Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Nanoencapsulation of Bixin and Norbixin in Sodium Alginate: Preparation, Characterization, and Release in Food Simulant

Author(s): Suiane Savazzi, Renato Queiroz Assis and Alessandro de Oliveira Rios*

Volume 20, Issue 4, 2024

Published on: 09 October, 2023

Article ID: e091023221889 Pages: 13

DOI: 10.2174/0115734072265200230925062619

Price: $65

Abstract

Aims: Bixin and norbixin are natural antioxidants used as pigments in the food industry, but their chemical structure makes them susceptible to environmental factors (light, oxygen, and temperature).

Background: Nanoencapsulation techniques can improve the stability and solubility of these compounds in addition to reducing particle size which can increase the surface-to-volume ratio and provide many attractive and unique properties to the nanoparticles.

Objective: In this study, sodium alginate was used as wall material for the encapsulation of bixin and norbixin in different concentrations (1.25 x 10-3, 2.5 x 10-3, 5 x 10-3 and 7.5 x 10-3 g/g of biopolymer), by emulsification/internal gelation method.

Methods: The emulsification/internal gelation method was used to elaborate bixin or norbixinloaded nanospheres. The internal phase of the water-in-oil (W/O) emulsion was prepared with an aqueous solution of sodium alginate (1.5% w/v - 40 mL), 0.12 g of CaCO3, bixin or norbixin pigments, and mechanically stirred for 15 min at 700 rpm.

Results: Nanospheres containing the highest concentration of both carotenoids showed better encapsulation efficiency, with 37.86% for bixin and 51.47% for norbixin, and these formulations were used for characterization analyses. The mean size of the nanospheres was 741.9 ± 41.0 nm, 622.9 ± 71.0 nm, and 589.5 ± 99.1 nm for control particles, bixin, and norbixin, respectively. The addition of both carotenoids resulted in particles with a yellow-red color, which demonstrates the encapsulation of natural antioxidants. The thermal analysis results may indicate an increase in the thermal stability of the pigments after encapsulation, in addition, the nanospheres exhibited the ability to scavenge the ABTS+ radical. Carotenoids release test in food simulant (95% ethanol) presented a rapid release in the first hours and maintenance of concentration for 10 days.

Conclusion: Results showed that these nanospheres could be an alternative to the application of these carotenoid pigments in food matrices and food packaging.

Graphical Abstract

[1]
Satyanarayana, A.; Rao, P.G.P.; Rao, D.G. Chemistry, processing and toxicology of annatto (Bixa orellana L.). J. Food Sci. Technol., 2003, 40(2), 131-141.
[2]
Scotter, M. The chemistry and analysis of annatto food colouring: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2009, 26(8), 1123-1145.
[http://dx.doi.org/10.1080/02652030902942873]
[3]
Tupuna, D.S.; Paese, K.; Guterres, S.S.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O. Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind. Crop. Prod; Elsevier, 2018, 111, 846-855.
[4]
Chisté, R.C.; Mercadante, A.Z.; Gomes, A.; Fernandes, E.; Lima, J.L.F.C.; Bragagnolo, N. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem., 2011, 127(2), 419-426.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.139] [PMID: 23140681]
[5]
Rios, A.O.; Mercadante, A.Z.; Borsarelli, C.D. Triplet state energy of the carotenoid bixin determined by photoacoustic calorimetry. Dyes Pigments, 2007, 74(3), 561-565.
[http://dx.doi.org/10.1016/j.dyepig.2006.03.018]
[6]
Bitencourt, A.P.R.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Carvalho, J.C.T.; Gomes, A.T.A.; Ferreira, I.M.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C.; Fernandes, C.P. Preparation of aqueous nanodispersions with annatto (Bixa orellana L.) extract using an organic solvent-free and low energy method. Food Chem; Elsevier, 2018, 257, 196-205.
[7]
Prajapati, R.A.; Jadeja, G.C. Natural food colorants: Extraction and stability study. Mater. Today Proc; Elsevier Ltd, 2022.
[8]
Islam, Shahid-ul.; Rather, L.J.; Mohammad, F. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications: A review. J. Adv. Res.Cairo. Univ., 2016, 7(3), 499-514.
[9]
Mokhtari, S.; Jafari, S.M.; Assadpour, E. Development of anutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem; Elsevier Ltd, 2017, 229, 286-295.
[10]
dos Santos, P.P.; Flôres, S.H.; de Oliveira Rios, A.; Chisté, R.C. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci. Technol., 2016, 53, 23-33.
[http://dx.doi.org/10.1016/j.tifs.2016.05.005]
[11]
Sousa Lobato, K.B.; De; Paese, K.; Forgearini, J.C.; Guterres, S.S.; Jablonski, A.; Oliveira Rios, A. Characterisation and stability evaluation of bixin nanocapsules. Food Chem; Elsevier Ltd, 2013, 141(4), 3906-3912.
[12]
Campo, C.; Dick, M.; Santos, P.P.; dos Costa, T.M.H.; Paese, K.; Guterres, S.S.; Rios, A. de O.; Flôres, S.H. Zeaxanthin nanoencapsulation with opuntia monacantha mucilage as structuring material: Characterization and stability evaluation underdifferent temperatures. Colloids Surfaces A Physicochem. Eng.Asp; Elsevier, 2018, 558, 410-421.
[13]
Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 2007, 40(9), 1107-1121.
[http://dx.doi.org/10.1016/j.foodres.2007.07.004]
[14]
Rodrigues, E.; Mariutti, L.R.B.; Faria, A.F.; Mercadante, A.Z. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chem., 2012, 134(2), 704-711.
[15]
Sridhar, K.; Inbaraj, B.S.; Chen, B.H. Recent advances on nanoparticle based strategies for improving carotenoid stability and biological activity. Antioxidants, 2021, 10(5), 713.
[http://dx.doi.org/10.3390/antiox10050713] [PMID: 33946470]
[16]
Paques, J.P.; Sagis, L.M.C.; Rijn, C.J.M.; vanLinden, E. van der Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll., 2014, 40, 182-188.
[17]
Rahnemoon, P.; Sarabi-Jamab, M.; Bostan, A.; Mansouri, E. Nanoencapsulation of pomegranate (Punica granatum L.) peel extract and evaluation of its antimicrobial properties on coated chicken meat. Food Biosci., Elsevier Ltd, 2021, 43(August), 101331.
[http://dx.doi.org/10.1016/j.jsps.2011.08.004] [PMID: 23960820]
[18]
Funami, T.; Fang, Y.; Noda, S.; Ishihara, S.; Nakauma, M.; Draget, K.I.; Nishinari, K.; Phillips, G.O. Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding. Food Hydrocoll.,Elsevier Ltd, 2009, 23(7), 1746-55.
[http://dx.doi.org/10.1016/j.foodhyd.2015.02.023]
[19]
Ozkan, G.; Franco, P.; Marco, I.; De; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants : Principles , advantages , drawbacks and applications. Food Chem., Elsevier, 2019, 272(February 2018), 494-506.
[20]
Li, R.; Zhang, X.; Shi, H. Effect of manufacturing parameters on the release profiles of casein-loaded alginate microspheres prepared by emulsification/internal gelation. J. Control. Release. Elsevier B.V., 2011, (152)(Suppl 2011), e154-55.
[21]
Ahmed, M.M.; El-Rasoul, S.A.; Auda, S.H.; Ibrahim, M.A. Emulsification/internal gelation as a method for preparation of diclofenac sodium-sodium alginate microparticles. Saudi Pharm. J. King Saud University, 2013, 21(1), 61-69.
[http://dx.doi.org/10.1016/j.foodhyd.2014.02.024]
[22]
Lupo, B.; Maestro, A.; Gutiérrez, J.M.; González, C. Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms. Food Hydrocoll., 2015, 49, 25-34.
[23]
Martín-Villena, M.J.; Fernández-Campos, F.; Calpena-Campmany, A.C.; Bozal-De Febrer, N.; Ruiz-Martínez, M.A.; Clares-Naveros, B. Novel microparticulate systems for the vaginal delivery of nystatin: Development and characterization. Carbohydr. Polym.,Elsevier Ltd., 2013, 94(1), 1-11.
[24]
Paiboon, N.; Surassmo, S.; Rungsardthong Ruktanonchai, U.; Kappl, M.; Soottitantawat, A. Internal gelation of alginate microparticle prepared by emulsification and microfluidic method: Effect of Ca-EDTA as a calcium source. Food Hydrocoll., 2023, 141, 108712.
[25]
Mokhtari, S.; Jafari, S.M.; Assadpour, E. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem., 2017, 229, 286-295.
[26]
Sadeghi, D.; Solouk, A.; Samadikuchaksaraei, A.; Seifalian, A.M. Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr. Polym., 2021, 255, 117336.
[27]
de Oliveira Rios, A.; Mercadante, A.Z. Novel method for the determination of added annatto colour in extruded corn snack products. Food Addit. Contam., 2004, 21(2), 125-133.
[http://dx.doi.org/10.1080/02652030310001642771] [PMID: 14754634]
[28]
Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[29]
Reis, C.P.; Ribeiro, A.J.; Houng, S.; Veiga, F.; Neufeld, R.J. Nanoparticulate delivery system for insulin: Design, characterization and in vitro/in vivo bioactivity. Eur. J. Pharm. Sci., 2007, 30(5), 392-397.
[http://dx.doi.org/10.1016/j.ejps.2006.12.007] [PMID: 17280820]
[30]
Stoll, L.; Maria, T.; Costa, H.; Jablonski, A.; Flôres, S.H. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food Bioprocess Technol., 2016, 9, 172-181.
[http://dx.doi.org/10.1007/s11947-015-1610-0]
[31]
Kim, S.; Park, J.B.; Hwang, I.K. Quality attributes of various varieties of Korean red pepper powders (Capsicum annuum L.) and color stability during sunlight exposure. J. Food Sci., 2002, 67(8), 2957-2961.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb08845.x]
[32]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. ABTS assay. Free Radic. Biol. Med., 1999, 26(98), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[33]
Assis, R.Q.; Pagno, C.H.; Stoll, L.; Rios, P.D.A.; Rios, A. de O.; Olivera, F.C. Active food packaging of cellulose acetate: Storage stability, protective effect on oxidation of riboflavin and release in food simulants. Food Chem., 2021, 349, 129140.
[34]
Malekjani, N.; Jafari, S.M. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr. Rev. Food Sci. Food Saf., 2021, 20(1), 3-47.
[http://dx.doi.org/10.1111/1541-4337.12660] [PMID: 33443795]
[35]
Raddatz-Mota, D.; Pérez-Flores, L.J.; Carrari, F.; Mendoza-Espinoza, J.A.; de León-Sánchez, F.D.; Pinzón-López, L.L.; Godoy-Hernández, G.; Rivera-Cabrera, F. Achiote (Bixa orellana L.): A natural source of pigment and vitamin E. J. Food Sci. Technol., 2017, 54(6), 1729-1741.
[http://dx.doi.org/10.1007/s13197-017-2579-7] [PMID: 28559632]
[36]
Kurozawa, L.E.; Hubinger, M.D. Hydrophilic food compounds encapsulation by ionic gelation. Curr. Opin. Food Sci., 2017, 15, 50-55.
[37]
Chen, L.; Subirade, M. Alginate–whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials, 2006, 27(26), 4646-4654.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.037] [PMID: 16714058]
[38]
Uyen, N.T.T.; Hamid, Z.A.A.; Thi, L.A.; Ahmad, N.B. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J. Drug Deliv. Sci. Technol., 2020, 58, 101796.
[39]
Yadav, S.K.; Khan, G.; Bonde, G.V.; Bansal, M.; Mishra, B. Design, optimization and characterizations of chitosan fortified calcium alginate microspheres for the controlled delivery of dual drugs. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1180-1193.
[http://dx.doi.org/10.1080/21691401.2017.1366331] [PMID: 28830256]
[40]
Silva, C.M.; Ribeiro, A.J.; Ferreira, D.; Veiga, F. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur. J. Pharm. Sci., 2006, 29(2), 148-159.
[http://dx.doi.org/10.1016/j.ejps.2006.06.008] [PMID: 16952452]
[41]
Uyen, N.T.T.; Hamid, Z.A.A.; Tram, N.X.T.; Ahmad, N. Fabrication of alginate microspheres for drug delivery: A review. Int. J. Biol. Macromol., 2020, 153, 1035-1046.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.233] [PMID: 31794824]
[42]
Zhang, R.; Zhou, L.; Li, J.; Oliveira, H.; Yang, N.; Jin, W.; Zhu, Z.; Li, S.; He, J. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. Lwt Elsevier, 2020, 123, 109097.
[43]
Flamminii, F.; Paciulli, M.; Di Michele, A.; Littardi, P.; Carini, E.; Chiavaro, E.; Pittia, P.; Di Mattia, C.D. Alginate-based microparticles structured with different biopolymers and enriched with a phenolic-rich olive leaves extract: A physico-chemical characterization. Curr. Res. Food. Sci., 2021, 4, 698-706.
[http://dx.doi.org/10.1016/j.crfs.2021.10.001] [PMID: 34661168]
[44]
Naranjo-Durán, A.M.; Quintero-Quiroz, J.; Rojas-Camargo, J.; Ciro-Gómez, G.L. Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Scient. Rep., 2021.
[http://dx.doi.org/10.1038/s41598-020-80119-1]
[45]
Leong, J.Y.; Lam, W.H.; Ho, K.W.; Voo, W.P.; Lee, M.F.X.; Lim, H.P.; Lim, S.L.; Tey, B.T.; Poncelet, D.; Chan, E.S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, 2016, 24, 44-60.
[http://dx.doi.org/10.1016/j.partic.2015.09.004]
[46]
Deng, Z.; Wang, F.; Zhou, B.; Li, J.; Li, B.; Liang, H. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll., 2019, 89, 691-699.
[47]
Poncelet, D.; Lencki, R.; Beaulieu, C.; Halle, J.P.; Neufeld, R.J.; Fournier, A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl. Microbiol. Biotechnol., 1992, 38(1), 39-45.
[http://dx.doi.org/10.1007/BF00169416] [PMID: 1369009]
[48]
Quong, D.; Neufeld, R.J.; Skjåk-Bræk, G.; Poncelet, D. External versus internal source of calcium during the gelation of alginate beads for DNA encapsulation. Biotechnol. Bioeng., 1998, 57(4), 438-446.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19980220)57:4<438::AID-BIT7>3.0.CO;2-N] [PMID: 10099220]
[49]
Ribeiro, C.C.; Barrias, C.C.; Barbosa, M.A. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials, 2004, 25(18), 4363-4373.
[http://dx.doi.org/10.1016/j.biomaterials.2003.11.028]
[50]
Silva, C.M.; Ribeiro, A.J.; Figueiredo, I.V.; Gonçalves, A.R.; Veiga, F. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. Int. J. Pharm., 2006, 311(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.050] [PMID: 16442757]
[51]
Vandenberg, G.W.; De La Noüe, J. Evaluation of protein release from chitosan-aginate microcapsules produced using external or internal gelation. J. Microencapsul., 2001, 18(4), 433-441.
[http://dx.doi.org/10.1080/02652040010019578] [PMID: 11428673]
[52]
Uyen, N.T.T.; Hamid, Z.A.A.; Nurazreena, A. Fabrication and characterization of alginate microspheres. Mater. Today Proc., 2019, 17, 792-797.
[53]
Athamneh, T.; Amin, A.; Benke, E.; Ambrus, R.; Leopold, C.S.; Gurikov, P.; Smirnova, I. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J. Supercrit. Fluids, 2019, 150, 49-55.
[54]
Nawade, B.; Shaltiel-Harpaz, L.; Yahyaa, M.; Bosamia, T.C.; Kabaha, A.; Kedoshim, R.; Zohar, M.; Isaacson, T.; Ibdah, M. Analysis of apocarotenoid volatiles during the development of Ficus carica fruits and characterization of carotenoid cleavage dioxygenase genes. Plant Sci., 2020, 290, 110292.
[55]
Mokrzycki, W.; Tatol, M. Color difference delta E: A survey Colour difference Δ E: A survey Faculty of Mathematics and Informatics. Mach. Graph. Vis., 2011, 20(4), 383-411.
[56]
Lyng, S.M.O.; Passos, M.; Fontana, J.D. Bixin and α-cyclodextrin inclusion complex and stability tests. Process Biochem., 2005, 40(2), 865-872.
[http://dx.doi.org/10.1016/j.procbio.2004.02.017]
[57]
Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. Lwt Elsevier Ltd, 2022, 153, 112527.
[58]
Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech., 2010, 21(4), 167-193.
[PMID: 21119929]
[59]
Hosseini, S.F.; Javidi, Z.; Rezaei, M. International journal of biological macromolecules efficient gas barrier properties of multi-layer films based on poly (lactic acid) and fish gelatin. Int. J. Biol. Macromol., 2016, 92, 1205-1214.
[60]
Stojanovic, R.; Belscak-Cvitanovic, A.; Manojlovic, V.; Komes, D.; Nedovic, V.; Bugarski, B. Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J. Sci. Food Agric., 2012, 92(3), 685-696.
[http://dx.doi.org/10.1002/jsfa.4632] [PMID: 21953367]
[61]
Ross, A.B.; Hall, C.; Anastasakis, K.; Westwood, A.; Jones, J.M.; Crewe, R.J. Influence of cation on the pyrolysis and oxidation of alginates. J. Anal. Appl. Pyrolysis, 2011, 91(2), 344-351.
[62]
Muhamad, I.I.; Abang Zaidel, D.N.; Hashim, Z.; Mohammad, N.A.; Abu Bakar, N.F. Improving the delivery system and bioavailability of beverages through nanoencapsulation, nanoengineering in the beverage industry. The Science of Beverages; Elsevier Inc., 2019, p. 20.
[63]
Pascoal, K.L.L.; Siqueira, S.M.C.; de Amorim, A.F.V.; Ricardo, N.M.P.S.; de Menezes, J.E.S.A.; da Silva, L.C.; de Araújo, T.G.; Almeida-Neto, F.W.Q.; Marinho, E.S.; de Morais, S.M.; Saraiva, G.D.; de Lima-Neto, P.; dos Santos, H.S.; Teixeira, A.M.R. Physical-chemical characterization, controlled release, and toxicological potential of galactomannan-bixin microparticles. J. Mol. Struct., 2021, 1239, 130499.
[64]
Sousa, R.C.; Carvalho, L.F.M.; Maia Filho, A.L.M.; Ferreira, D.C.L.; Amaral, F.P.M.; Mendes, L.M.S.; Viana, V.G.F. Characterization and assessment of the genotoxicity and biocompatibility of poly (hydroxybutyrate) and norbixin membranes. Acta Cir. Bras., 2020, 35(7), e202000706.
[http://dx.doi.org/10.1590/s0102-865020200070000006] [PMID: 32876084]
[65]
Pinzón-García, A.D.; Cassini-Vieira, P.; Ribeiro, C.C.; de Matos Jensen, C.E.; Barcelos, L.S.; Cortes, M.E.; Sinisterra, R.D. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(7), 1938-1949.
[http://dx.doi.org/10.1002/jbm.b.33724] [PMID: 27292445]
[66]
Zhang, Y.; Zhong, Q. Encapsulation of bixin in sodium caseinate to deliver the colorant in transparent dispersions. Food Hydrocoll., 2013, 33(1), 1-9.
[67]
Vallejo-Castillo, V.; Rodríguez-Stouvenel, A.; Martínez, R.; Bernal, C. Development of alginate-pectin microcapsules by the extrusion for encapsulation and controlled release of polyphenols from papaya (Carica papaya L.). J. Food Biochem., 2020, 44(9), e13331.
[http://dx.doi.org/10.1111/jfbc.13331] [PMID: 32597501]
[68]
Cardarelli, C.R.; Benassi, M.T.; Mercadante, A.Z. Characterization of different annatto extracts based on antioxidant and colour properties. Lebensm. Wiss. Technol., 2008, 41(9), 1689-1693.
[http://dx.doi.org/10.1016/j.lwt.2007.10.013]
[69]
Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem., 2011, 129(1), 139-148.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.045]
[70]
Krinsky, N.I. Carotenoid protection against oxidation. Pure Appl. Chem., 1979, 51(3), 649-660.
[http://dx.doi.org/10.1351/pac197951030649]
[71]
Khoo, H.; Prasad, K.N.; Kong, K.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables. Food Hydrocoll; Elsevier B.V., 2011, pp. 1710-1738.
[72]
Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 1989, 274(2), 532-538.
[http://dx.doi.org/10.1016/0003-9861(89)90467-0] [PMID: 2802626]
[73]
Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett., 1996, 384(3), 240-242.
[http://dx.doi.org/10.1016/0014-5793(96)00323-7] [PMID: 8617362]
[74]
Miranda, C.G.; dos Santos, P.D.F.; Silva, J.T. Influence of nanoencapsulated lutein on acetylcholinesterase activity: In vitro determination, kinetic parameters, and in silico docking simulations. Food Chem; Elsevier, 2020, 307, 125523.
[75]
de Oliveira, G.L.R.; Medeiros, I.; Nascimento, S.S. da C.; Viana, R.L.S.; Porto, D.L.; Rocha, H.A.O.; Aragão, C.F.S.; Maciel, B.L.L.; de Assis, C.F.; Morais, A.H. de A.; Passos, T.S. Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chem., 2020, 2021, 348.
[PMID: 33508595]
[76]
Guan, H.; Chi, D.; Yu, J.; Li, H. Encapsulated ecdysone by internal gelation of alginate microspheres for controlling its release and photostability. Chem. Eng. J., 2011, 168(1), 94-101.
[http://dx.doi.org/10.1016/j.cej.2010.12.040]
[77]
Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Optimisation, antioxidant attributes, stability and release behaviour of carboxymethyl cellulose films incorporated with nanoencapsulated vitamin E. Prog. Org. Coat., 2019, 134(April), 333-341.
[78]
Tavares, J.K.; de Souza, A.A.U.; de Oliveira, J.V.; Priamo, W.L.; de Souza, S.M.A.G.U. Modeling of the controlled release of betacarotene into anhydrous ethanol from microcapsules. OpenNano, 2016, 1, 25-35.
[http://dx.doi.org/10.1016/j.onano.2016.05.001]
[79]
Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57(2), 169-172.
[http://dx.doi.org/10.1016/0378-5173(89)90306-2]
[80]
Tanquary, A.C.; Lacey, R.E. Controlled release of biologically active drugs. Control. Rel. Biolog. Act. Agen., 1974, 1974.
[81]
Crank, J. The mathematics of diffusion; Clarendon Press, 1975.
[82]
Zhang, Z.; Zhang, R.; Chen, L.; Tong, Q.; McClements, D.J. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. Eur. Polym. J., 2015, 72, 698-716.
[83]
Monge Neto, A.Á.; Tomazini, L.F.; Mizuta, A.G.; Corrêa, R.C.G.; Madrona, G.S.; Faria de Moraes, F.; Peralta, R.M. Direct microencapsulation of an annatto extract by precipitation of psyllium husk mucilage polysaccharides. Food Hydrocoll., 2020, 2021, 112.
[84]
Koop, B.L.; da Silva, M.N.; da Silva, F.D.; Lima, K.T. dos S.; Santos Soares, L.; Andrade, C.J.; de Valencia, G.A. Monteiro, A.R. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int., 2022, 153(January)
[85]
Liu, H.; Zhang, Y.; Zhang, J.; Xiong, Y.; Peng, S.; McClements, D.J.; Zou, L.; Liang, R.; Liu, W. Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin. Food Hydrocoll; Elsevier Ltd, 2022, 124, 107329.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy