Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

New Horizons in Diabetic Neuropathies: An Updated Review on their Pathology, Diagnosis, Mechanism, Screening Techniques, Pharmacological, and Future Approaches

Author(s): Namra Aziz, Biswajit Dash, Pranay Wal*, Prachi Kumari, Poonam Joshi and Ankita wal

Volume 20, Issue 6, 2024

Published on: 20 October, 2023

Article ID: e201023222416 Pages: 19

DOI: 10.2174/0115733998242299231011181615

Price: $65

Abstract

Background: One of the largest problems for global public health is diabetes mellitus (DM) and its micro and macrovascular consequences. Although prevention, diagnosis, and treatment have generally improved, its incidence is predicted to keep rising over the coming years. Due to the intricacy of the molecular mechanisms, which include inflammation, oxidative stress, and angiogenesis, among others, discovering treatments to stop or slow the course of diabetic complications is still a current unmet need.

Methods: The pathogenesis and development of diabetic neuropathies may be explained by a wide variety of molecular pathways, hexosamine pathways, such as MAPK pathway, PARP pathway, oxidative stress pathway polyol (sorbitol) pathway, cyclooxygenase pathway, and lipoxygenase pathway. Although diabetic neuropathies can be treated symptomatically, there are limited options for treating the underlying cause.

Result: Various pathways and screening models involved in diabetic neuropathies are discussed, along with their possible outcomes. Moreover, both medicinal and non-medical approaches to therapy are also explored.

Conclusion: This study highlights the probable involvement of several processes and pathways in the establishment of diabetic neuropathies and presents in-depth knowledge of new therapeutic approaches intended to stop, delay, or reverse different types of diabetic complications.

[1]
Khanra R, Dewanjee SK, Dua T, et al. Abroma augusta L. (Malvaceae) leaf extract attenuates diabetes induced nephropathy and cardiomyopathy via inhibition of oxidative stress and inflammatory response. J Transl Med 2015; 13(1): 6.
[http://dx.doi.org/10.1186/s12967-014-0364-1]
[2]
Bhattacharjee N, Dua TK, Khanra R, et al. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front Pharmacol 2017; 8: 251.
[http://dx.doi.org/10.3389/fphar.2017.00251] [PMID: 28533752]
[3]
Ahamed MM, Banjii O. A review on diabetic neuropathies and nephropathy. Int J Pharm Sci Res 2012; 3(2): 300.
[4]
Liu Z, Yang B. Drug development strategy for type 2 diabetes: Targeting positive energy balances. Curr Drug Targets 2019; 20(8): 879-90.
[http://dx.doi.org/10.2174/1389450120666181217111500] [PMID: 30556500]
[5]
Iqbal Z, Azmi S, Yadav R, et al. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clin Ther 2018; 40(6): 828-49.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.001] [PMID: 29709457]
[6]
Boulton AJM, Vinik AI, Arezzo JC, et al. Diabetic neuropathies. Diabetes Care 2005; 28(4): 956-62.
[http://dx.doi.org/10.2337/diacare.28.4.956] [PMID: 15793206]
[7]
Vinik AI, Master REA, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Minerva Med 2003; 108(5): 419-37.
[8]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 30617281]
[9]
Selvarajah D, Wilkinson ID, Emery CJ, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 2006; 29(12): 2664-9.
[http://dx.doi.org/10.2337/dc06-0650] [PMID: 17130202]
[10]
Wessels AM, Rombouts SARB, Simsek S, et al. Microvascular disease in type 1 diabetes alters brain activation: A functional magnetic resonance imaging study. Diabetes 2006; 55(2): 334-40.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0680] [PMID: 16443765]
[11]
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977-86.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[12]
The PKC-DMES Study Group. Effect of ruboxistaurin in patients with diabetic macular edema: Thirty-month results of the randomized PKC-DMES clinical trial. Arch Ophthalmol 2007; 125(3): 318-24.2007.
[13]
Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathies: A position statement by the American Diabetes Association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[14]
Gordois A, Scuffham P, Shearer A, Oglesby A, Tobian JA. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 2003; 26(6): 1790-5.
[http://dx.doi.org/10.2337/diacare.26.6.1790] [PMID: 12766111]
[15]
Themistocleous AC, Ramirez JD, Shillo PR, et al. The Pain in Neuropathy Study (PiNS): A cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain 2016; 157(5): 1132-45.
[http://dx.doi.org/10.1097/j.pain.0000000000000491] [PMID: 27088890]
[16]
Bouhassira D, Lantéri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008; 136(3): 380-7.
[http://dx.doi.org/10.1016/j.pain.2007.08.013] [PMID: 17888574]
[17]
Chetty S, Baalbergen E, Bhigjee AI, et al. Clinical practice guidelines for management of neuropathic pain: Expert panel recommendations for South Africa. S Afr Med J 2012; 102(5): 312-25.
[http://dx.doi.org/10.7196/SAMJ.5472] [PMID: 22554341]
[18]
Ang L, Jaiswal M, Martin C, Pop-Busui R. Glucose control and diabetic neuropathy: Lessons from recent large clinical trials. Curr Diab Rep 2014; 14(9): 528.
[http://dx.doi.org/10.1007/s11892-014-0528-7] [PMID: 25139473]
[19]
Pop-Busui R, Lu J, Brooks MM, et al. Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Cohort Diabetes Care 2013; 36(10): 3208-15.
[http://dx.doi.org/10.2337/dc13-0012] [PMID: 23757426]
[20]
Partanen J, Niskanen L, Lehtinen J, Mervaala E, Siitonen O, Uusitupa M. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1995; 333(2): 89-94.
[http://dx.doi.org/10.1056/NEJM199507133330203] [PMID: 7777034]
[21]
Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: Mechanisms to management. Pharmacol Ther 2008; 120(1): 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[22]
Ropper AH, Klein JP. Cerebral venous thrombosis. N Engl J Med 2021; 385(1): 59-64.
[http://dx.doi.org/10.1056/NEJMra2106545] [PMID: 34192432]
[23]
Kimura J. Electrodiagnosis in diseases of nerve and muscle: Principles and Practice. 4th ed. 2013.
[http://dx.doi.org/10.1093/med/9780199738687.001.0001]
[24]
Tavakoli M, Yavuz DG, Tahrani AA, Selvarajah D, Bowling FL, Fadavi H. Diabetic neuropathy: Current status and future prospects. J Diabetes Res 2017; 2017
[http://dx.doi.org/10.1155/2017/5825971]
[25]
Spallone V, Bellavere F, Scionti L, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis 2011; 21(1): 69-78.
[http://dx.doi.org/10.1016/j.numecd.2010.07.005] [PMID: 21247746]
[26]
Zinman LH, Bril V, Perkins BA. Cooling detection thresholds in the assessment of diabetic sensory polyneuropathy: Comparison of CASE IV and Medoc instruments. Diabetes Care 2004; 27(7): 1674-9.
[http://dx.doi.org/10.2337/diacare.27.7.1674] [PMID: 15220245]
[27]
Vinik AI. Diabetic neuropathy: Pathogenesis and therapy. Am J Med 1999; 107(2): 17-26.
[http://dx.doi.org/10.1016/S0002-9343(99)00009-1] [PMID: 10484041]
[28]
Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J Ethnopharmacol 2012; 142(3): 723-31.
[http://dx.doi.org/10.1016/j.jep.2012.05.049] [PMID: 22706151]
[29]
Said G. Diabetic neuropathy—a review. Nat Clin Pract Neurol 2007; 3(6): 331-40.
[http://dx.doi.org/10.1038/ncpneuro0504] [PMID: 17549059]
[30]
Tesfaye S, Chaturvedi N, Eaton SEM, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005; 352(4): 341-50.
[http://dx.doi.org/10.1056/NEJMoa032782] [PMID: 15673800]
[31]
Cruccu G, Truini A. Sensory profiles: A new strategy for selecting patients in treatment trials for neuropathic pain. Pain 2009; 146(1): 5-6.
[http://dx.doi.org/10.1016/j.pain.2009.07.004] [PMID: 19625126]
[32]
Treede RD. The role of quantitative sensory testing in the prediction of chronic pain. Pain 2019; 160(1): S66-9.
[http://dx.doi.org/10.1097/j.pain.0000000000001544] [PMID: 31008852]
[33]
Cohen K, Shinkazh N, Frank J, Israel I, Fellner C. Pharmacological treatment of diabetic peripheral neuropathy. P&T 2015; 40(6): 372-88.
[PMID: 26045647]
[34]
Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol 2012; 11(6): 521-34.
[http://dx.doi.org/10.1016/S1474-4422(12)70065-0] [PMID: 22608666]
[35]
Cameron NE, Eaton SEM, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001; 44(11): 1973-88.
[http://dx.doi.org/10.1007/s001250100001] [PMID: 11719828]
[36]
Archer AG, Roberts VC, Watkins PJ. Blood flow patterns in painful diabetic neuropathy. Diabetologia 1984; 27(6): 563-7.
[http://dx.doi.org/10.1007/BF00276968] [PMID: 6530051]
[37]
Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care 2008; 31(1): 140-5.
[http://dx.doi.org/10.2337/dc07-1556] [PMID: 17934147]
[38]
Shillo P, Selvarajah D, Greig M, et al. Nerve and vascular biomarkers in skin biopsies differentiate painful from painless peripheral neuropathy in type 2 diabetes. Front Pain Res 2021; 2: 731658.
[39]
Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[40]
Fukuoka M, Sakurai K, Ohta T, Kiyoki M, Katayama I. Tacalcitol, an active vitamin D3, induces nerve growth factor production in human epidermal keratinocytes. Skin Pharmacol Physiol 2001; 14(4): 226-33.
[http://dx.doi.org/10.1159/000056351] [PMID: 11464105]
[41]
Bierhaus A, Fleming T, Stoyanov S, et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 2012; 18(6): 926-33.
[http://dx.doi.org/10.1038/nm.2750] [PMID: 22581285]
[42]
Huang Q, Chen Y, Gong N, Wang YX. Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism 2016; 65(4): 463-74.
[http://dx.doi.org/10.1016/j.metabol.2015.12.002] [PMID: 26975538]
[43]
Selvarajah D, Awadh M, Gandhi R, Wilkinson ID, Tesfaye S. Alterations in somatomotor network functional connectivity in painful diabetic neuropathy—a resting state functional magnetic resonance imaging study. Diabetes 2018; 67(S1)
[44]
aShillo PR, Selvarajah D, Greig M, et al. Painless diabetic peripheral neuropathy is characterised by reduced thalamic gammaaminobutyric acid (GABA). Diabetic Medicine 2016; 33: 15-6. b111 RIVER ST, HOBOKEN 07030-5774
[45]
Watanabe K, Hirano S, Kojima K, et al. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2018; 791: 8-24.
[http://dx.doi.org/10.1136/jnnp-2017-316601]
[46]
Brownlee M. A radical explanation for glucose-induced β cell dysfunction. J Clin Invest 2003; 112(12): 1788-90.
[http://dx.doi.org/10.1172/JCI200320501] [PMID: 14679173]
[47]
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36(8): 439-49.
[http://dx.doi.org/10.1016/j.tins.2013.04.008] [PMID: 23725712]
[48]
Lee AW, Chung SSM. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999; 13(1): 23-30.
[http://dx.doi.org/10.1096/fasebj.13.1.23] [PMID: 9872926]
[49]
Yagihashi S, Yamagishi SI, Wada R, et al. Galactosemic neuropathy in transgenic mice for human aldose reductase. Diabetes 1996; 45(1): 56-9.
[http://dx.doi.org/10.2337/diab.45.1.56] [PMID: 8522060]
[50]
Agthong S, Tomlinson DR. Inhibition of p38 MAP kinase corrects biochemical and neurological deficits in experimental diabetic neuropathy. Ann N Y Acad Sci 2002; 973(1): 359-62.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04665.x] [PMID: 12485893]
[51]
Obrosova IG, Drel VR, Pacher P, et al. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: The relation is revisited. Diabetes 2005; 54(12): 3435-41.
[http://dx.doi.org/10.2337/diabetes.54.12.3435] [PMID: 16306359]
[52]
Song Z, Fu DT, Chan YS, Leung S, Chung SS, Chung SK. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 2003; 23(4): 638-47.
[http://dx.doi.org/10.1016/S1044-7431(03)00096-4] [PMID: 12932443]
[53]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[54]
Kaneto H, Xu G, Song KH, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J Biol Chem 2001; 276(33): 31099-104.
[http://dx.doi.org/10.1074/jbc.M104115200] [PMID: 11390407]
[55]
Nakamura M, Barber AJ, Antonetti DA, et al. Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem 2001; 276(47): 43748-55.
[http://dx.doi.org/10.1074/jbc.M108594200] [PMID: 11560942]
[56]
Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 1998; 101(1): 160-9.
[http://dx.doi.org/10.1172/JCI119875] [PMID: 9421478]
[57]
Cameron NE, Cotter MA. Comparison of the effects of ascorbyl? -linolenic acid and? -linolenic acid in the correction of neurovascular deficits in diabetic rats. Diabetologia 1996; 39(9): 1047-54.
[http://dx.doi.org/10.1007/BF00400653] [PMID: 8877288]
[58]
Casellini CM, Barlow PM, Rice AL, et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-β inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care 2007; 30(4): 896-902.
[http://dx.doi.org/10.2337/dc06-1699] [PMID: 17392551]
[59]
Clifft JK, Kasser RJ, Newton TS, Bush AJ. The effect of monochromatic infrared energy on sensation in patients with diabetic peripheral neuropathy: A double-blind, placebo-controlled study. Diabetes Care 2005; 28(12): 2896-900.
[http://dx.doi.org/10.2337/diacare.28.12.2896] [PMID: 16306551]
[60]
Bansal D, Badhan Y, Gudala K, Schifano F. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: A systematic review of randomized clinical trials. Diabetes Obes Metab 2013; 37(5): 375-84.
[http://dx.doi.org/10.4093/dmj.2013.37.5.375]
[61]
Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004; 25(4): 612-28.
[http://dx.doi.org/10.1210/er.2003-0019] [PMID: 15294884]
[62]
Casellini CM, Vinik AI. Recent advances in the treatment of diabetic neuropathy. Curr Opin Endocrinol Diabetes Obes 2006; 13(2): 147-53.
[63]
Ko SH, Cha BY. Diabetic peripheral neuropathy in type 2 diabetes mellitus in Korea. Diabetes Metab J 2012; 36(1): 6-12.
[http://dx.doi.org/10.4093/dmj.2012.36.1.6] [PMID: 22363916]
[64]
Coppey LJ, Gellett JS, Davidson EP, Yorek MA. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radic Res 2003; 37(1): 33-40.
[http://dx.doi.org/10.1080/1071576021000028442] [PMID: 12653215]
[65]
Kerezoudi E, King RH, Muddle JR, O’Neill JA, Thomas PK. Influence of age on the late retrograde effects of sciatic nerve section in the rat. J Anat 1995; 187(Pt 1): 27-35.
[PMID: 7591983]
[66]
Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999; 6(5): 347-63.
[http://dx.doi.org/10.1006/nbdi.1999.0254] [PMID: 10527803]
[67]
Cameron NE, Cotter MA, Dines KC, Maxfield EK, Carey F, Mirrlees DJ. Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin-diabetic rats: Dose-response considerations and independence from a myo-inositol mechanism. Diabetologia 1994; 37(7): 651-63.
[http://dx.doi.org/10.1007/BF00417688] [PMID: 7958535]
[68]
Van Dam PS, Gispen W-H, Bravenboer B, Van Asbeck BS, Erkelens DW, Marx JJM. The role of oxidative stress in neuropathy and other diabetic complications. Diabetes Metab Rev 1995; 11(3): 181-92.
[http://dx.doi.org/10.1002/dmr.5610110303] [PMID: 8536540]
[69]
Das S, Joardar S, Manna P, et al. Carnosic acid, a natural diterpene, attenuates arsenic-induced hepatotoxicity via reducing oxidative stress, MAPK activation, and apoptotic cell death pathway. Oxid Med Cell Longev 2018; 2018: 1-24.
[http://dx.doi.org/10.1155/2018/1421438] [PMID: 29854073]
[70]
Dewanjee S, Joardar S, Bhattacharjee N, et al. Edible leaf extract of Ipomoea aquatica Forssk. (Convolvulaceae) attenuates doxorubicin-induced liver injury via inhibiting oxidative impairment, MAPK activation and intrinsic pathway of apoptosis. Food Chem Toxicol 2017; 105: 322-36.
[http://dx.doi.org/10.1016/j.fct.2017.05.002] [PMID: 28478100]
[71]
Xia P, Kramer RM, King GL. Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J Clin Invest 1995; 96(2): 733-40.
[http://dx.doi.org/10.1172/JCI118117] [PMID: 7635966]
[72]
Daulhac L, Mallet C, Courteix C, et al. Diabetes-induced mechanical hyperalgesia involves spinal MAPKs activation in neurons and microglia via NMDA-dependent mechanisms. Mol Pharmacol 2006.
[http://dx.doi.org/10.1124/mol.106.025478]
[73]
Purves T, Middlemas A, Agthong S, et al. A role for mitogen‐activated protein kinases in the etiology of diabetic neuropathy. FASEB J 2001; 15(13): 2508-14.
[http://dx.doi.org/10.1096/fj.01-0253hyp] [PMID: 11689477]
[74]
Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001; 345(23): 1667-75.
[http://dx.doi.org/10.1056/NEJMoa010713] [PMID: 11759645]
[75]
Kellogg AP, Pop-Busui R. Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress. Antioxid Redox Signal 2005; 7(11-12): 1521-9.
[http://dx.doi.org/10.1089/ars.2005.7.1521] [PMID: 16356116]
[76]
Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes 2007; 56(12): 2997-3005.
[http://dx.doi.org/10.2337/db07-0740] [PMID: 17720896]
[77]
Pop-Busui R, Marinescu V, Van Huysen C, et al. Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Diabetes 2002; 51(8): 2619-28.
[http://dx.doi.org/10.2337/diabetes.51.8.2619] [PMID: 12145179]
[78]
Pop-Busui R, Stevens MJ, Raffel DM, et al. Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: A randomised controlled trial. Diabetologia 2013; 56(8): 1835-44.
[http://dx.doi.org/10.1007/s00125-013-2942-9] [PMID: 23740194]
[79]
Harris RE. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem 2007; 93-126.
[http://dx.doi.org/10.1007/1-4020-5688-5_4]
[80]
Xu S, Mueser TC, Marnett LJ, Funk MO Jr. Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure 2012; 20(9): 1490-7.
[http://dx.doi.org/10.1016/j.str.2012.06.003] [PMID: 22795085]
[81]
Natarajan R, Nadler JL. Lipoxygenases and lipid signaling in vascular cells in diabetes. Front Biosci 2003; 8(6): 1144.
[http://dx.doi.org/10.2741/1144] [PMID: 12957878]
[82]
Kang SW, Natarajan R, Shahed A, et al. Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen α5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes. J Am Soc Nephrol 2003; 14(12): 3178-87.
[http://dx.doi.org/10.1097/01.ASN.0000099702.16315.DE] [PMID: 14638916]
[83]
Rinkel WD, Castro Cabezas M, Setyo JH, Van Neck JW, Coert JH. Traditional methods versus quantitative sensory testing of the feet at risk: Results from the rotterdam diabetic foot study. Plast Reconstr Surg 2017; 139(3): 752e-63e.
[http://dx.doi.org/10.1097/PRS.0000000000003047] [PMID: 28234858]
[84]
Moghtaderi A, Bakhshipour A, Rashidi H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clin Neurol Neurosurg 2006; 108(5): 477-81.
[http://dx.doi.org/10.1016/j.clineuro.2005.08.003] [PMID: 16150538]
[85]
Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J 2006; 82(964): 95-100.
[http://dx.doi.org/10.1136/pgmj.2005.036137] [PMID: 16461471]
[86]
Vinik E, Hayes R, Oglesby A, et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33: 2285-2293. Diabetes Care 2010; 33(12)
[87]
Hartemann A, Attal N, Bouhassira D, et al. Painful diabetic neuropathy: Diagnosis and management. Diabetes Metab 2011; 37(5): 377-88.
[http://dx.doi.org/10.1016/j.diabet.2011.06.003] [PMID: 21820345]
[88]
Lauria G, Hsieh ST, Johansson O, et al. European federation of neurological societies/peripheral nerve society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Ne. Eur J Neurol 2010; 17(7): 903-e49. e44-e49.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03023.x] [PMID: 20642627]
[89]
Freeman R. Autonomic peripheral neuropathy. Lancet 2005; 365(9466): 1259-70.
[http://dx.doi.org/10.1016/S0140-6736(05)74815-7] [PMID: 15811460]
[90]
Inceu GV, Veresiu IA. Measurement of current perception thresholds using the Neurometer(®) - applicability in diabetic neuropathy. Clujul Med 2015; 88(4): 449-52.
[PMID: 26733741]
[91]
Matsutomo R, Takebayashi K, Aso Y. Assessment of peripheral neuropathy using measurement of the current perception threshold with the neurometer in patients with type 2 diabetes mellitus. J Int Med Res 2005; 33(4): 442-53.
[http://dx.doi.org/10.1177/147323000503300410] [PMID: 16104448]
[92]
Cheng WY, Jiang YD, Chuang LM, et al. Quantitative sensory testing and risk factors of diabetic sensory neuropathy. J Neurol 1999; 246(5): 394-8.
[http://dx.doi.org/10.1007/s004150050370] [PMID: 10399873]
[93]
Bril V, Perkins BA. Comparison of vibration perception thresholds obtained with the Neurothesiometer and the CASE IV and relationship to nerve conduction studies. Diabet Med 2002; 19(8): 661-6.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00759.x] [PMID: 12147147]
[94]
Nather A, Neo SH, Chionh SB, Liew SCF, Sim EY, Chew JLL. Assessment of sensory neuropathy in diabetic patients without diabetic foot problems. J Diabetes Complications 2008; 22(2): 126-31.
[http://dx.doi.org/10.1016/j.jdiacomp.2006.10.007] [PMID: 18280443]
[95]
Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: Relationship of dose to metabolic response. J Clin Invest 1969; 48(11): 2129-39.
[http://dx.doi.org/10.1172/JCI106180] [PMID: 4241908]
[96]
Davidson E, Coppey L, Lu B, et al. The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res 2009; 2009: 1-9.
[http://dx.doi.org/10.1155/2009/431980] [PMID: 20148083]
[97]
Yang Y, Santamaria P. Lessons on autoimmune diabetes from animal models. Clin Sci 2006; 110(6): 627-39.
[http://dx.doi.org/10.1042/CS20050330] [PMID: 16689681]
[98]
Tirabassi RS, Flanagan JF, Wu T, Kislauskis EH, Birckbichler PJ, Guberski DL. The BBZDR/Wor rat model for investigating the complications of type 2 diabetes mellitus. ILAR J 2004; 45(3): 292-302.
[http://dx.doi.org/10.1093/ilar.45.3.292] [PMID: 15229376]
[99]
Lenzen S, Panten U. Alloxan: History and mechanism of action. Diabetologia 1988; 31(6): 337-42.
[http://dx.doi.org/10.1007/BF02341500] [PMID: 3046975]
[100]
Heikkila RE. The prevention of alloxan-induced diabetes in mice by dimethyl sulfoxide. Eur J Pharmacol 1977; 44(2): 191-3.
[http://dx.doi.org/10.1016/0014-2999(77)90106-6] [PMID: 885168]
[101]
Nerup J, Mandrap-Poulsen T, Helqvist S, et al. On the pathogenesis of IDDM. Diabetologia 1994; 37(S2): S82-9.
[http://dx.doi.org/10.1007/BF00400830] [PMID: 7821744]
[102]
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50(6): 537-46.
[PMID: 11829314]
[103]
Kim H, Toyofuku Y, Lynn FC, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 2010; 16(7): 804-8.
[http://dx.doi.org/10.1038/nm.2173] [PMID: 20581837]
[104]
Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007; 125(3): 451-72.
[PMID: 17496368]
[105]
Shibata T, Takeuchi S, Yokota S, Kakimoto K, Yonemori F, Wakitani K. Effects of peroxisome proliferator-activated receptor-α and -γ agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. Br J Pharmacol 2000; 130(3): 495-504.
[http://dx.doi.org/10.1038/sj.bjp.0703328] [PMID: 10821776]
[106]
Guberski DL, Thomas VA, Shek WR, et al. Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science 1991; 254(5034): 1010-3.
[http://dx.doi.org/10.1126/science.1658938] [PMID: 1658938]
[107]
Leiter EH. Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol 2009; 560: 1-17.
[http://dx.doi.org/10.1007/978-1-59745-448-3_1]
[108]
Chen W, Zhou XB, Liu HY, Xu C, Wang LL, Li S. P633H, a novel dual agonist at peroxisome proliferator-activated receptors α and γ with different anti-diabetic effects in db/db and KK-A y mice. Br J Pharmacol 2009; 157(5): 724-35.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00231.x] [PMID: 19422369]
[109]
Fukaya N, Mochizuki K, Tanaka Y, et al. The α-glucosidase inhibitor miglitol delays the development of diabetes and dysfunctional insulin secretion in pancreatic β-cells in OLETF rats. Eur J Pharmacol 2009; 624(1-3): 51-7.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.048] [PMID: 19818342]
[110]
Guo K, Yu YH, Hou J, Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab 2010; 7(1): 57.
[http://dx.doi.org/10.1186/1743-7075-7-57] [PMID: 20624298]
[111]
Jürgens HS, Neschen S, Ortmann S, et al. Development of diabetes in obese, insulin-resistant mice: Essential role of dietary carbohydrate in beta cell destruction. Diabetologia 2007; 50(7): 1481-9.
[http://dx.doi.org/10.1007/s00125-007-0662-8] [PMID: 17437079]
[112]
Cheng ZJ, Jiang YF, Ding H, Severson D, Triggle CR. Vascular dysfunction in type 2 diabetic TallyHo mice: Role for an increase in the contribution of PGH2/TxA2 receptor activation and cytochrome p450 productsThis paper is one of a selection of papers published in this Special Issue, entitled The Cellular and Molecular Basis of Cardiovascular Dysfunction, Dhalla 70th Birthday Tribute. Can J Physiol Pharmacol 2007; 85(3-4): 404-12.
[http://dx.doi.org/10.1139/Y07-010] [PMID: 17612649]
[113]
Leahy JL, Bonner-Weir S, Weir GC. Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. J Clin Invest 1988; 81(5): 1407-14.
[http://dx.doi.org/10.1172/JCI113470] [PMID: 3284912]
[114]
Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983; 71(6): 1544-53.
[http://dx.doi.org/10.1172/JCI110910] [PMID: 6134752]
[115]
Wang RN, Klöppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 1995; 38(12): 1405-11.
[http://dx.doi.org/10.1007/BF00400600] [PMID: 8786013]
[116]
Mathews CE, Langley SH, Leiter EH. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 2002; 73(8): 1333-6.
[http://dx.doi.org/10.1097/00007890-200204270-00024] [PMID: 11981430]
[117]
Zhou C, Pridgen B, King N, Xu J, Breslow JL. Hyperglycemic Ins2AkitaLdlr−/− mice show severely elevated lipid levels and increased atherosclerosis: A model of type 1 diabetic macrovascular disease. J Lipid Res 2011; 52(8): 1483-93.
[http://dx.doi.org/10.1194/jlr.M014092] [PMID: 21606463]
[118]
Drel VR, Pacher P, Stavniichuk R, et al. Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med 2011; 28(4): 629-35.
[PMID: 21617845]
[119]
Höppener JW, Jansz HS, Oosterwijk C, et al. Molecular physiology of the islet amyloid polypeptide (IAPP)/amylin gene in man, rat, and transgenic mice. J Cell Biochem 1994; 55(S1994A): 39-53.
[120]
Matveyenko AV, Butler PC. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 2006; 47(3): 225-33.
[http://dx.doi.org/10.1093/ilar.47.3.225] [PMID: 16804197]
[121]
Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC. Successful versus failed adaptation to high-fat diet-induced insulin resistance: The role of IAPP-induced β-cell endoplasmic reticulum stress. Diabetes 2009; 58(4): 906-16.
[http://dx.doi.org/10.2337/db08-1464] [PMID: 19151199]
[122]
Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol 2015; 14(2): 162-73.
[http://dx.doi.org/10.1016/S1474-4422(14)70251-0] [PMID: 25575710]
[123]
Griebeler ML, Morey-Vargas OL, Brito JP, et al. Pharmacologic interventions for painful diabetic neuropathy: An umbrella systematic review and comparative effectiveness network meta-analysis. Ann Intern Med 2014; 161(9): 639-49.
[http://dx.doi.org/10.7326/M14-0511] [PMID: 25364885]
[124]
Quilici S, Chancellor J, Löthgren M, et al. Meta-analysis of duloxetine vs. pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain. BMC Neurol 2009; 9(1): 6.
[http://dx.doi.org/10.1186/1471-2377-9-6] [PMID: 19208243]
[125]
Wernicke JF, Pritchett YL, D’Souza DN, et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 2006; 67(8): 1411-20.
[http://dx.doi.org/10.1212/01.wnl.0000240225.04000.1a] [PMID: 17060567]
[126]
Hardy T, Sachson R, Shen S, Armbruster M, Boulton AJM. Does treatment with duloxetine for neuropathic pain impact glycemic control? Diabetes Care 2007; 30(1): 21-6.
[http://dx.doi.org/10.2337/dc06-0947] [PMID: 17192327]
[127]
Goldstein DJ, Lu Y, Detke MJ, Lee TC, Iyengar S. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005; 116(1): 109-18.
[http://dx.doi.org/10.1016/j.pain.2005.03.029] [PMID: 15927394]
[128]
Ardeleanu V, Toma A, Pafili K, et al. Current pharmacological treatment of painful diabetic neuropathy: A narrative review. Medicina (Kaunas) 2020; 56(1): 25.
[http://dx.doi.org/10.3390/medicina56010025] [PMID: 31936646]
[129]
Bansal D, Bhansali A, Hota D, Chakrabarti A, Dutta P. Amitriptyline vs. pregabalin in painful diabetic neuropathy: A randomized double blind clinical trial. Diabet Med 2009; 26(10): 1019-26.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02806.x] [PMID: 19900234]
[130]
Morello CM, Leckband SG, Stoner CP, Moorhouse DF, Sahagian GA. Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch Intern Med 1999; 159(16): 1931-7.
[http://dx.doi.org/10.1001/archinte.159.16.1931] [PMID: 10493324]
[131]
Kaur H, Hota D, Bhansali A, Dutta P, Bansal D, Chakrabarti A. A comparative evaluation of amitriptyline and duloxetine in painful diabetic neuropathy: A randomized, double-blind, cross-over clinical trial. Diabetes Care 2011; 34(4): 818-22.
[http://dx.doi.org/10.2337/dc10-1793] [PMID: 21355098]
[132]
Boulton AJM. Management of diabetic peripheral neuropathy. Clin Diabetes 2005; 23(1): 9-15.
[http://dx.doi.org/10.2337/diaclin.23.1.9]
[133]
Ulugol A, Karadag HC, Tamer M, Firat Z, Aslantas A, Dokmeci I. Involvement of adenosine in the anti-allodynic effect of amitriptyline in streptozotocin-induced diabetic rats. Neurosci Lett 2002; 328(2): 129-32.
[http://dx.doi.org/10.1016/S0304-3940(02)00491-3] [PMID: 12133572]
[134]
Cross AL, Viswanath O, Al S. Pregabalin Available from: https://medlineplus.gov/druginfo/meds/a605045.html
[135]
Freeman R, Durso-DeCruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: Findings from seven randomized, controlled trials across a range of doses. Diabetes Care 2008; 31(7): 1448-54.
[http://dx.doi.org/10.2337/dc07-2105] [PMID: 18356405]
[136]
Raskin P, Huffman C, Toth C, et al. Pregabalin in patients with inadequately treated painful diabetic peripheral neuropathy: A randomized withdrawal trial. Clin J Pain 2014; 30(5): 379-90.
[http://dx.doi.org/10.1097/AJP.0b013e31829ea1a1] [PMID: 23887339]
[137]
Ziegler D, Duan WR, An G, Thomas JW, Nothaft W. A randomized double-blind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral neuropathic pain. Pain 2015; 156(10): 2013-20.
[http://dx.doi.org/10.1097/j.pain.0000000000000263] [PMID: 26067585]
[138]
Dworkin RH, Jensen MP, Gammaitoni AR, Olaleye DO, Galer BS. Symptom profiles differ in patients with neuropathic versus non-neuropathic pain. J Pain 2007; 8(2): 118-26.
[http://dx.doi.org/10.1016/j.jpain.2006.06.005] [PMID: 16949878]
[139]
a) aWiffen PJ, Derry S, Bell RF, et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev 20117 20176(146)
[http://dx.doi.org/10.1002/14651858.CD007938.pub4];
b) Penlioglou T, Papanas N. The role of alpha-lipoic acid in the treatment of diabetic peripheral neuropathy. J Egypt Soc Endocrinol Metab Deb 2018; 501
[140]
Penlioglou T, Papanas N. The role of alpha-lipoic acid in the treatment of diabetic peripheral neuropathy. J Egypt Soc Endocrinol Metab Diabetes 2018; 50(1)
[141]
Vadivelu N, Huang Y, Mirante B, et al. Patient considerations in the use of tapentadol for moderate to severe pain. Drug Healthc Patient Saf 2013; 5: 151-9.
[http://dx.doi.org/10.2147/DHPS.S28829] [PMID: 23861601]
[142]
Bouhassira D, Attal N, Alchaar H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005; 114(1-2): 29-36.
[143]
Spallone V, Morganti R, D’Amato C, Greco C, Cacciotti L, Marfia GA. Validation of DN4 as a screening tool for neuropathic pain in painful diabetic polyneuropathy. Diabet Med 2012; 29(5): 578-85.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03500.x] [PMID: 22023377]
[144]
Zelman DC, Gore M, Dukes E, Tai KS, Brandenburg N. Validation of a modified version of the Brief Pain Inventory for painful diabetic peripheral neuropathy. J Vasc Nurs 2005; 23(3): 97-104.
[http://dx.doi.org/10.1016/j.jvn.2005.06.004] [PMID: 16125633]
[145]
Parry GJ, Kozu H. Piroxicam may reduce the rate of progression of experimental diabetic neuropathy. Neurology 1990; 40(9): 1446-9.
[http://dx.doi.org/10.1212/WNL.40.9.1446] [PMID: 2392233]
[146]
Agrawal NK, Kant S. Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes 2014; 5(5): 697-710.
[http://dx.doi.org/10.4239/wjd.v5.i5.697] [PMID: 25317247]
[147]
Cohen KL, Harris S. Efficacy and safety of nonsteroidal anti-inflammatory drugs in the therapy of diabetic neuropathy. Arch Intern Med 1987; 147(8): 1442-4.
[http://dx.doi.org/10.1001/archinte.1987.00370080078016] [PMID: 3115210]
[148]
Xiong Q, Lu B, Ye H, Wu X, Zhang T, Li Y. The diagnostic value of neuropathy symptom and change score, neuropathy impairment score and Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Eur Neurol 2015; 74(5-6): 323-7.
[http://dx.doi.org/10.1159/000441449] [PMID: 26684759]
[149]
Bastyr EJ III, Price KL, Bril V. Development and validity testing of the neuropathy total symptom score-6: Questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin Ther 2005; 27(8): 1278-94.
[http://dx.doi.org/10.1016/j.clinthera.2005.08.002] [PMID: 16199253]
[150]
Fernyhough P, McGavock J. Mechanisms of disease. Handb Clin Neurol 2014; 126: 353-77.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00027-8] [PMID: 25410234]
[151]
Meijer JWG, Smit AJ, Sonderen EV, Groothoff JW, Eisma WH, Links TP. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: The diabetic neuropathy symptom score. Diabet Med 2002; 19(11): 962-5.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00819.x] [PMID: 12421436]
[152]
Meijer JWG, Bosma E, Lefrandt JD, et al. Clinical diagnosis of diabetic polyneuropathy with the diabetic neuropathy symptom and diabetic neuropathy examination scores. Diabetes Care 2003; 26(3): 697-701.
[http://dx.doi.org/10.2337/diacare.26.3.697] [PMID: 12610024]
[153]
Liyanage PLGC, Lekamwasam S, Weerarathna TP. Validity of the Diabetic neuropathy score and diabetic neuropathy examination score as screening tools for the detection of distal symmetrical diabetic neuropathy. J Diabetes 2012; 4(3): 264-5.
[http://dx.doi.org/10.1111/j.1753-0407.2012.00201.x] [PMID: 22507170]
[154]
Bril V, Tomioka S, Buchanan RA, Perkins BA. Reliability and validity of the modified Toronto clinical neuropathy score in diabetic sensorimotor polyneuropathy. Diabet Med 2009; 26(3): 240-6.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02667.x] [PMID: 19317818]
[155]
Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 1994; 17(11): 1281-9.
[http://dx.doi.org/10.2337/diacare.17.11.1281] [PMID: 7821168]
[156]
Rahman M, Griffin SJ, Rathmann W, Wareham NJ. How should peripheral neuropathy be assessed in people with diabetes in primary care? A population-based comparison of four measures. Diabet Med 2003; 20(5): 368-74.
[http://dx.doi.org/10.1046/j.1464-5491.2003.00931.x] [PMID: 12752485]
[157]
Barbosa M, Saavedra A, Severo M, Maier C, Carvalho D. Validation and reliability of the portuguese version of the michigan neuropathy screening instrument. Pain Pract 2017; 17(4): 514-21.
[http://dx.doi.org/10.1111/papr.12479] [PMID: 27538385]
[158]
Vickers NJ. Animal communication: When i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[159]
Papanas N, Ziegler D. New diagnostic tests for diabetic distal symmetric polyneuropathy. J Diabetes Complications 2011; 25(1): 44-51.
[http://dx.doi.org/10.1016/j.jdiacomp.2009.09.006] [PMID: 19896871]
[160]
Vileikyte L, Peyrot M, Bundy C, et al. The development and validation of a neuropathy- and foot ulcer-specific quality of life instrument. Diabetes Care 2003; 26(9): 2549-55.
[http://dx.doi.org/10.2337/diacare.26.9.2549] [PMID: 12941717]
[161]
Van Deursen RWM, Sanchez MM, Derr JA, Becker MB, Ulbrecht JS, Cavanagh PR. Vibration perception threshold testing in patients with diabetic neuropathy: Ceiling effects and reliability. Diabet Med 2001; 18(6): 469-75.
[http://dx.doi.org/10.1046/j.1464-5491.2001.00503.x] [PMID: 11472466]
[162]
Schwartz S, Etropolski M, Shapiro DY, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr Med Res Opin 2011; 27(1): 151-62.
[http://dx.doi.org/10.1185/03007995.2010.537589] [PMID: 21162697]
[163]
Vinik AI, Shapiro DY, Rauschkolb C, et al. A randomized withdrawal, placebo-controlled study evaluating the efficacy and tolerability of tapentadol extended release in patients with chronic painful diabetic peripheral neuropathy. Diabetes Care 2014; 37(8): 2302-9.
[http://dx.doi.org/10.2337/dc13-2291] [PMID: 24848284]
[164]
Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: An update. Am Fam Physician 2016; 94(3): 227-34.
[PMID: 27479625]
[165]
Gilron I, Tu D, Holden RR, Jackson AC, DuMerton-Shore D. Combination of morphine with nortriptyline for neuropathic pain. Pain 2015; 156(8): 1440-8.
[http://dx.doi.org/10.1097/j.pain.0000000000000149] [PMID: 25749306]
[166]
Holbech JV, Bach FW, Finnerup NB, Brøsen K, Jensen TS, Sindrup SH. Imipramine and pregabalin combination for painful polyneuropathy. Pain 2015; 156(5): 958-66.
[http://dx.doi.org/10.1097/j.pain.0000000000000143] [PMID: 25719617]
[167]
Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med 2020; 180(8): 1081-9.
[http://dx.doi.org/10.1001/jamainternmed.2020.2033] [PMID: 32396163]
[168]
Qaseem A, Wilt TJ, Kansagara D, Horwitch C, Barry MJ, Forciea MA. Clinical Guidelines Committee of the American College of Physicians*. Haemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: A guidance statement updates from the American College of Physicians. Ann Intern Med 2018; 168(8): 569-76.
[http://dx.doi.org/10.7326/M17-0939] [PMID: 29507945]
[169]
Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med 2010; 123: S3-S11.
[http://dx.doi.org/10.1016/j.amjmed.2009.12.004]
[170]
Pantalone KM, Misra-Hebert AD, Hobbs TM, et al. Effect of glycemic control on the Diabetes Complications Severity Index score and development of complications in people with newly diagnosed type 2 diabetes. J Diabetes 2018; 10(3): 192-9.
[http://dx.doi.org/10.1111/1753-0407.12613] [PMID: 28976724]
[171]
Ratnasabapathy Y, Chi-Lun Lee A, Feigin V, Anderson C. Blood pressure lowering interventions for preventing dementia in patients with cerebrovascular disease (Protocol). Cochrane Database Syst Rev 2003.
[172]
Ahmad J. The diabetic foot. Diabetes Metab Syndr 2016; 10(1): 48-60.
[http://dx.doi.org/10.1016/j.dsx.2015.04.002]
[173]
Pinzur MS, Slovenkai MP, Trepman E, Shields NN. Guidelines for diabetic foot care: Recommendations endorsed by the Diabetes Committee of the American Orthopaedic Foot and Ankle Society. Foot Ankle Int 2005; 26(1): 113-9.
[http://dx.doi.org/10.1177/107110070502600112]
[174]
Reichstein L, Labrenz S, Ziegler D, Martin S. Effective treatment of symptomatic diabetic polyneuropathy by high-frequency external muscle stimulation. Diabetologia 2005; 48(5): 824-8.
[http://dx.doi.org/10.1007/s00125-005-1728-0] [PMID: 15830180]
[175]
Bosi E, Conti M, Vermigli C, et al. Effectiveness of frequency-modulated electromagnetic neural stimulation in the treatment of painful diabetic neuropathy. Diabetologia 2005; 48(5): 817-23.
[http://dx.doi.org/10.1007/s00125-005-1734-2] [PMID: 15834546]
[176]
Powell MW, Carnegie DH, Burke TJ. Reversal of diabetic peripheral neuropathy with phototherapy (MIRE™) decreases falls and the fear of falling and improves activities of daily living in seniors. Age Ageing 2006; 35(1): 11-6.
[http://dx.doi.org/10.1093/ageing/afi215] [PMID: 16303775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy