Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Radiomics in the Diagnosis of Gastric Cancer: Current Status and Future Perspectives

Author(s): Zhiqiang Wang, Weiran Li, Di Jin and Bing Fan*

Volume 20, 2024

Published on: 19 October, 2023

Article ID: e15734056246452 Pages: 7

DOI: 10.2174/0115734056246452231011042418

Price: $65

Abstract

Gastric cancer is a malignant cancerous lesion with high morbidity and mortality. Preoperative diagnosis of gastric cancer is challenging owing to the presentation of atypical symptoms and the diversity of occurrence of focal gastric lesions. Therefore, an endoscopic biopsy is used to diagnose gastric cancer in combination with imaging examination for a comprehensive evaluation of the local tumor range (T), lymph node status (N), and distant metastasis (M). The resolution of imaging examinations has significantly improved with the technological advancement in this sector. However, imaging examinations can barely provide valuable information. In clinical practice, an examination method that can provide information on the biological behavior of the tumor is critical to strategizing the treatment plan. Artificial intelligence (AI) allows for such an inspection procedure by reflecting the histological features of lesions using quantitative information extracted from images. Currently, AI is widely employed across various medical fields, especially in the processing of medical images. The basic application process of radiomics has been described in this study, and its role in clinical studies of gastric cancer has been discussed.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48(4): 441-6.
[http://dx.doi.org/10.1016/j.ejca.2011.11.036] [PMID: 22257792]
[3]
Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J Gastroenterol 2021; 27(32): 5306-21.
[http://dx.doi.org/10.3748/wjg.v27.i32.5306] [PMID: 34539134]
[4]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278(2): 563-77.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[5]
Qin Y, Deng Y, Jiang H, Hu N, Song B. Artificial intelligence in the imaging of Gastric Cancer: Current applications and future direction. Front Oncol 2021; 11: 631686.
[http://dx.doi.org/10.3389/fonc.2021.631686] [PMID: 34367946]
[6]
Du G, Zeng Y, Chen D, Zhan W, Zhan Y. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer. Jpn J Radiol 2023; 41(3): 245-57.
[PMID: 36260211]
[7]
Wong PK, Chan IN, Yan HM, et al. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28(45): 6363-79.
[http://dx.doi.org/10.3748/wjg.v28.i45.6363] [PMID: 36533112]
[8]
Ba-Ssalamah A, Muin D, Schernthaner R, et al. Texture-based classification of different gastric tumors at contrast-enhanced CT. Eur J Radiol 2013; 82(10): e537-43.
[http://dx.doi.org/10.1016/j.ejrad.2013.06.024] [PMID: 23910996]
[9]
Ma Z, Fang M, Huang Y, et al. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma. Eur J Radiol 2017; 91: 142-7.
[http://dx.doi.org/10.1016/j.ejrad.2017.04.007] [PMID: 28629560]
[10]
Feng B, Huang L, Liu Y, et al. A transfer learning radiomics nomogram for preoperative prediction of borrmann type IV gastric cancer from primary gastric lymphoma. Front Oncol 2022; 11: 802205.
[http://dx.doi.org/10.3389/fonc.2021.802205] [PMID: 35087761]
[11]
Sun ZQ, Hu SD, Li J, Wang T, Duan SF, Wang J. Radiomics study for differentiating gastric cancer from gastric stromal tumor based on contrast-enhanced CT images. J XRay Sci Technol 2020; 27(6): 1021-31.
[http://dx.doi.org/10.3233/XST-190574] [PMID: 31640109]
[12]
Wang R, Liu H, Liang P, Zhao H, Li L, Gao J. Radiomics analysis of CT imaging for differentiating gastric neuroendocrine carcinomas from gastric adenocarcinomas. Eur J Radiol 2021; 138: 109662.
[http://dx.doi.org/10.1016/j.ejrad.2021.109662] [PMID: 33774440]
[13]
Tang CT, Zeng L, Yang J, Zeng C, Chen Y. Analysis of the incidence and survival of gastric cancer based on the lauren classification: A large population-based study using SEER. Front Oncol 2020; 10: 1212.
[http://dx.doi.org/10.3389/fonc.2020.01212] [PMID: 32850357]
[14]
Wang Y, Liu W, Yu Y, et al. Potential value of CT radiomics in the distinction of intestinal-type gastric adenocarcinomas. Eur Radiol 2020; 30(5): 2934-44.
[http://dx.doi.org/10.1007/s00330-019-06629-3] [PMID: 32020404]
[15]
Wang XX, Ding Y, Wang SW, et al. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer. Cancer Imaging 2020; 20(1): 83.
[http://dx.doi.org/10.1186/s40644-020-00358-3] [PMID: 33228815]
[16]
Sun Z, Jin L, Zhang S, Duan S, Xing W, Hu S. Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features. J XRay Sci Technol 2021; 29(4): 675-86.
[http://dx.doi.org/10.3233/XST-210888] [PMID: 34024809]
[17]
Li Q, Qi L, Feng QX, et al. Machine learning–based computational models derived from large-scale radiographic-radiomic images can help predict adverse histopathological status of gastric cancer. Clin Transl Gastroenterol 2019; 10(10): e00079.
[http://dx.doi.org/10.14309/ctg.0000000000000079] [PMID: 31577560]
[18]
Wang Y, Liu W, Yu Y, et al. Prediction of the depth of tumor invasion in Gastric Cancer: Potential role of CT radiomics. Acad Radiol 2020; 27(8): 1077-84.
[http://dx.doi.org/10.1016/j.acra.2019.10.020] [PMID: 31761666]
[19]
Yardimci AH, Sel I, Bektas CT, et al. Computed tomography texture analysis in patients with gastric cancer: a quantitative imaging biomarker for preoperative evaluation before neoadjuvant chemotherapy treatment. Jpn J Radiol 2020; 38(6): 553-60.
[http://dx.doi.org/10.1007/s11604-020-00936-2] [PMID: 32140880]
[20]
Sun RJ, Fang MJ, Tang L, et al. CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer. Eur J Radiol 2020; 132: 109277.
[http://dx.doi.org/10.1016/j.ejrad.2020.109277] [PMID: 32980726]
[21]
Pan B, Zhang W, Chen W, et al. Establishment of the radiologic tumor invasion index based on radiomics splenic features and clinical factors to predict serous invasion of gastric cancer. Front Oncol 2021; 11: 682456.
[http://dx.doi.org/10.3389/fonc.2021.682456] [PMID: 34434892]
[22]
Feng QX, Liu C, Qi L, et al. An intelligent clinical decision support system for preoperative prediction of lymph node metastasis in gastric cancer. J Am Coll Radiol 2019; 16(7): 952-60.
[http://dx.doi.org/10.1016/j.jacr.2018.12.017] [PMID: 30733162]
[23]
Gao X, Ma T, Cui J, et al. A radiomics-based model for prediction of lymph node metastasis in gastric cancer. Eur J Radiol 2020; 129: 109069.
[http://dx.doi.org/10.1016/j.ejrad.2020.109069] [PMID: 32464581]
[24]
Gao X, Ma T, Cui J, et al. A CT-based radiomics model for prediction of lymph node metastasis in early stage gastric cancer. Acad Radiol 2021; 28(6): e155-64.
[http://dx.doi.org/10.1016/j.acra.2020.03.045] [PMID: 32507613]
[25]
Li J, Dong D, Fang M, et al. Dual-energy CT–based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Eur Radiol 2020; 30(4): 2324-33.
[http://dx.doi.org/10.1007/s00330-019-06621-x] [PMID: 31953668]
[26]
Wang Y, Liu W, Yu Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol 2020; 30(2): 976-86.
[http://dx.doi.org/10.1007/s00330-019-06398-z] [PMID: 31468157]
[27]
Yang J, Wu Q, Xu L, et al. Integrating tumor and nodal radiomics to predict lymph node metastasis in gastric cancer. Radiother Oncol 2020; 150: 89-96.
[http://dx.doi.org/10.1016/j.radonc.2020.06.004] [PMID: 32531334]
[28]
Jiang Y, Wang W, Chen C, et al. Radiomics signature on computed tomography imaging: Association with lymph node metastasis in patients with gastric cancer. Front Oncol 2019; 9: 340.
[http://dx.doi.org/10.3389/fonc.2019.00340] [PMID: 31106158]
[29]
Dong D, Fang MJ, Tang L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international multicenter study. Ann Oncol 2020; 31(7): 912-20.
[http://dx.doi.org/10.1016/j.annonc.2020.04.003] [PMID: 32304748]
[30]
Thomassen I, van Gestel YR, van Ramshorst B, et al. Peritoneal carcinomatosis of gastric origin: A population-based study on incidence, survival and risk factors. Int J Cancer 2014; 134(3): 622-8.
[http://dx.doi.org/10.1002/ijc.28373] [PMID: 23832847]
[31]
Kim SJ, Kim HH, Kim YH, et al. Peritoneal metastasis: Detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology 2009; 253(2): 407-15.
[http://dx.doi.org/10.1148/radiol.2532082272] [PMID: 19789243]
[32]
Masci GM, Ciccarelli F, Mattei FI, et al. Role of CT texture analysis for predicting peritoneal metastases in patients with gastric cancer. Radiol Med 2022; 127(3): 251-8.
[http://dx.doi.org/10.1007/s11547-021-01443-8] [PMID: 35066804]
[33]
Liu S, He J, Liu S, et al. Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer. Eur Radiol 2020; 30(1): 239-46.
[http://dx.doi.org/10.1007/s00330-019-06368-5] [PMID: 31385045]
[34]
Huang W, Zhou K, Jiang Y, et al. Radiomics nomogram for prediction of peritoneal metastasis in patients with gastric cancer. Front Oncol 2020; 10: 1416.
[http://dx.doi.org/10.3389/fonc.2020.01416] [PMID: 32974149]
[35]
Chen Y, Xi W, Yao W, et al. Dual-energy computed tomography-based radiomics to predict peritoneal metastasis in gastric cancer. Front Oncol 2021; 11: 659981.
[http://dx.doi.org/10.3389/fonc.2021.659981] [PMID: 34055627]
[36]
Xue B, Jiang J, Chen L, et al. Development and validation of a radiomics model based on 18F-FDG PET of primary gastric cancer for predicting peritoneal metastasis. Front Oncol 2021; 11: 740111.
[http://dx.doi.org/10.3389/fonc.2021.740111] [PMID: 34765549]
[37]
Huang L, Feng B, Li Y, et al. Computed tomography-based radiomics nomogram: Potential to predict local recurrence of gastric cancer after radical resection. Front Oncol 2021; 11: 638362.
[http://dx.doi.org/10.3389/fonc.2021.638362] [PMID: 34540653]
[38]
Li W, Zhang L, Tian C, et al. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection. Eur Radiol 2019; 29(6): 3079-89.
[http://dx.doi.org/10.1007/s00330-018-5861-9] [PMID: 30519931]
[39]
Zhang W, Fang M, Dong D, et al. Development and validation of a CT-based radiomic nomogram for preoperative prediction of early recurrence in advanced gastric cancer. Radiother Oncol 2020; 145: 13-20.
[http://dx.doi.org/10.1016/j.radonc.2019.11.023] [PMID: 31869677]
[40]
Coccolini F, Nardi M, Montori G, et al. Neoadjuvant chemotherapy in advanced gastric and esophago-gastric cancer. Meta-analysis of randomized trials. Int J Surg 2018; 51: 120-7.
[http://dx.doi.org/10.1016/j.ijsu.2018.01.008] [PMID: 29413875]
[41]
Chen PT, Shih TTF. Editorial for “Comparison of MRI and CT ‐based radiomics and their combination for early identification of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer”. J Magn Reson Imaging 2023; 58(3): 924-5. [PMID: 36762872 DOI:10.1002/jmri.28637].
[http://dx.doi.org/10.1002/jmri.28637]
[42]
Kodera Y. Neoadjuvant chemotherapy for gastric adenocarcinoma in Japan. Surg Today 2017; 47(8): 899-907.
[http://dx.doi.org/10.1007/s00595-017-1473-2] [PMID: 28247105]
[43]
Sun KY, Hu HT, Chen SL, et al. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer. BMC Cancer 2020; 20(1): 468.
[http://dx.doi.org/10.1186/s12885-020-06970-7] [PMID: 32450841]
[44]
Wang W, Peng Y, Feng X, et al. Development and validation of a computed tomography–based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer. JAMA Netw Open 2021; 4(8): e2121143.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.21143] [PMID: 34410397]
[45]
Xie K, Cui Y, Zhang D, et al. Pretreatment contrast-enhanced computed tomography radiomics for prediction of pathological regression following neoadjuvant chemotherapy in locally advanced gastric cancer: A preliminary multicenter study. Front Oncol 2022; 11: 770758.
[http://dx.doi.org/10.3389/fonc.2021.770758] [PMID: 35070974]
[46]
Chen Y, Xu W, Li YL, et al. CT-based radiomics showing generalization to predict tumor regression grade for advanced gastric cancer treated with neoadjuvant chemotherapy. Front Oncol 2022; 12: 758863.
[http://dx.doi.org/10.3389/fonc.2022.758863] [PMID: 35280802]
[47]
Cui Y, Zhang J, Li Z, et al. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study. EClinicalMedicine 2022; 46: 101348.
[http://dx.doi.org/10.1016/j.eclinm.2022.101348] [PMID: 35340629]
[48]
Jiang Y, Chen C, Xie J, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine 2018; 36: 171-82.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.007] [PMID: 30224313]
[49]
Jin Y, Xu Y, Li Y, Chen R, Cai W. Integrative radiogenomics approach for risk assessment of postoperative and adjuvant chemotherapy benefits for gastric cancer patients. Front Oncol 2021; 11: 755271.
[http://dx.doi.org/10.3389/fonc.2021.755271] [PMID: 34804945]
[50]
Liu Y, Zhang H, Wang L, et al. Predicting response to systemic chemotherapy for advanced gastric cancer using pre-treatment dual-energy CT radiomics: A pilot study. Front Oncol 2021; 11: 740732.
[http://dx.doi.org/10.3389/fonc.2021.740732] [PMID: 34604085]
[51]
Hou Z, Yang Y, Li S, et al. Radiomic analysis using contrast-enhanced CT: Predict treatment response to pulsed low dose rate radiotherapy in gastric carcinoma with abdominal cavity metastasis. Quant Imaging Med Surg 2018; 8(4): 410-20.
[http://dx.doi.org/10.21037/qims.2018.05.01] [PMID: 29928606]
[52]
Liang Z, Huang A, Wang L, et al. A radiomics model predicts the response of patients with advanced gastric cancer to PD-1 inhibitor treatment. Aging 2022; 14(2): 907-22.
[http://dx.doi.org/10.18632/aging.203850] [PMID: 35073519]
[53]
Yoon SH, Kim YH, Lee YJ, et al. Tumor Heterogeneity in Human Epidermal Growth Factor Receptor 2 (HER2)-positive advanced gastric cancer assessed by CT texture analysis: Association with survival after trastuzumab treatment. PLoS One 2016; 11(8): e0161278.
[http://dx.doi.org/10.1371/journal.pone.0161278] [PMID: 27517841]
[54]
Boku N. HER2-positive gastric cancer. Gastric Cancer 2014; 17(1): 1-12.
[http://dx.doi.org/10.1007/s10120-013-0252-z] [PMID: 23563986]
[55]
Wang Y, Yu Y, Han W, et al. CT radiomics for distinction of human epidermal growth factor receptor 2 negative gastric cancer. Acad Radiol 2021; 28(3): e86-92.
[http://dx.doi.org/10.1016/j.acra.2020.02.018] [PMID: 32303442]
[56]
Li Y, Cheng Z, Gevaert O, et al. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer. Chin J Cancer Res 2020; 32(1): 62-71.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.01.08] [PMID: 32194306]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy