Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

General Research Article

Performance Analysis of Semi-refined Digital Forearm Modeling and Simplified Forearm Model in Electromagnetic Simulation

Author(s): Jiangming Kuang, Yuping Qin and Shuang Zhang*

Volume 18, Issue 9, 2024

Published on: 06 October, 2023

Article ID: e061023221835 Pages: 8

DOI: 10.2174/0118722121269816230926120046

Price: $65

Abstract

Objective: The objective of this patent study is to analyze the performance difference between simplified and digital models based on medical images.

Methods: According to the characteristics of human anatomy, the finite element simulation software COMSOL Multiphysics 5.5 was employed to construct a simplified arm model using cylinders and a digital arm model based on Chinese digital human regarding electroacupuncture therapy as an example. A comparative analysis was then performed considering three aspects: mesh number, potential distribution, and resource consumption.

Results: Through analysis, the digital arm model based on Chinese digital human requires significantly more mesh cells than the simplified arm model in mesh generation. Meanwhile, because the digital arm model based on the Chinese digital human fully expresses the nonuniformity of the tissue distribution in a real human body, its signal distribution in its interior is also relatively scattered, and the coupling potential slightly differs at the electrode vertex with the smallest change. In addition, the digital arm model has much higher resource consumption and computer hardware resource requirements compared with the simplified arm model.

Conclusion: As a result, the digital model based on the Chinese digital human can more fully express the tissue distribution and electrical signal characteristics of a real human body. However, due to its high computational requirements, appropriate simplification can be selected to improve the computational efficiency of the model in practical applications.

Graphical Abstract

[1]
M.C. Gosselin, E. Neufeld, H. Moser, E. Huber, S. Farcito, L. Gerber, M. Jedensjö, I. Hilber, F.D. Gennaro, B. Lloyd, E. Cherubini, D. Szczerba, W. Kainz, and N. Kuster, "Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0", Phys. Med. Biol., vol. 59, no. 18, pp. 5287-5303, 2014.
[http://dx.doi.org/10.1088/0031-9155/59/18/5287] [PMID: 25144615]
[2]
T. Wu, L. Tan, Q. Shao, C. Zhang, C. Zhao, Y. Li, E. Conil, A. Hadjem, J. Wiart, B. Lu, L. Xiao, N. Wang, Y. Xie, and S. Zhang, "Chinese adult anatomical models and the application in evaluation of RF exposures", Phys. Med. Biol., vol. 56, no. 7, pp. 2075-2089, 2011.
[http://dx.doi.org/10.1088/0031-9155/56/7/011] [PMID: 21386138]
[3]
M. Niculescu, O.S. Honțaru, G. Popescu, A.G. Sterian, and M. Dobra, "Challenges of integrating new technologies for orthopedic doctors to face up to difficulties during the pandemic era", Health care, vol. 11, no. 11, p. 1524, 2023.
[http://dx.doi.org/10.3390/healthcare11111524] [PMID: 37297666]
[4]
A. Klit, L. Konge, L.J. Nayahangan, and J. Hesselfeldt-Nielsen, "A national needs assessment to identify technical procedures in plastic surgery for simulation-based training", J. Plast. Surg. Hand Surg., vol. 57, no. 1-6, pp. 137-144, 2023.
[http://dx.doi.org/10.1080/2000656X.2021.2017945] [PMID: 35034555]
[5]
L. Harding, J. McFarlane, C.R. Honey, P.J. McDonald, and J. Illes, "Mapping the landscape of equitable access to advanced neurotechnologies in Canada", Can. J. Neurol. Sci., vol. 50, no. s1, pp. s17-s25, 2023.
[http://dx.doi.org/10.1017/cjn.2023.18] [PMID: 37160675]
[6]
C. Xu, H. Xiang, and L. Li, "Method for predicting temperature field simulation of high precision aluminum alloy welding joint, involves selecting transient solver, performing welding temperature field simulation calculation, and outputting calculation result", C.N. Patent 115238558.
[7]
M.S. Wegmueller, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, "Signal transmission by galvanic coupling through the human body", IEEE Trans. Instrum. Meas., vol. 59, no. 4, pp. 963-969, 2010.
[http://dx.doi.org/10.1109/TIM.2009.2031449]
[8]
Y. Song, Q. Hao, K. Zhang, M. Wang, Y. Chu, and B. Kang, "The simulation method of the galvanic coupling intra-body communication with different signal transmission paths", IEEE Trans. Instrum. Meas., vol. 60, no. 4, pp. 1257-1266, 2011.
[http://dx.doi.org/10.1109/TIM.2010.2087870]
[9]
H. Harkness, D. Cojocaru, D. Reece, H.H. Harkness, D.A. Reece, D.A. Reis, and D. Koyocarew, "Method for performing a finite element simulation, involves performing finite element simulation by determining multiple variations between primary finite element model and primary computer-aided design model", E.P. Patent 2887241.
[10]
A.F. Schrunder, S. Rodriguez, and A. Rusu, "A finite element analysis and circuit modelling methodology for studying electrical impedance myography of human limbs", IEEE Trans. Biomed. Eng., vol. 69, no. 1, pp. 244-255, 2022.
[http://dx.doi.org/10.1109/TBME.2021.3091884] [PMID: 34161236]
[11]
Z. Wei, Y. Gao, Z. Chen, S.H. Pun, M.I. Vai, and M. Du, "A visible human data-based whole-body model for investigating the transmission attenuation of intrabody communication", IEEE Trans. Microw. Theory Tech., vol. 70, no. 8, pp. 3827-3837, 2022.
[http://dx.doi.org/10.1109/TMTT.2022.3182404]
[12]
S.N. Makarov, G.M. Noetscher, J. Yanamadala, M.W. Piazza, S. Louie, A. Prokop, A. Nazarian, and A. Nummenmaa, "Virtual human models for electromagnetic studies and their applications", IEEE Rev. Biomed. Eng., vol. 10, pp. 95-121, 2017.
[http://dx.doi.org/10.1109/RBME.2017.2722420] [PMID: 28682265]
[13]
L.S. Wilk, G.J. Edelman, M. Roos, M. Clerkx, I. Dijkman, J.V. Melgar, R.J. Oostra, and M.C.G. Aalders, "Individualised and non-contact post-mortem interval determination of human bodies using visible and thermal 3D imaging", Nat. Commun., vol. 12, no. 1, p. 5997, 2021.
[http://dx.doi.org/10.1038/s41467-021-26318-4] [PMID: 34650046]
[14]
J. Li, Y. Dong, J.H. Park, and J. Yoo, "Body-coupled power transmission and energy harvesting", Nat. Electron., vol. 4, no. 7, pp. 530-538, 2021.
[http://dx.doi.org/10.1038/s41928-021-00592-y]
[15]
C. Gabriel, S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey", Phys. Med. Biol., vol. 41, no. 11, pp. 2231-2249, 1996.
[http://dx.doi.org/10.1088/0031-9155/41/11/001] [PMID: 8938024]
[16]
S. Gabriel, R.W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz", Phys. Med. Biol., vol. 41, no. 11, pp. 2251-2269, 1996.
[http://dx.doi.org/10.1088/0031-9155/41/11/002] [PMID: 8938025]
[17]
R. Plonsey, and D.B. Heppner, "Considerations of quasi-stationarity in electrophysiological systems", Bull. Math. Biophys., vol. 29, no. 4, pp. 657-664, 1967.
[http://dx.doi.org/10.1007/BF02476917] [PMID: 5582145]
[18]
H. Seo, H.I. Kim, and S.C. Jun, "The effect of a transcranial channel as a skull/brain interface in high-definition transcranial direct current stimulation—A computational study", Sci. Rep., vol. 7, no. 1, p. 40612, 2017.
[http://dx.doi.org/10.1038/srep40612] [PMID: 28084429]
[19]
S. Zhang, "Experimental verifications of low frequency path gain (PG) channel modeling for implantable medical device (IMD)", IEEE Access, pp. 11934-11945, 2019.
[20]
S. Zhang, "Experimental verification of human-limb channel modeling for muscular-tissue characteristics", IEEE Access, vol. 9, pp. 122769-122783, 2019.
[21]
J. Zhu, K.M. Wang, S. Li, H.Y. Liu, X. Jing, X.F. Li, and Y.H. Liu, "Modeling and analysis of visual digital impact model for a Chinese human thorax", Technol. Health Care, vol. 25, no. 2, pp. 311-318, 2017.
[http://dx.doi.org/10.3233/THC-161267] [PMID: 27792021]
[22]
X.F. Li, J.M. Kuang, S.B. Nie, J. Xu, J. Zhu, and Y.H. Liu, "A numerical model for blast injury of human thorax based on digitized visible human", Technol. Health Care, vol. 25, no. 6, pp. 1029-1039, 2017.
[http://dx.doi.org/10.3233/THC-170885] [PMID: 28759981]
[23]
K.A. Danelson, and J.D. Stitzel, "Finite element model prediction of pulmonary contusion in vehicle-to-vehicle simulations of real-world crashes", Traffic Inj. Prev., vol. 16, no. 6, pp. 627-636, 2015.
[http://dx.doi.org/10.1080/15389588.2014.995266] [PMID: 25569549]
[24]
M.J. Ackerman, "The visible human project: From body to bits", IEEE Pulse, vol. 8, no. 4, pp. 39-41, 2017.
[http://dx.doi.org/10.1109/MPUL.2017.2701221] [PMID: 28715313]
[25]
The Virtual Population, High-resolution anatomical models for computational life sciences., Davos, Switzerland, 2016.
[26]
A.A. Almazroi, E.A. Aldhahri, M.A. Al-Shareeda, and S. Manickam, "ECA-VFog: An efficient certificateless authentication scheme for 5G-assisted vehicular fog computing", PLoS One, vol. 18, no. 6, p. e0287291, 2023.
[http://dx.doi.org/10.1371/journal.pone.0287291] [PMID: 37352258]
[27]
B.A. Mohammed, M.A. Al-Shareeda, S. Manickam, Z.G. Al-Mekhlafi, A.M. Alayba, and A.A. Sallam, "ANAA-Fog: A novel anonymous authentication scheme for 5G-enabled vehicular fog computing", Mathematics, vol. 11, no. 6, p. 1446, 2023.
[http://dx.doi.org/10.3390/math11061446]
[28]
Z.G. Al-Mekhlafi, M.A. Al-Shareeda, S. Manickam, B.A. Mohammed, A. Alreshidi, M. Alazmi, J.S. Alshudukhi, M. Alsaffar, and A. Alsewari, "Chebyshev polynomial-based fog computing scheme supporting pseudonym revocation for 5G-enabled vehicular networks", Electronics , vol. 12, no. 4, p. 872, 2023.
[http://dx.doi.org/10.3390/electronics12040872]
[29]
Z.G. Al-Mekhlafi, M.A. Al-Shareeda, S. Manickam, B.A. Mohammed, A. Alreshidi, M. Alazmi, J.S. Alshudukhi, M. Alsaffar, and T.H. Rassem, "Efficient authentication scheme for 5G-enabled vehicular networks using fog computing", Sensors , vol. 23, no. 7, p. 3543, 2023.
[http://dx.doi.org/10.3390/s23073543] [PMID: 37050601]
[30]
B.A. Mohammed, M.A. Al-Shareeda, S. Manickam, Z.G. Al-Mekhlafi, A. Alreshidi, M. Alazmi, J.S. Alshudukhi, and M. Alsaffar, "FC-PA: Fog computing-based pseudonym authentication scheme in 5G-enabled vehicular networks", IEEE Access, vol. 11, pp. 18571-18581, 2023.
[http://dx.doi.org/10.1109/ACCESS.2023.3247222]
[31]
S. Zhang, J. Wang, Y. Yu, L. Wu, and T. Zhang, "Chinese digital arm (CDA): A high-precision digital arm for electrical stimulation simulation", Bioengineering , vol. 10, no. 3, p. 374, 2023.
[http://dx.doi.org/10.3390/bioengineering10030374] [PMID: 36978765]
[32]
A. Sadeh, A. Kazemi, M. Bahramkhoo, and M. Barzegar Gerdroodbary, "Computational study of blood flow inside MCA aneurysm with/without endovascular coiling", Sci. Rep., vol. 13, no. 1, p. 4560, 2023.
[http://dx.doi.org/10.1038/s41598-023-31522-x] [PMID: 36941293]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy