Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer

Author(s): Sonia Singh*

Volume 27, Issue 18, 2024

Published on: 11 October, 2023

Page: [2623 - 2638] Pages: 16

DOI: 10.2174/0113862073269599231009115338

Price: $65

Abstract

Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.

Next »
[1]
Coughlin, S.S.; Ekwueme, D.U. Breast cancer as a global health concern. Cancer Epidemiol., 2009, 33(5), 315-318.
[http://dx.doi.org/10.1016/j.canep.2009.10.003] [PMID: 19896917]
[2]
Helmrich, S.P.; Shapiro, S.; Rosenberg, L.; Kaufman, D.W.; Slone, D.; Bain, C.; Miettinen, O.S.; Stolley, P.D.; Rosenshein, N.B.; Knapp, R.C.; Leavitt, T., Jr; Schottenfeld, D.; Engle, R.L., Jr; Levy, M. Risk factors for breast cancer. Am. J. Epidemiol., 1983, 117(1), 35-45.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a113513] [PMID: 6823951]
[3]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7), 728.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[4]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[http://dx.doi.org/10.1073/pnas.95.26.15665] [PMID: 9861027]
[5]
Ullah, M.F. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac. J. Cancer Prev., 2008, 9(1), 1-6.
[PMID: 18439063]
[6]
Burstein, H.J.; Gelber, S.; Guadagnoli, E.; Weeks, J.C. Use of alternative medicine by women with early-stage breast cancer. N. Engl. J. Med., 1999, 340(22), 1733-1739.
[http://dx.doi.org/10.1056/NEJM199906033402206] [PMID: 10352166]
[7]
Henderson, J.W.; Donatelle, R.J. Complementary and alternative medicine use by women after completion of allopathic treatment for breast cancer. Altern. Ther. Health Med., 2004, 10(1), 52-57.
[PMID: 14727500]
[8]
Adler, S.R.; Fosket, J.R. Disclosing complementary and alternative medicine use in the medical encounter: a qualitative study in women with breast cancer. J. Fam. Pract., 1999, 48(6), 453-458.
[PMID: 10386489]
[9]
Boon, H.S.; Olatunde, F.; Zick, S.M. Trends in complementary/alternative medicine use by breast cancer survivors: Comparing survey data from 1998 and 2005. BMC Womens Health, 2007, 7(1), 4.
[http://dx.doi.org/10.1186/1472-6874-7-4] [PMID: 17397542]
[10]
MacMahon, B.; Cole, P.; Brown, J. Etiology of human breast cancer: a review. J. Natl. Cancer Inst., 1973, 50(1), 21-42.
[http://dx.doi.org/10.1093/jnci/50.1.21] [PMID: 4571238]
[11]
Miller, A.B.; Bulbrook, R.D. The epidemiology and etiology of breast cancer. N. Engl. J. Med., 1980, 303(21), 1246-1248.
[http://dx.doi.org/10.1056/NEJM198011203032130] [PMID: 7421960]
[12]
Pike, M.C.; Spicer, D.V.; Dahmoush, L.; Press, M.F. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev., 1993, 15(1), 17-30.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036102] [PMID: 8405201]
[13]
Yamane, K.; Tateishi, K.; Klose, R.J.; Fang, J.; Fabrizio, L.A.; Erdjument-Bromage, H.; Taylor-Papadimitriou, J.; Tempst, P.; Zhang, Y. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell, 2007, 25(6), 801-812.
[http://dx.doi.org/10.1016/j.molcel.2007.03.001] [PMID: 17363312]
[14]
Cheang, M.C.U.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S.K.; Perou, C.M.; Nielsen, T.O. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res., 2008, 14(5), 1368-1376.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1658] [PMID: 18316557]
[15]
Shoeb, M. Anti-cancer agents from medicinal plants. Bangladesh J. Pharmacol., 2006, 1(2), 35-41.
[16]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[17]
Brueggemeier, R.W.; Richards, J.A.; Petrel, T.A. Aromatase and cyclooxygenases: enzymes in breast cancer. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 501-507.
[http://dx.doi.org/10.1016/S0960-0760(03)00380-7] [PMID: 14623550]
[18]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[19]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[20]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[21]
Mans, D.R.A.; Rocha, A.B.; Schwartsmann, G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist, 2000, 5(3), 185-198.
[http://dx.doi.org/10.1634/theoncologist.5-3-185] [PMID: 10884497]
[22]
Somasundaram, S.; Edmund, N.A.; Moore, D.T.; Small, G.W.; Shi, Y.Y.; Orlowski, R.Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res., 2002, 62(13), 3868-3875.
[PMID: 12097302]
[23]
Sak, K. Chemotherapy and dietary phytochemical agents. Chemother Res Pract., 2012, 2012, 282570.
[http://dx.doi.org/10.1155/2012/282570]
[24]
Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer Agents Med Chem., 2017, 17(2), 152-163.
[http://dx.doi.org/10.2174/1871520616666160502122724]
[25]
Perou, CM; Sørlie, T; Eisen, MB; Van De Rijn, M; Jeffrey, SS; Rees, CA; Pollack, JR; Ross, DT; Johnsen, H; Akslen, LA; Fluge, Ø Molecular portraits of human breast tumours. Nature., 2000, 406(6797), 747-752.
[26]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[27]
Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[28]
Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; Backlund, M.G.; Yin, Y.; Khramtsov, A.I.; Bastein, R.; Quackenbush, J.; Glazer, R.I.; Brown, P.H.; Green, J.E.; Kopelovich, L.; Furth, P.A.; Palazzo, J.P.; Olopade, O.I.; Bernard, P.S.; Churchill, G.A.; Van Dyke, T.; Perou, C.M. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol., 2007, 8(5), R76.
[http://dx.doi.org/10.1186/gb-2007-8-5-r76] [PMID: 17493263]
[29]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[30]
Mitra, S. MicroRNA therapeutics in triple negative breast cancer. Arch. Pathol. Clin. Res., 2017, 1(1), 009-017.
[http://dx.doi.org/10.29328/journal.hjpcr.1001003]
[31]
Hortobagyi, G.N. Treatment of breast cancer. N. Engl. J. Med., 1998, 339(14), 974-984.
[http://dx.doi.org/10.1056/NEJM199810013391407] [PMID: 9753714]
[32]
Maughan, K.L.; Lutterbie, M.A.; Ham, P.S. Treatment of breast cancer. Am. Fam. Physician, 2010, 81(11), 1339-1346.
[PMID: 20521754]
[33]
Pierce, SM; Recht, A; Lingos, TI; Abner, A; Vicini, F; Silver, B; Herzog, A; Harris, JR Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys., 1992, 23(5), 915-923.
[34]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[35]
Sauna, Z.E.; Smith, M.M.; Müller, M.; Kerr, K.M.; Ambudkar, S.V. The mechanism of action of multidrug-resistance-linked P-glycoprotein. J. Bioenerg. Biomembr., 2001, 33(6), 481-491.
[http://dx.doi.org/10.1023/A:1012875105006] [PMID: 11804190]
[36]
Rivera, E. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options. Breast J., 2010, 16(3), 252-263.
[http://dx.doi.org/10.1111/j.1524-4741.2009.00896.x] [PMID: 20408828]
[37]
König, J.; Hartel, M.; Nies, A.T.; Martignoni, M.E.; Guo, J.; Büchler, M.W.; Friess, H.; Keppler, D. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int. J. Cancer, 2005, 115(3), 359-367.
[http://dx.doi.org/10.1002/ijc.20831] [PMID: 15688370]
[38]
Fumoleau, P.; Largillier, R.; Clippe, C.; Dièras, V.; Orfeuvre, H.; Lesimple, T.; Culine, S.; Audhuy, B.; Serin, D.; Curé, H.; Vuillemin, E.; Morère, J.F.; Montestruc, F.; Mouri, Z.; Namer, M. Multicentre, phase II study evaluating capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer. Eur. J. Cancer, 2004, 40(4), 536-542.
[http://dx.doi.org/10.1016/j.ejca.2003.11.007] [PMID: 14962720]
[39]
Jiang, X.; Zhao, Y.; Smith, C.; Gasparetto, M.; Turhan, A.; Eaves, A.; Eaves, C. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia, 2007, 21(5), 926-935.
[http://dx.doi.org/10.1038/sj.leu.2404609] [PMID: 17330101]
[40]
Love, R.R.; Leventhal, H.; Easterling, D.V.; Nerenz, D.R. Side effects and emotional distress during cancer chemotherapy. Cancer, 1989, 63(3), 604-612.
[http://dx.doi.org/10.1002/1097-0142(19890201)63:3<604::AID-CNCR2820630334>3.0.CO;2-2] [PMID: 2912536]
[41]
Saldanha, S.N.; Tollefsbol, T.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. J. Oncol., 2012, 2012, 1-23.
[http://dx.doi.org/10.1155/2012/192464] [PMID: 22187555]
[42]
Liao, G.S.; Apaya, M.K.; Shyur, L.F. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-17.
[http://dx.doi.org/10.1155/2013/437948] [PMID: 23840256]
[43]
Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for prevention and treatment of cancers. Nutrients, 2016, 8(8), 495.
[http://dx.doi.org/10.3390/nu8080495] [PMID: 27529277]
[44]
Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Xu, X.R. Antiproliferative activities of tea and herbal infusions. Food Funct., 2013, 4(4), 530-538.
[http://dx.doi.org/10.1039/c2fo30252g] [PMID: 23307138]
[45]
Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer, 2006, 5(1), 60.
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[46]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[47]
Stearns, V.; Zhou, Q.; Davidson, N.E. Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest., 2007, 25(8), 659-665.
[http://dx.doi.org/10.1080/07357900701719234] [PMID: 18058459]
[48]
Lustberg, M.B.; Ramaswamy, B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. Drug News Perspect., 2009, 22(7), 369-381.
[http://dx.doi.org/10.1358/dnp.2009.22.7.1405072] [PMID: 19890494]
[49]
Basse, C.; Arock, M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int. J. Cancer, 2015, 137(12), 2785-2794.
[http://dx.doi.org/10.1002/ijc.29347] [PMID: 25410431]
[50]
Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J., 2014, 16(1), 151-163.
[http://dx.doi.org/10.1208/s12248-013-9548-5] [PMID: 24307610]
[51]
Khan, S.I.; Aumsuwan, P.; Khan, I.A.; Walker, L.A.; Dasmahapatra, A.K. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem. Res. Toxicol., 2012, 25(1), 61-73.
[http://dx.doi.org/10.1021/tx200378c] [PMID: 21992498]
[52]
Landis-Piwowar, K.R.; Milacic, V.; Dou, Q.P. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J. Cell. Biochem., 2008, 105(2), 514-523.
[http://dx.doi.org/10.1002/jcb.21853] [PMID: 18636546]
[53]
Aggarwal, R.; Jha, M.; Shrivastava, A.; Jha, A.K. Natural compounds: Role in reversal of epigenetic changes. Biochemistry (Mosc.), 2015, 80(8), 972-989.
[http://dx.doi.org/10.1134/S0006297915080027] [PMID: 26547065]
[54]
Chlebowski, R.T. Current concepts in breast cancer chemoprevention. Pol. Arch. Med. Wewn., 2014, 124(4), 191-199.
[PMID: 24618912]
[55]
Ko, E.Y.; Moon, A. Natural products for chemoprevention of breast cancer. J. Cancer Prev., 2015, 20(4), 223-231.
[http://dx.doi.org/10.15430/JCP.2015.20.4.223] [PMID: 26734584]
[56]
Maggiolini, M.; Bonofiglio, D.; Pezzi, V.; Carpino, A.; Marsico, S.; Rago, V.; Vivacqua, A.; Picard, D.; Andò, S. Aromatase overexpression enhances the stimulatory effects of adrenal androgens on MCF7 breast cancer cells. Mol. Cell. Endocrinol., 2002, 193(1-2), 13-18.
[http://dx.doi.org/10.1016/S0303-7207(02)00091-6] [PMID: 12160997]
[57]
Lephart, ED Modulation of aromatase by phytoestrogens. Enzyme Res., 2015, 2015, 594656.
[http://dx.doi.org/10.1155/2015/594656]
[58]
Yarla, NS; Bishayee, A; Sethi, G; Reddanna, P; Kalle, AM; Dhananjaya, BL; Dowluru, KS; Chintala, R; Duddukuri, GR Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol, 2016, 40, 48-81.
[http://dx.doi.org/10.1016/j.semcancer.2016.02.001]
[59]
Wang, D.; DuBois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer, 2010, 10(3), 181-193.
[http://dx.doi.org/10.1038/nrc2809] [PMID: 20168319]
[60]
Cuendet, M.; Pezzuto, M. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol. Drug Interact., 2000, 17(1-4), 109-157.
[http://dx.doi.org/10.1515/DMDI.2000.17.1-4.109] [PMID: 11201293]
[61]
Denkert, C.; Winzer, K.J.; Müller, B.M.; Weichert, W.; Pest, S.; Köbel, M.; Kristiansen, G.; Reles, A.; Siegert, A.; Guski, H.; Hauptmann, S. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer, 2003, 97(12), 2978-2987.
[http://dx.doi.org/10.1002/cncr.11437] [PMID: 12784332]
[62]
Ranger, G.S.; Thomas, V.; Jewell, A.; Mokbel, K. Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Res., 2004, 24(4), 2349-2351.
[PMID: 15330183]
[63]
Stasinopoulos, I.; O’Brien, D.R.; Wildes, F.; Glunde, K.; Bhujwalla, Z.M. Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Mol. Cancer Res., 2007, 5(5), 435-442.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0010] [PMID: 17510310]
[64]
Borin, T.; Angara, K.; Rashid, M.; Achyut, B.; Arbab, A. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int. J. Mol. Sci., 2017, 18(12), 2661.
[http://dx.doi.org/10.3390/ijms18122661] [PMID: 29292756]
[65]
Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 13-22.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.001] [PMID: 21335088]
[66]
Sun, S.Y.; Hail, N., Jr; Lotan, R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst., 2004, 96(9), 662-672.
[http://dx.doi.org/10.1093/jnci/djh123] [PMID: 15126603]
[67]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis. Cell, 2002, 108(2), 153-164.
[http://dx.doi.org/10.1016/S0092-8674(02)00625-6] [PMID: 11832206]
[68]
Liu, J.; Lin, M.; Yu, J.; Liu, B.; Bao, J. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett., 2011, 300(2), 105-114.
[http://dx.doi.org/10.1016/j.canlet.2010.10.001] [PMID: 21036469]
[69]
Thomas, L.R.; Henson, A.; Reed, J.C.; Salsbury, F.R.; Thorburn, A. Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J. Biol. Chem., 2004, 279(31), 32780-32785.
[http://dx.doi.org/10.1074/jbc.M401680200] [PMID: 15173180]
[70]
Harper, N.; Hughes, M.; MacFarlane, M.; Cohen, G.M. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem., 2003, 278(28), 25534-25541.
[http://dx.doi.org/10.1074/jbc.M303399200] [PMID: 12721308]
[71]
Guicciardi, M.E.; Gores, G.J. Life and death by death receptors. FASEB J., 2009, 23(6), 1625-1637.
[http://dx.doi.org/10.1096/fj.08-111005] [PMID: 19141537]
[72]
Wajant, H. Death receptors. Essays Biochem., 2003, 39, 53-71.
[http://dx.doi.org/10.1042/bse0390053] [PMID: 14585074]
[73]
Green, D.R. Apoptotic Pathways. Cell, 2000, 102(1), 1-4.
[http://dx.doi.org/10.1016/S0092-8674(00)00003-9] [PMID: 10929706]
[74]
Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res., 2009, 15(4), 1126-1132.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0144] [PMID: 19228717]
[75]
Toshiya, K.; Testuya, T.; Akira, H.; Takuji, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 3(2), 156-173.
[76]
Roth, W.; Reed, J.C. Apoptosis and cancer: When BAX is TRAILing away. Nat. Med., 2002, 8(3), 216-218.
[http://dx.doi.org/10.1038/nm0302-216] [PMID: 11875486]
[77]
Dall’Acqua, S. Natural products as antimitotic agents. Curr. Top. Med. Chem., 2014, 14(20), 2272-2285.
[http://dx.doi.org/10.2174/1568026614666141130095311] [PMID: 25434355]
[78]
Liu, H.; Chen, X.; Sun, J.; Gao, P.; Song, Y.; Zhang, N.; Lu, X.; Xu, H.; Wang, Z. The efficacy and toxicity of paclitaxel plus S-1 compared with paclitaxel plus 5-FU for advanced gastric cancer: a PRISMA systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore), 2014, 93(25), e164.
[http://dx.doi.org/10.1097/MD.0000000000000164] [PMID: 25437030]
[79]
Wang, Y.; Man Gho, W.; Chan, F.L.; Chen, S.; Leung, L.K. The red clover ( Trifolium pratense ) isoflavone biochanin A inhibits aromatase activity and expression. Br. J. Nutr., 2008, 99(2), 303-310.
[http://dx.doi.org/10.1017/S0007114507811974] [PMID: 17761019]
[80]
Sehdev, V.; Lai, J.C.K.; Bhushan, A. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells. J. Oncol., 2009, 2009, 1-10.
[http://dx.doi.org/10.1155/2009/121458] [PMID: 20169097]
[81]
Atwell, L.L.; Zhang, Z.; Mori, M.; Farris, P.E.; Vetto, J.T.; Naik, A.M.; Oh, K.Y.; Thuillier, P.; Ho, E.; Shannon, J. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev. Res. (Phila.), 2015, 8(12), 1184-1191.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0119] [PMID: 26511489]
[82]
Moon, Y.J.; Brazeau, D.A.; Morris, M.E. Effects of flavonoids genistein and biochanin a on gene expression and their metabolism in human mammary cells. Nutr. Cancer, 2007, 57(1), 48-58.
[http://dx.doi.org/10.1080/01635580701268196] [PMID: 17516862]
[83]
Moon, Y.J.; Shin, B.S.; An, G.; Morris, M.E. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharm. Res., 2008, 25(9), 2158-2163.
[http://dx.doi.org/10.1007/s11095-008-9583-6] [PMID: 18454305]
[84]
Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta Lipids Lipid Metab., 1996, 1304(3), 210-222.
[http://dx.doi.org/10.1016/S0005-2760(96)00122-1] [PMID: 8982267]
[85]
Berner, C.; Aumüller, E.; Gnauck, A.; Nestelberger, M.; Just, A.; Haslberger, A.G. Epigenetic control of estrogen receptor expression and tumor suppressor genes is modulated by bioactive food compounds. Ann. Nutr. Metab., 2010, 57(3-4), 183-189.
[http://dx.doi.org/10.1159/000321514] [PMID: 21088384]
[86]
Nandakumar, V.; Vaid, M.; Katiyar, S.K. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis, 2011, 32(4), 537-544.
[http://dx.doi.org/10.1093/carcin/bgq285] [PMID: 21209038]
[87]
Li, Y.; Yuan, Y.Y.; Meeran, S.M.; Tollefsbol, T.O. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol. Cancer, 2010, 9(1), 274.
[http://dx.doi.org/10.1186/1476-4598-9-274] [PMID: 31901224]
[88]
Deb, G.; Thakur, V.S.; Limaye, A.M.; Gupta, S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog., 2015, 54(6), 485-499.
[http://dx.doi.org/10.1002/mc.22121] [PMID: 24481780]
[89]
Goodin, M.G.; Fertuck, K.C.; Zacharewski, T.R.; Rosengren, R.J. Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol. Sci., 2002, 69(2), 354-361.
[http://dx.doi.org/10.1093/toxsci/69.2.354] [PMID: 12377984]
[90]
Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One, 2010, 5(4), e10202.
[http://dx.doi.org/10.1371/journal.pone.0010202] [PMID: 20419137]
[91]
Han, S.G.; Han, S.S.; Toborek, M.; Hennig, B. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol., 2012, 261(2), 181-188.
[http://dx.doi.org/10.1016/j.taap.2012.03.024] [PMID: 22521609]
[92]
Roy, A.M.; Baliga, M.S.; Katiyar, S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor–negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol. Cancer Ther., 2005, 4(1), 81-90.
[http://dx.doi.org/10.1158/1535-7163.81.4.1] [PMID: 15657356]
[93]
Hsu, Y.C.; Liou, Y.M. The anti-cancer effects of (−)-Epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J. Cell. Physiol., 2011, 226(10), 2721-2730.
[http://dx.doi.org/10.1002/jcp.22623] [PMID: 21792929]
[94]
Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[http://dx.doi.org/10.3892/ol.2017.6108] [PMID: 28693189]
[95]
Baker, K.M.; Bauer, A.C. Green tea catechin, EGCG, suppresses PCB 102-induced proliferation in estrogen-sensitive breast cancer cells. Int. J. Breast Cancer, 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/163591] [PMID: 26783468]
[96]
Chisholm, K.; Bray, B.J.; Rosengren, R.J. Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs, 2004, 15(9), 889-897.
[http://dx.doi.org/10.1097/00001813-200410000-00010] [PMID: 15457130]
[97]
Farabegoli, F.; Papi, A.; Orlandi, M. (–)-Epigallocatechin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen-resistant cells. Biosci. Rep., 2011, 31(2), 99-108.
[http://dx.doi.org/10.1042/BSR20090143] [PMID: 20446926]
[98]
Masuda, M.; Suzui, M.; Lim, J.T.E.; Deguchi, A.; Soh, J.W.; Weinstein, I.B. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J. Exp. Ther. Oncol., 2002, 2(6), 350-359.
[http://dx.doi.org/10.1046/j.1359-4117.2002.01062.x] [PMID: 12440226]
[99]
Islam, S.; Islam, N.; Kermode, T.; Johnstone, B.; Mukhtar, H.; Moskowitz, R.W.; Goldberg, V.M.; Malemud, C.J.; Haqqi, T.M. Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem. Biophys. Res. Commun., 2000, 270(3), 793-797.
[http://dx.doi.org/10.1006/bbrc.2000.2536] [PMID: 10772904]
[100]
Li, M.J.; Yin, Y.C.; Wang, J.; Jiang, Y.F. Green tea compounds in breast cancer prevention and treatment. World J. Clin. Oncol., 2014, 5(3), 520-528.
[http://dx.doi.org/10.5306/wjco.v5.i3.520] [PMID: 25114865]
[101]
Peng, G; Dixon, DA; Muga, SJ; Smith, TJ; Wargovich, MJ Green tea polyphenol (−)‐epigallocatechin‐3‐gallate inhibits cyclooxygenase‐2 expression in colon carcinogenesis. Mol Carcinog, 2006, 45(5), 309-319.
[102]
Chun, KS; Surh, YJ Cancer chemoprevention targeting COX-2 using dietary phytochemicals. In: Cancer and Inflammation Mechanisms: Chemical, Biological, and Clinical Aspects; Wiley, 2014.
[103]
Sartippour, M.R.; Pietras, R.; Marquez-Garban, D.C.; Chen, H.W.; Heber, D.; Henning, S.M.; Sartippour, G.; Zhang, L.; Lu, M.; Weinberg, O.; Rao, J.Y.; Brooks, M.N. The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis, 2006, 27(12), 2424-2433.
[http://dx.doi.org/10.1093/carcin/bgl066] [PMID: 16785249]
[104]
Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, Q.; Yang, C.; Yu, P.; Huang, Y.; Wang, S.; Jiang, P.; Qu, Z.; Luan, J.; Duan, H.; Zhang, L.; Hou, A.; Jin, S.; Hsieh, T-C.; Wu, E.; Wu, E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med., 2012, 12(2), 163-176.
[http://dx.doi.org/10.2174/156652412798889063] [PMID: 22280355]
[105]
Alcaraz, M.; Armero, D.; Martínez-Beneyto, Y.; Castillo, J.; Benavente-García, O.; Fernandez, H.; Alcaraz-Saura, M.; Canteras, M. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels. Dentomaxillofac. Radiol., 2011, 40(5), 310-314.
[http://dx.doi.org/10.1259/dmfr/95408354] [PMID: 21697157]
[106]
Ullmann, U.; Haller, J.; Decourt, J.P.; Girault, N.; Girault, J.; Richard-Caudron, A.S.; Pineau, B.; Weber, P. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res., 2003, 31(2), 88-101.
[http://dx.doi.org/10.1177/147323000303100205] [PMID: 12760312]
[107]
Stearns, M.E.; Amatangelo, M.D.; Varma, D.; Sell, C.; Goodyear, S.M. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am. J. Pathol., 2010, 177(6), 3169-3179.
[http://dx.doi.org/10.2353/ajpath.2010.100330] [PMID: 20971741]
[108]
Dash, R.; Junaid, M.; Islam, N.; Akash, M.F.C.; Khan, M.I.; Arifuzzaman, M.; Khatun, M.; Zahid Hosen, S.M. M Zahid Hosen S. Molecular insight and binding pattern analysis of Shikonin as a potential VEGFR-2 inhibitor. Curr. Enzym. Inhib., 2017, 13(3), 235-244.
[http://dx.doi.org/10.2174/1573408013666161227162452]
[109]
Yao, Y.; Zhou, Q. A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells. Breast Cancer Res. Treat., 2010, 121(1), 233-240.
[http://dx.doi.org/10.1007/s10549-009-0547-2] [PMID: 19760501]
[110]
Yao, Y.; Brodie, A.M.H.; Davidson, N.E.; Kensler, T.W.; Zhou, Q. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res. Treat., 2010, 124(2), 585-591.
[http://dx.doi.org/10.1007/s10549-010-1023-8] [PMID: 20623181]
[111]
Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther., 2007, 6(5), 1641-1649.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0511] [PMID: 17513612]
[112]
Zhang, Y.; Qian, R.Q.; Li, P.P. Shikonin, an ingredient of Lithospermum erythrorhizon, down-regulates the expression of steroid sulfatase genes in breast cancer cells. Cancer Lett., 2009, 284(1), 47-54.
[http://dx.doi.org/10.1016/j.canlet.2009.04.008] [PMID: 19419812]
[113]
Duru, N.; Gernapudi, R.; Zhou, Q. Chemopreventive activities of shikonin in breast cancer. Biochem. Pharmacol., 2014, 3, e163.
[114]
Jang, S.Y.; Lee, J.K.; Jang, E.H.; Jeong, S.Y.; Kim, J.H. Shikonin blocks migration and invasion of human breast cancer cells through inhibition of matrix metalloproteinase-9 activation. Oncol. Rep., 2014, 31(6), 2827-2833.
[http://dx.doi.org/10.3892/or.2014.3159] [PMID: 24789371]
[115]
Wang, W.; Dai, M.; Zhu, C.; Zhang, J.; Lin, L.; Ding, J.; Duan, W. Synthesis and biological activity of novel shikonin analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 735-737.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.032] [PMID: 19111464]
[116]
Li, W.; Liu, J.; Jackson, K.; Shi, R.; Zhao, Y. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells. PLoS One, 2014, 9(4), e94079.
[http://dx.doi.org/10.1371/journal.pone.0094079] [PMID: 24710512]
[117]
Zhang, C.H.; Wang, J.; Zhang, L.X.; Lu, Y.H.; Ji, T.H.; Xu, L.; Ling, L.J. Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57. Oncotarget, 2017, 8(51), 88658-88669.
[http://dx.doi.org/10.18632/oncotarget.20809] [PMID: 29179465]
[118]
Su, L.; Liu, L.; Wang, Y.; Yan, G.; Zhang, Y. Long-term systemic toxicity of shikonin derivatives in Wistar rats. Pharm. Biol., 2014, 52(4), 486-490.
[http://dx.doi.org/10.3109/13880209.2013.846913] [PMID: 24192282]
[119]
Assimopoulou, A.N.; Papageorgiou, V.P. Encapsulation of isohexenylnaphthazarins in cyclodextrins. Biomed. Chromatogr., 2004, 18(4), 240-247.
[http://dx.doi.org/10.1002/bmc.310] [PMID: 15162386]
[120]
Holzer, T.R.; McMaster, W.R.; Forney, J.D. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol. Biochem. Parasitol., 2006, 146(2), 198-218.
[http://dx.doi.org/10.1016/j.molbiopara.2005.12.009] [PMID: 16430978]
[121]
King-Batoon, A.; Leszczynska, J.M.; Klein, C.B. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen., 2008, 49(1), 36-45.
[http://dx.doi.org/10.1002/em.20363] [PMID: 18181168]
[122]
Bishop, K.; Ferguson, L. The interaction between epigenetics, nutrition and the development of cancer. Nutrients, 2015, 7(2), 922-947.
[http://dx.doi.org/10.3390/nu7020922] [PMID: 25647662]
[123]
Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci., 2014, 105(3), 252-257.
[http://dx.doi.org/10.1111/cas.12349] [PMID: 24397737]
[124]
Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. in vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2), 13.
[http://dx.doi.org/10.4238/gmr16029434] [PMID: 28407181]
[125]
Zhang, X.; Spiegelman, D.; Baglietto, L.; Bernstein, L.; Boggs, D.A.; van den Brandt, P.A.; Buring, J.E.; Gapstur, S.M.; Giles, G.G.; Giovannucci, E.; Goodman, G.; Hankinson, S.E.; Helzlsouer, K.J.; Horn-Ross, P.L.; Inoue, M.; Jung, S.; Khudyakov, P.; Larsson, S.C.; Lof, M.; McCullough, M.L.; Miller, A.B.; Neuhouser, M.L.; Palmer, J.R.; Park, Y.; Robien, K.; Rohan, T.E.; Ross, J.A.; Schouten, L.J.; Shikany, J.M.; Tsugane, S.; Visvanathan, K.; Weiderpass, E.; Wolk, A.; Willett, W.C.; Zhang, S.M.; Ziegler, R.G.; Smith-Warner, S.A. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. Am. J. Clin. Nutr., 2012, 95(3), 713-725.
[http://dx.doi.org/10.3945/ajcn.111.014415] [PMID: 22277553]
[126]
Eliassen, A.H.; Hendrickson, S.J.; Brinton, L.A.; Buring, J.E.; Campos, H.; Dai, Q.; Dorgan, J.F.; Franke, A.A.; Gao, Y.; Goodman, M.T.; Hallmans, G.; Helzlsouer, K.J.; Hoffman-Bolton, J.; Hultén, K.; Sesso, H.D.; Sowell, A.L.; Tamimi, R.M.; Toniolo, P.; Wilkens, L.R.; Winkvist, A.; Zeleniuch-Jacquotte, A.; Zheng, W.; Hankinson, S.E. Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J. Natl. Cancer Inst., 2012, 104(24), 1905-1916.
[http://dx.doi.org/10.1093/jnci/djs461] [PMID: 23221879]
[127]
Rao, A.V.; Shen, H. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr. Res., 2002, 22(10), 1125-1131.
[http://dx.doi.org/10.1016/S0271-5317(02)00430-X]
[128]
Basu, A.; Imrhan, V. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur. J. Clin. Nutr., 2007, 61(3), 295-303.
[http://dx.doi.org/10.1038/sj.ejcn.1602510] [PMID: 16929242]
[129]
Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys., 2009, 486(2), 95-102.
[http://dx.doi.org/10.1016/j.abb.2009.01.018] [PMID: 19514131]
[130]
Savouret, J.F.; Quesne, M. Resveratrol and cancer: a review. Biomed. Pharmacother., 2002, 56(2), 84-87.
[http://dx.doi.org/10.1016/S0753-3322(01)00158-5] [PMID: 12000139]
[131]
Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277.
[http://dx.doi.org/10.1080/01635581.2014.868910] [PMID: 24447120]
[132]
Bishayee, A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev. Res. (Phila.), 2009, 2(5), 409-418.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[133]
Wang, R.H.; Sengupta, K.; Li, C.; Kim, H.S.; Cao, L.; Xiao, C.; Kim, S.; Xu, X.; Zheng, Y.; Chilton, B.; Jia, R.; Zheng, Z.M.; Appella, E.; Wang, X.W.; Ried, T.; Deng, C.X. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 2008, 14(4), 312-323.
[http://dx.doi.org/10.1016/j.ccr.2008.09.001] [PMID: 18835033]
[134]
Stefanska, B.; Karlic, H.; Varga, F.; Fabianowska-Majewska, K.; Haslberger, A.G. Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br. J. Pharmacol., 2012, 167(2), 279-297.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[135]
Sinha, D; Sarkar, N; Biswas, J; Bishayee, A Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin Cancer Biol, 2016, 40, 209-232.
[136]
Hsieh, T.; Wu, J.M. Resveratrol: Biological and pharmaceutical properties as anticancer molecule. Biofactors, 2010, 36(5), 360-369.
[http://dx.doi.org/10.1002/biof.105] [PMID: 20623546]
[137]
Jenkins, S.; Betancourt, A.M.; Wang, J.; Lamartiniere, C.A. Endocrine-active chemicals in mammary cancer causation and prevention. J. Steroid Biochem. Mol. Biol., 2012, 129(3-5), 191-200.
[http://dx.doi.org/10.1016/j.jsbmb.2011.06.003] [PMID: 21729753]
[138]
Park, M.A.; Hwang, K.A.; Choi, K.C. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab. Anim. Res., 2011, 27(4), 265-273.
[http://dx.doi.org/10.5625/lar.2011.27.4.265] [PMID: 22232634]
[139]
Bhat, K.P.; Lantvit, D.; Christov, K.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res., 2001, 61(20), 7456-7463.
[PMID: 11606380]
[140]
Chow, H.H.S.; Garland, L.L.; Heckman-Stoddard, B.M.; Hsu, C.H.; Butler, V.D.; Cordova, C.A.; Chew, W.M.; Cornelison, T.L. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. J. Transl. Med., 2014, 12(1), 223.
[http://dx.doi.org/10.1186/s12967-014-0223-0] [PMID: 25115686]
[141]
Laux, M.T.; Aregullin, M.; Berry, J.P.; Flanders, J.A.; Rodriguez, E. Identification of a p53-dependent pathway in the induction of apoptosis of human breast cancer cells by the natural product, resveratrol. J. Altern. Complement. Med., 2004, 10(2), 235-239.
[http://dx.doi.org/10.1089/107555304323062211] [PMID: 15165403]
[142]
Kim, H.; Hall, P.; Smith, M.; Kirk, M.; Prasain, J.K.; Barnes, S.; Grubbs, C. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J. Nutr., 2004, 134(12)(Suppl.), 3445S-3452S.
[http://dx.doi.org/10.1093/jn/134.12.3445S] [PMID: 15570052]
[143]
Pozo-Guisado, E.; Merino, J.M.; Mulero-Navarro, S.; Lorenzo-Benayas, M.J.; Centeno, F.; Alvarez-Barrientos, A.; Salguero, P.M.F. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-?B. Int. J. Cancer, 2005, 115(1), 74-84.
[http://dx.doi.org/10.1002/ijc.20856] [PMID: 15688415]
[144]
Kotha, A.; Sekharam, M.; Cilenti, L.; Siddiquee, K.; Khaled, A.; Zervos, A.S.; Carter, B.; Turkson, J.; Jove, R. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Mol. Cancer Ther., 2006, 5(3), 621-629.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0268] [PMID: 16546976]
[145]
Fulda, S.; Debatin, K.M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res., 2004, 64(1), 337-346.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1656] [PMID: 14729643]
[146]
de Vries, K.; Strydom, M.; Steenkamp, V. Bioavailability of resveratrol: Possibilities for enhancement. J. Herb. Med., 2018, 11, 71-77.
[http://dx.doi.org/10.1016/j.hermed.2017.09.002]
[147]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[148]
Sarkar, F.H.; Li, Y. Soy isoflavones and cancer prevention. Cancer Invest., 2003, 21(5), 744-757.
[http://dx.doi.org/10.1081/CNV-120023773] [PMID: 14628433]
[149]
Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F.H. Multi-targeted therapy of cancer by genistein. Cancer Lett., 2008, 269(2), 226-242.
[http://dx.doi.org/10.1016/j.canlet.2008.03.052] [PMID: 18492603]
[150]
Messing, E.; Gee, J.R.; Saltzstein, D.R.; Kim, K.; diSant’Agnese, A.; Kolesar, J.; Harris, L.; Faerber, A.; Havighurst, T.; Young, J.M.; Efros, M.; Getzenberg, R.H.; Wheeler, M.A.; Tangrea, J.; Parnes, H.; House, M.; Busby, J.E.; Hohl, R.; Bailey, H. A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients. Cancer Prev. Res. (Phila.), 2012, 5(4), 621-630.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0455] [PMID: 22293631]
[151]
Dharmappa, K.K.; Mohamed, R.; Shivaprasad, H.V.; Vishwanath, B.S. Genistein, a potent inhibitor of secretory phospholipase A2: a new insight in down regulation of inflammation. Inflammopharmacology, 2010, 18(1), 25-31.
[http://dx.doi.org/10.1007/s10787-009-0018-8] [PMID: 19894024]
[152]
Lau, T.Y.; Leung, L.K. Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br. J. Nutr., 2006, 96(1), 169-176.
[http://dx.doi.org/10.1079/BJN20061639] [PMID: 16870006]
[153]
Chung, M.H.; Kim, D.H.; Na, H.K.; Kim, J.H.; Kim, H.N.; Haegeman, G.; Surh, Y.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat. Res., 2014, 768, 74-83.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.04.003] [PMID: 24742714]
[154]
Pons, D.G.; Nadal-Serrano, M.; Blanquer-Rossello, M.M.; Sastre-Serra, J.; Oliver, J.; Roca, P. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio. J. Cell. Biochem., 2014, 115(5), 949-958.
[http://dx.doi.org/10.1002/jcb.24737] [PMID: 24375531]
[155]
Kucuk, O. Soy foods, isoflavones, and breast cancer. Cancer, 2017, 123(11), 1901-1903.
[http://dx.doi.org/10.1002/cncr.30614] [PMID: 28263364]
[156]
Bouker, K.B.; Hilakivi-Clarke, L. Genistein: does it prevent or promote breast cancer? Environ. Health Perspect., 2000, 108(8), 701-708.
[http://dx.doi.org/10.1289/ehp.00108701] [PMID: 10964789]
[157]
Zhang, F.F.; Haslam, D.E.; Terry, M.B.; Knight, J.A.; Andrulis, I.L.; Daly, M.B.; Buys, S.S.; John, E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer, 2017, 123(11), 2070-2079.
[http://dx.doi.org/10.1002/cncr.30615] [PMID: 28263368]
[158]
Chen, W.F.; Huang, M.H.; Tzang, C.H.; Yang, M.; Wong, M.S. Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim. Biophys. Acta Mol. Basis Dis., 2003, 1638(2), 187-196.
[http://dx.doi.org/10.1016/S0925-4439(03)00082-6]
[159]
Li, Y.; Upadhyay, S.; Bhuiyan, M.; Sarkar, F.H. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene, 1999, 18(20), 3166-3172.
[http://dx.doi.org/10.1038/sj.onc.1202650] [PMID: 10340389]
[160]
Yang, S.; Zhou, Q.; Yang, X. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2007, 1773(6), 903-911.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.021] [PMID: 17490757]
[161]
Shim, H.Y.; Park, J.H.; Paik, H.D.; Nah, S.Y.; Kim, D.S.H.L.; Han, Y.S. Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain–caspase and apoptosis signaling kinase 1–p38 mitogen-activated protein kinase activation cascades. Anticancer Drugs, 2007, 18(6), 649-657.
[http://dx.doi.org/10.1097/CAD.0b013e3280825573] [PMID: 17762393]
[162]
Sergeev, I.N. Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun., 2004, 321(2), 462-467.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.173] [PMID: 15358198]
[163]
Chen, J.; Duan, Y.; Zhang, X.; Ye, Y.; Ge, B.; Chen, J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct., 2015, 6(3), 995-1000.
[http://dx.doi.org/10.1039/C4FO01141D] [PMID: 25675448]
[164]
Liu, X.; Sun, C.; Jin, X.; Li, P.; Ye, F.; Zhao, T.; Gong, L.; Li, Q. Genistein enhances the radiosensitivity of breast cancer cells via G₂/M cell cycle arrest and apoptosis. Molecules, 2013, 18(11), 13200-13217.
[http://dx.doi.org/10.3390/molecules181113200] [PMID: 24284485]
[165]
Li, Y.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One, 2013, 8(1), e54369.
[http://dx.doi.org/10.1371/journal.pone.0054369] [PMID: 23342141]
[166]
Li, Y.; Meeran, S.M.; Patel, S.N.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol. Cancer, 2013, 12(1), 9.
[http://dx.doi.org/10.1186/1476-4598-12-9] [PMID: 24063558]
[167]
Xie, Q.; Bai, Q.; Zou, L.Y.; Zhang, Q.Y.; Zhou, Y.; Chang, H.; Yi, L.; Zhu, J.D.; Mi, M.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer, 2014, 53(5), 422-431.
[http://dx.doi.org/10.1002/gcc.22154] [PMID: 24532317]
[168]
Vissac-Sabatier, C.; Bignon, Y.J.; Bernard-Gallon, D.J. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr. Cancer, 2003, 45(2), 247-255.
[http://dx.doi.org/10.1207/S15327914NC4502_15] [PMID: 12881020]
[169]
Tominaga, Y.; Wang, A.; Wang, R-H.; Wang, X.; Cao, L.; Deng, C-X. Genistein inhibits Brca1 mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe. Cell Death Differ., 2007, 14(3), 472-479.
[http://dx.doi.org/10.1038/sj.cdd.4402037] [PMID: 17024228]
[170]
Yang, Z; Kulkarni, K; Zhu, W; Hu, M Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer Agents Med. Chem., 2012, 12(10), 1264-1280.
[http://dx.doi.org/10.2174/187152012803833107]
[171]
Lu, Y.; Li, W.; Yang, X. Soybean soluble polysaccharide enhances absorption of soybean genistein in mice. Food Res. Int., 2018, 103, 273-279.
[http://dx.doi.org/10.1016/j.foodres.2017.10.054] [PMID: 29389615]
[172]
Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X. Curcumin in treating breast cancer: A review. SLAS Technol., 2016, 21(6), 723-731.
[http://dx.doi.org/10.1177/2211068216655524] [PMID: 27325106]
[173]
Choudhuri, T.; Pal, S.; Agwarwal, M.L.; Das, T.; Sa, G. Curcumin induces apoptosis in human breast cancer cells through p53‐dependent Bax induction. FEBS Lett., 2002, 512(1-3), 334-340.
[http://dx.doi.org/10.1016/S0014-5793(02)02292-5] [PMID: 11852106]
[174]
Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922.
[http://dx.doi.org/10.1016/j.phymed.2009.04.008] [PMID: 19524420]
[175]
Zong, H.; Wang, F.; Fan, Q.; Wang, L. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808.
[http://dx.doi.org/10.1007/s11033-011-1273-5] [PMID: 21947854]
[176]
Bachmeier, B.E.; Mohrenz, I.V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Höhneke, C.; Jochum, M.; Nerlich, A.G.; Pfeffer, U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB. Carcinogenesis, 2008, 29(4), 779-789.
[http://dx.doi.org/10.1093/carcin/bgm248] [PMID: 17999991]
[177]
Lin, M.T.; Chang, C.C.; Chen, S.T.; Chang, H.L.; Su, J.L.; Chau, Y.P.; Kuo, M.L. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J. Biol. Chem., 2004, 279(23), 24015-24023.
[http://dx.doi.org/10.1074/jbc.M402305200] [PMID: 15044484]
[178]
Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[179]
Lindvall, C.; Bu, W.; Williams, B.O.; Li, Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev., 2007, 3(2), 157-168.
[http://dx.doi.org/10.1007/s12015-007-0025-3] [PMID: 17873348]
[180]
Liu, S.; Dontu, G.; Wicha, M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res., 2005, 7(3), 86-95.
[http://dx.doi.org/10.1186/bcr1021] [PMID: 15987436]
[181]
Chen, Y.; Shu, W.; Chen, W.; Wu, Q.; Liu, H.; Cui, G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol., 2007, 101(6), 427-433.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00142.x] [PMID: 17927689]
[182]
Yang, J.; Cao, Y.; Sun, J.; Zhang, Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med. Oncol., 2010, 27(4), 1114-1118.
[http://dx.doi.org/10.1007/s12032-009-9344-3] [PMID: 19908170]
[183]
Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[184]
Labbozzetta, M.; Notarbartolo, M.; Poma, P.; Maurici, A.; Inguglia, L.; Marchetti, P.; Rizzi, M.; Baruchello, R.; Simoni, D.; D’Alessandro, N. Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer. Ann. N. Y. Acad. Sci., 2009, 1155(1), 278-283.
[http://dx.doi.org/10.1111/j.1749-6632.2009.03699.x] [PMID: 19250217]
[185]
Limtrakul, P.; Chearwae, W.; Shukla, S.; Phisalphong, C.; Ambudkar, S.V. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell. Biochem., 2007, 296(1-2), 85-95.
[http://dx.doi.org/10.1007/s11010-006-9302-8] [PMID: 16960658]
[186]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[187]
Xue, J.P.; Wang, G.; Zhao, Z.B.; Wang, Q.; Shi, Y. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells. Oncol. Rep., 2014, 32(4), 1647-1653.
[http://dx.doi.org/10.3892/or.2014.3365] [PMID: 25109508]
[188]
Charalambous, C.; Pitta, C.A.; Constantinou, A.I. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells. BMC Cancer, 2013, 13(1), 238.
[http://dx.doi.org/10.1186/1471-2407-13-238] [PMID: 23675643]
[189]
González-Vallinas, M.; Molina, S.; Vicente, G.; Sánchez-Martínez, R.; Vargas, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Ramírez de Molina, A. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis, 2014, 35(11), 1719-1727.
[http://dx.doi.org/10.1002/elps.201400011] [PMID: 24615943]
[190]
McGuire, K.P.; Ngoubilly, N.; Neavyn, M.; Lanza-Jacoby, S. 3,3′-diindolylmethane and paclitaxel act synergistically to promote apoptosis in HER2/Neu human breast cancer cells. J. Surg. Res., 2006, 132(2), 208-213.
[http://dx.doi.org/10.1016/j.jss.2006.02.008] [PMID: 16580691]
[191]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[192]
Kars, M.D.; Işeri, Ö.D.; Gündüz, U.; Ural, A.U.; Arpaci, F.; Molnár, J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res., 2006, 26(6B), 4559-4568.
[PMID: 17201178]
[193]
Xu, H.B.; Li, L.; Fu, J.; Mao, X.P.; Xu, L.Z. Reversion of multidrug resistance in a chemoresistant human breast cancer cell line by β-elemene. Pharmacology, 2012, 89(5-6), 303-312.
[http://dx.doi.org/10.1159/000337178] [PMID: 22573000]
[194]
Cridge, B.J.; Larsen, L.; Rosengren, R.J. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. Oncol. Discov., 2013, 1(1), 6.
[http://dx.doi.org/10.7243/2052-6199-1-6]
[195]
El-Kersh, D.M.; Ezzat, S.M.; Salama, M.M.; Mahrous, E.A.; Attia, Y.M.; Ahmed, M.S.; Elmazar, M.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep., 2021, 11(1), 7121.
[http://dx.doi.org/10.1038/s41598-021-86599-z] [PMID: 3378254]
[196]
Braicu, C.; Gherman, C.D.; Irimie, A.; Berindan-Neagoe, I. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J. Nanosci. Nanotechnol., 2013, 13(1), 632-637.
[http://dx.doi.org/10.1166/jnn.2013.6882] [PMID: 236467886]
[197]
Gobbi, S.; Martini, S.; Rozza, R.; Spinello, A.; Caciolla, J.; Rampa, A.; Belluti, F.; Zaffaroni, N.; Magistrato, A.; Bisi, A. Switching from aromatase inhibitors to dual targeting flavonoid-based compounds for breast cancer treatment. Molecules, 2023, 28(7), 3047.
[http://dx.doi.org/10.3390/molecules28073047] [PMID: 37049810]
[198]
Khandelwal, V.; Choudhary, P.K. Immunomodulating potential of Neolamarckia cadamba (Roxb.) Bark extract. J. Pure Appl. Microbiol., 2020, 14(1), 641-646.
[http://dx.doi.org/10.22207/JPAM.14.1.66]
[199]
Gurjar, M.K.; Jat, B.L.; Choudhary, P.; Kumar, V. Bioefficacy of newer insecticides and botanicals against red pumpkin beetle Raphidopalpa foveicollis (Lucas) on bottle gourd, Lagenaria siceraria (Molina) Stand. J. Entomol. Res., 2022, 46(3), 570-575.
[http://dx.doi.org/10.5958/0974-4576.2022.00099.8]
[200]
Gurjar, M.K.; Jat, B.L.; Choudhary, P.; Nayak, R.K. Screening of bottle gourd genotypes/varieties for resistance against red pumpkin beetle Raphidopalpa foveicollis (Lucas) in semi-arid region of Rajasthan. Indian J. Ecol., 2022, 49(5), 1773-1781.
[201]
Goel, A; Bhatia, AK. Ocimum sanctum: in vitro antiviral potential against animal viruses. IJTK, 21(1), 120-125.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy