Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Comparative Review and Outlook of Research Progress in Backscatter-based Seafloor Substrate Classification Methods

In Press, (this is not the final "Version of Record"). Available online 09 October, 2023
Author(s): Jiahui Wang, Weihua Song*, Hanhao Zhu*, Chao Chen, Xu Liu, Zhigang Chai and Shaohua Hong
Published on: 09 October, 2023

Article ID: e091023221903

DOI: 10.2174/0118722121255396230922114637

Price: $95

Abstract

Background: The seafloor is an essential ocean boundary, and the detection of seafloor information is necessary basis for seafloor scientific research. The classification and identification of seafloor geological types is necessary for researchers to conduct seafloor research, military activities, and marine platform construction.

Objective: The purpose of this paper is to summarize the progress of seafloor substrate classification research based on backscattering and to seek a new development direction for seafloor substrate classification research.

Method: The literature on various types of submarine sediment attenuation geoacoustic models, backscatter intensity calculations, and submarine substrate classification is summarized, and the progress of theoretical research required for the positive and negative problems of submarine substrate classification is described that include the geoacoustic parameter models based on fluid theory, elastomer theory and poroelastic theory and submarine acoustic scattering models, including the small roughness perturbation approximation model, the Kirchhoff approximation model, the Kirchhoff approximation model and the Kirchhoff approximation model.

Result: The development of the Kirchhoff approximation model, the slight slope approximation model, the volume scattering model, and the inversion methods for seafloor substrate classification are summarized, and breakthroughs in seafloor substrate classification are sought by summarizing previous studies.

Conclusion: The classification of seafloor substrate based on backscattering intensity needs the support of a perfect geoacoustic model and scattering model, and the current research of low and medium-frequency scattering models and multi-layer seafloor scattering models are the further development direction in the future. Currently, the better performance of the prediction model, geo-acoustic parameter inversion results are more than 90% accuracy, sound velocity ratio and other parameters in the high-frequency band inversion accuracy of 98%, are able to better meet the measured data. Finally, some patented technologies are also reported.

[1]
A.N. Ivakin, "Sound scattering by the seafloor: Results of recent theoretical and experimental research", Acoust. Phys., vol. 58, no. 2, pp. 187-191, 2012.
[http://dx.doi.org/10.1134/S1063771012020066]
[2]
H.X. Zheng, "A review of seafloor substrate classification methods", In Twenty-ninth Annual Meeting of the Chinese Geophysical Society Yun Nan, China, 2013, p. 5
[3]
S. Li, S. Yuan, S. Liu, J. Wen, Q. Huang, and Z. Zhang, "Characteristics of low-frequency acoustic wave propagation in ice-covered shallow water environment", Appl. Acoust., vol. 11, 2021.
[4]
C. Xu, "Multi-beam bathymetric sonar subsea substrate classification technology research", PhD Thesis,. Harbin Engineering University: Harbin, ON, China,, 2014.
[5]
K. Qu, C.Q. Hu, and M.E. Zhao, "Single parameter inversion of seabed using propagation loss", J. Acous., vol. 38, pp. 472-476, 2013.
[6]
S.G. Schock, "A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data", IEEE J. Oceanic Eng., vol. 29, no. 4, pp. 1200-1217, 2004.
[http://dx.doi.org/10.1109/JOE.2004.841421]
[7]
I. Sara, R. Tonielli, G.D. Martino, A. Guarino, F. Molisso, and M. Sacchi, "High-resolution seafloor sedimentological mapping: The case study of Bagnoli-Coroglio site, Gulf of Pozzuoli (Napoli), Italy", Chem. Ecol., vol. 36, pp. 11-28, 2020.
[8]
T. Pillay, H.C. Cawthra, and A.T. Lombard, "Characterisation of seafloor substrate using advanced processing of multibeam bathymetry, backscatter, and sidescan sonar in Table Bay, South Africa", Mar. Geol., vol. 429, p. 106332, 2020.
[http://dx.doi.org/10.1016/j.margeo.2020.106332]
[9]
K. Siemes, M. Snellen, A.R. Amiri-Simkooei, D.G. Simons, and J.P. Hermand, "Predicting spatial variability of sediment properties from hydrographic data for geoacoustic inversion", IEEE J. Oceanic Eng., vol. 35, no. 4, pp. 766-778, 2010.
[http://dx.doi.org/10.1109/JOE.2010.2066711]
[10]
T.G. Leighton, H. Dogan, P. Fox, A. Mantouka, A.I. Best, G.B.R. Robb, and P.R. White, "Acoustic propagation in gassy intertidal marine sediments: An experimental study", J. Aoust. Soc. Am., vol. 150, no. 4, p. 2705, 2021.
[http://dx.doi.org/10.1121/10.0006530]
[11]
M.J. Buckingham, "Wave speed and attenuation profiles in a stratified marine sediment: Geo-acoustic modeling of seabed layering using the viscous grain shearing theory", J. Acoust. Soc. Am., vol. 148, no. 2, pp. 962-974, 2020.
[http://dx.doi.org/10.1121/10.0001778] [PMID: 32873014]
[12]
E.C. Shang, "New advances in geoacoustic inversion in hydroacoustics", Appl. Acoust., no. July, pp. 468-476, 2019.
[13]
C. De, and B. Chakraborty, "Model-based acoustic remote sensing of seafloor characteristics", IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3868-3877, 2011.
[http://dx.doi.org/10.1109/TGRS.2011.2139218]
[14]
L.Y.S. Chiu, A.Y.Y. Chang, H.H. Chen, C.C. Wang, and J.Y. Lou, "Error analysis on normal incidence reflectivity measurement and geoacoustic inversion of ocean surficial sediment properties", Cont. Shelf Res., vol. 201, p. 104123, 2020.
[http://dx.doi.org/10.1016/j.csr.2020.104123]
[15]
K.L. Williams, "Adding thermal and granularity effects to the effective density fluid model", J. Acoust. Soc. Am., vol. 133, no. 5, pp. EL431-EL437, 2013.
[http://dx.doi.org/10.1121/1.4799761] [PMID: 23656105]
[16]
D.R. Jackson, and M.D. Richardson, High-frequency seafloor acoustics., Springer: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-36945-7]
[17]
A.L. Bonomo, N.P. Chotiros, and M.J. Isakson, "On the validity of the effective density fluid model as an approximation of a poroelastic sediment layer", J. Acoust. Soc. Am., vol. 138, no. 2, pp. 748-757, 2015.
[http://dx.doi.org/10.1121/1.4926901] [PMID: 26328691]
[18]
N.P. Chotiros, "Ocean sediments and the Biot theory", J. Acoust. Soc. Am., vol. 144, no. 3_Supplement, p. 1980, 2018.
[http://dx.doi.org/10.1121/1.5068645]
[19]
E.L. Hamilton, "Elastic properties of marine sediments", J. Geophys. Res., vol. 76, no. 2, pp. 579-604, 1971.
[http://dx.doi.org/10.1029/JB076i002p00579]
[20]
J.G. Berryman, "Origin of Gassmann’s equations", Geophysics, vol. 64, no. 5, pp. 1627-1629, 1999.
[http://dx.doi.org/10.1190/1.1444667]
[21]
D.R. Jackson, APL-UW high-frequency ocean environmental acoustic models handbook., APL Lab, 1994, pp. 1499-1510.
[22]
Z. Guo, X. Lv, C. Liu, H. Chen, and Z. Cai, "Characterizing gas hydrate–bearing marine sediments using elastic properties—part 1: Rock physical modeling and inversion from well logs", J. Mar. Sci. Eng., vol. 10, no. 10, p. 1379, 2022.
[http://dx.doi.org/10.3390/jmse10101379]
[23]
N.P. Chotiros, and M.J. Isakson, "Acoustic virtual mass of granular media", J. Acoust. Soc. Am., vol. 121, no. 2, pp. EL70-EL76, 2007.
[http://dx.doi.org/10.1121/1.2430763] [PMID: 17348549]
[24]
N.P. Chotiros, and M.J. Isakson, "High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand", J. Acoust. Soc. Am., vol. 124, no. 5, pp. EL296-EL301, 2008.
[http://dx.doi.org/10.1121/1.2987465] [PMID: 19045681]
[25]
M.J. Buckingham, "Response to “Comments on ‘Pore fluid viscosity and the wave properties of saturated granular materials including marine sediments”", J. Acoust. Soc. Am., vol. 127, pp. 2095-2098, 2010.
[PMID: 20369987]
[26]
M.A. Biot, "Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range", J. Acoust. Soc. Am., vol. 28, no. 2, pp. 179-191, 1956.
[http://dx.doi.org/10.1121/1.1908241]
[27]
H.W. Marsh, "Sound reflection and scattering from the sea surface", J. Acoust. Soc. Am., vol. 35, no. 2, pp. 240-244, 1963.
[http://dx.doi.org/10.1121/1.1918439]
[28]
A.L. Bonomo, and M.J. Isakson, "A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements", J. Acoust. Soc. Am., vol. 143, no. 4, pp. 2501-2513, 2018.
[http://dx.doi.org/10.1121/1.5032205] [PMID: 29716256]
[29]
E.Y.T. Kuo, "Wave scattering and transmission at irregular surfaces", J. Acoust. Soc. Am., vol. 36, no. 11, pp. 2135-2142, 1964.
[http://dx.doi.org/10.1121/1.1919334]
[30]
R.F. Gragg, D. Wurmser, and R.C. Gauss, "Small-slope scattering from rough elastic ocean floors: General theory and computational algorithm", J. Acoust. Soc. Am., vol. 110, no. 6, pp. 2878-2901, 2001.
[http://dx.doi.org/10.1121/1.1412444] [PMID: 11785790]
[31]
D.S. Galvez, S. Papenmeier, L. Sanders, H.C. Hass, V. Fofonova, A. Bartholomae, and K.H. Wiltshire, "Ensemble mapping and change analysis of the seafloor sediment distribution in the sylt outer reef", German North Sea from 2016-2018,, vol. 13, 2021.
[32]
M.A. Fiaz, "Scattering from a fractal–fractal rough interface using perturbation theory", Optik, vol. 178, pp. 14-24, 2019.
[http://dx.doi.org/10.1016/j.ijleo.2018.09.129]
[33]
D. Jackson, and D.R. Olson, "The small-slope approximation for layered, fluid seafloors", J. Acoust. Soc. Am., vol. 147, no. 1, pp. 56-73, 2020.
[http://dx.doi.org/10.1121/10.0000470] [PMID: 32006970]
[34]
M. Darmon, V. Dorval, and F. Baqué, "Acoustic scattering models from rough surfaces: A brief review and recent advances", Appl. Sci., vol. 10, no. 22, p. 8305, 2020.
[http://dx.doi.org/10.3390/app10228305]
[35]
S.M. Steele, and A.P. Lyons, "Development and experimental validation of endfire synthetic aperture sonar for sediment acoustics studies", IEEE J. Oceanic Eng., vol. 47, no. 2, pp. 472-482, 2022.
[http://dx.doi.org/10.1109/JOE.2021.3107590]
[36]
J.H. Stockhausen, "Scattering from the volume of an inhomogeneous Half‐Space", J. Acoust. Soc. Am., vol. 35, no. 11_Supplement, pp. 1893-1893, 1963.
[http://dx.doi.org/10.1121/1.2142705]
[37]
L.Y.S. Chiu, A. Chang, Y-T. Lin, C-S. Liu, and C.S. Liu, "Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler", IEEE J. Oceanic Eng., vol. 40, no. 1, pp. 222-236, 2015.
[http://dx.doi.org/10.1109/JOE.2013.2296362]
[38]
B. Zou, J. Zhai, Z. Qi, and Z. Li, "A comparison of three sediment acoustic models using Bayesian inversion and model selection techniques", Remote Sens., vol. 11, no. 5, p. 562, 2019.
[http://dx.doi.org/10.3390/rs11050562]
[39]
J. Belcourt, S.E. Dosso, C.W. Holland, and J. Dettmer, "Bayesian geoacoustic inversion of seabed reflection data at the New England mud patch", J. Acoust. Soc. Am., vol. 142, no. 4_Supplement, pp. 2590-2590, 2017.
[http://dx.doi.org/10.1121/1.5014487]
[40]
S. Yu, B. Liu, K. Yu, Z. Yang, G. Kan, and L. Zong, "Inversion of bottom parameters using a backscattering model based on the effective density fluid approximation", Appl. Acoust., vol. 182, p. 108187, 2021.
[http://dx.doi.org/10.1016/j.apacoust.2021.108187]
[41]
G.R. Venegas, and A.P. Lyons, "Measuring and modeling time-dependent changes in seabed scatter caused by near-bottom hydrodynamics and biologic processes", J. Acoust. Soc. Am., vol. 150, no. 4, suppl. _Suppl., p. A351, 2021.
[http://dx.doi.org/10.1121/10.0008556]
[42]
S. Yu, B. Liu, K. Yu, Z. Yang, and G. Kan, "A backscattering model for a stratified seafloor", Acta Oceanol. Sin., vol. 36, no. 7, pp. 56-65, 2017.
[http://dx.doi.org/10.1007/s13131-017-1084-1]
[43]
K. Qu, "Submarine sedimentation classification using acoustic propagation data and unsupervised machine learning", C.N. Patent 113221651A, 2021.
[44]
P. Cristini, and D. Komatitsch, "Scattering by an elastic object in the time domain for underwater acoustic applications by means of the spectral-element method", J. Acoust. Soc. Am., vol. 130, no. 4_Supplement, p. 2331, 2011.
[http://dx.doi.org/10.1121/1.3654325]
[45]
H. Tian, S. Guo, P. Zhao, M. Gong, and C. Shen, "Design and implementation of a real-time multi-beam sonar system based on FPGA and DSP", Sensors, vol. 21, no. 4, p. 1425, 2021.
[http://dx.doi.org/10.3390/s21041425] [PMID: 33670662]
[46]
S.H. Jin, J.S. Zhai, Y.C. Liu, and G.S. Cui, "The effect of seafloor incidence angle on multi-beam backscatter intensity and its correction", J. Wuhan Univ. (Inf. Sci. Ed.), vol. 36, pp. 1081-1084, 2011.
[47]
S.H. Jin, F.M. Xiao, G. Bian, M. Wang, and W.C. Sun, "Substrate feature parameter extraction algorithm using multi-beam backscattered intensity angular response curve", Wuhan Univ. (Inf. Sci. Ed.), vol. 12, pp. 1493-1498, 2014.
[48]
Q. Yin, J. Li, F. Ma, D. Xiang, and F. Zhang, "Dual-channel convolutional neural network for bare surface soil moisture inversion based on polarimetric scattering models", Remote Sens., vol. 13, no. 22, p. 4503, 2021.
[http://dx.doi.org/10.3390/rs13224503]
[49]
D.P. Knobles, C.D. Escobar-Amado, M.J. Buckingham, W.S. Hodgkiss, P.S. Wilson, T.B. Neilsen, J. Yang, and M. Badiey, "Statistical inference of sound speed and attenuation dispersion of a fine-grained marine sediment", IEEE J. Oceanic Eng., vol. 47, no. 3, pp. 553-564, 2022.
[http://dx.doi.org/10.1109/JOE.2021.3091846]
[50]
Q.S. Yu, "Research on inversion method of seafloor parameters based on backscattering intensity", PhD thesis,. Harbin Engineering University: Harbin, China,, 2014.
[51]
D.R. Olson, and D. Jackson, "Scattering from layered seafloors: Comparisons between theory and integral equations", J. Acoust. Soc. Am., vol. 148, no. 4, pp. 2086-2095, 2020.
[http://dx.doi.org/10.1121/10.0002164] [PMID: 33138517]
[52]
Z. Wang, Y. Ma, G. Kan, B. Liu, X. Zhou, and X. Zhang, "an inversion method for geoacoustic parameters in shallow water based on bottom reflection signals", Remote Sens., vol. 15, no. 13, p. 3237, 2023.
[http://dx.doi.org/10.3390/rs15133237]
[53]
X. Zhang, P. Yang, P. Huang, H. Sun, and W. Ying, "Wide‐bandwidth signal‐based multireceiver SAS imagery using extended chirp scaling algorithm", IET Radar Sonar & Navigation, vol. 16, no. 3, pp. 531-541, 2022.
[http://dx.doi.org/10.1049/rsn2.12200]
[54]
Y. Xue, H. Zhu, X. Wang, G. Zheng, X. Liu, and J. Wang, "Bayesian geoacoustic parameters inversion for multi-layer seabed in shallow sea using underwater acoustic field", Front. Mar. Sci., vol. 10, p. 1058542, 2023.
[http://dx.doi.org/10.3389/fmars.2023.1058542]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy