Sci. Transl. Med., 2012, 4(148), 148rv9.
[http://dx.doi.org/10.1126/scitranslmed.3003763] [PMID: 22914624]
[202]
Sathyanarayana, R.; Poojary, B.; Srinivasa, S.M.; Merugumolu, V.K.; Chandrashekarappa, R.B.; Rangappa, S. In vitro, in vivo and in silico-driven identification of novel benzimidazole derivatives as anticancer and anti-inflammatory agents. J. Iran. Chem. Soc,, 2021.
[http://dx.doi.org/10.1007/s13738-021-02381-y]
[203]
Eslami Moghadam, M.; Jafari, A.; Kiani Khashandaragh, R.; Divsalar, A.; Ghasemzadeh, M. Three anticancer Pt complexes with glycine derivatives: synthesis, bioactivity on MCF-7 cell line, ADME prediction, DFT, MEP, and molecular docking. J. Indian Chem. Soc., 2021, 18(8), 1927-1939.
[http://dx.doi.org/10.1007/s13738-021-02154-7]
[204]
Plaks, V.; Koopman, C.D.; Werb, Z. Circulating tumor cells. Science, 2013, 341, 1186-1188.
[http://dx.doi.org/10.1126/science.1235226]
[205]
Cristofanilli, M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin. Oncol., 2006, 33(3)(Suppl. 9), 9-14.
[http://dx.doi.org/10.1053/j.seminoncol.2006.03.016] [PMID: 16797376]
[206]
Sun, C.; Hsieh, Y.P.; Ma, S.; Geng, S.; Cao, Z.; Li, L.; Lu, C. Immunomagnetic separation of tumor initiating cells by screening two surface markers. Sci. Rep., 2017, 7(1), 40632.
[http://dx.doi.org/10.1038/srep40632] [PMID: 28074882]
[207]
Huang, W.; Chang, C.L.; Brault, N.D.; Gur, O.; Wang, Z.; Jalal, S.I.; Low, P.S.; Ratliff, T.L.; Pili, R.; Savran, C.A. Separation and dual detection of prostate cancer cells and protein biomarkers using a microchip device. Lab Chip, 2017, 17(3), 415-428.
[http://dx.doi.org/10.1039/C6LC01279E] [PMID: 28054089]
[208]
Lee, W.; Tseng, P.; Di, D. Microsystems and Nanosystems Microtechnology for Cell Manipulation and Sorting, 2017.
[209]
Dalili, A.; Samiei, E.; Hoorfar, M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst, 2019, 144(1), 87-113.
[http://dx.doi.org/10.1039/C8AN01061G] [PMID: 30402633]
[210]
Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip, 2016, 16(13), 2376-2396.
[http://dx.doi.org/10.1039/C6LC00387G] [PMID: 27272540]
[211]
Lafleur, J.P.; Jönsson, A.; Senkbeil, S.; Kutter, J.P. Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron., 2016, 76, 213-233.
[http://dx.doi.org/10.1016/j.bios.2015.08.003] [PMID: 26318580]
[212]
Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng., 2015, 132, 156-175.
[http://dx.doi.org/10.1016/j.mee.2014.10.013]
[213]
McKinnon, K.M. Flow cytometry: An overview. Curr. Protoc. Immunol.,, 2018, 5.1.1-5.1.11.
[http://dx.doi.org/10.1002/cpim.40]
[214]
Rosental, B.; Kozhekbaeva, Z.; Fernhoff, N.; Tsai, J.M.; Traylor-Knowles, N. Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol., 2017, 18(1), 30.
[http://dx.doi.org/10.1186/s12860-017-0146-8] [PMID: 28851289]
[215]
Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol., 2017, 37(2), 163-176.
[http://dx.doi.org/10.3109/07388551.2015.1128876] [PMID: 26767547]
[216]
Jin, D.; Deng, B.; Li, J.X.; Cai, W.; Tu, L.; Chen, J.; Wu, Q.; Wang, W.H. A microfluidic device enabling high-efficiency single cell trapping. Biomicrofluidics, 2015, 9(1), 014101.
[http://dx.doi.org/10.1063/1.4905428] [PMID: 25610513]
[217]
Deng, B.; Wang, H.; Tan, Z.; Quan, Y. Microfluidic cell trapping for single-cell analysis. Micromachines, 2019, 10(6), 409.
[http://dx.doi.org/10.3390/mi10060409] [PMID: 31248148]
[218]
Wang, C.; Liu, W.; Wei, Q.; Ren, L.; Tan, M.; Yu, Y. A novel dual-well array chip for efficiently trapping single-cell in large isolated micro-well without complicated accessory equipment. Biomicrofluidics, 2018, 12(3), 034103.
[http://dx.doi.org/10.1063/1.5030203] [PMID: 29774084]
[219]
Bušík, M.; Jančigová, I.; Tóthová, R.; Cimrák, I. Simulation study of rare cell trajectories and capture rate in periodic obstacle arrays. J. Comput. Sci., 2016, 17, 370-376.
[http://dx.doi.org/10.1016/j.jocs.2016.04.009]
[220]
Puttaswamy, S.V.; Fishlock, S.J.; Steele, D.; Shi, Q.; Lee, C.; McLaughlin, J. Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation. Biomed. Phys. Eng. Express, 2019, 5(5), 055003.
[http://dx.doi.org/10.1088/2057-1976/ab268e]
[221]
Patra, B.; Chen, Y.H.; Peng, C.C.; Lin, S.C.; Lee, C.H.; Tung, Y.C. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics, 2013, 7(5), 054114.
[http://dx.doi.org/10.1063/1.4824480] [PMID: 24396525]
[222]
Kim, M.C.; Wang, Z.; Lam, R.H.W.; Thorsen, T. Building a better cell trap: Applying Lagrangian modeling to the design of microfluidic devices for cell biology. J. Appl. Phys., 2008, 103(4), 044701.
[http://dx.doi.org/10.1063/1.2840059]
[223]
Bocquet, L. Nanofluidics coming of age. Nat. Mater., 2020, 19(3), 254-256.
[http://dx.doi.org/10.1038/s41563-020-0625-8] [PMID: 32099111]
[224]
Secchi, E.; Marbach, S.; Niguès, A.; Stein, D.; Siria, A.; Bocquet, L. Massive radius-dependent flow slippage in carbon nanotubes. Nature, 2016, 537(7619), 210-213.
[http://dx.doi.org/10.1038/nature19315] [PMID: 27604947]
[225]
Whitby, M.; Cagnon, L.; Thanou, M.; Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett., 2008, 8(9), 2632-2637.
[http://dx.doi.org/10.1021/nl080705f] [PMID: 18680352]
[226]
Massenburg, S.S.; Amstad, E.; Weitz, D.A. Clogging in parallelized tapered microfluidic channels. Microfluid. Nanofluidics, 2016, 20(6), 94.
[http://dx.doi.org/10.1007/s10404-016-1758-6]
[227]
Michaelides, A. Slippery when narrow. Nature, 2016, 537(7619), 171-172.
[http://dx.doi.org/10.1038/537171a] [PMID: 27604943]
[228]
Chen, P.; Gu, J.; Brandin, E.; Kim, Y.R.; Wang, Q.; Branton, D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett., 2004, 4(11), 2293-2298.
[http://dx.doi.org/10.1021/nl048654j] [PMID: 25221441]
[229]
Amin, S.; Khorshid, A.; Zeng, L.; Zimny, P.; Reisner, W. A nanofluidic knot factory based on compression of single DNA in nanochannels. Nat. Commun., 2018, 9(1), 1506.
[http://dx.doi.org/10.1038/s41467-018-03901-w] [PMID: 29666466]
[230]
Teng, Y.; Liu, P.; Fu, L.; Kong, X.Y.; Jiang, L.; Wen, L. Bioinspired nervous signal transmission system based on two-dimensional laminar nanofluidics: From electronics to ionics. Proc. Natl. Acad. Sci. USA, 2020, 117(29), 16743-16748.
[http://dx.doi.org/10.1073/pnas.2005937117] [PMID: 32611809]

© 2025 Bentham Science Publishers | Privacy Policy