Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Research Article

The New Kernel-based Multiple Instances Learning Algorithm for Object Tracking

In Press, (this is not the final "Version of Record"). Available online 06 October, 2023
Author(s): Hua Zhang and Lijia Wang*
Published on: 06 October, 2023

Article ID: e061023221824

DOI: 10.2174/0118722121236196230925114428

Price: $95

Abstract

Background: Visual tracking is a crucial component of computer vision systems.

Objective: To deal with the problems of occlusion, pose variation, and illumination in long-time tracking, we propose a new kernel-based multiple instances learning tracker.

Method: The tracker captures five positive bags, including the occlusion bag, pose bag, illumination bag, scale bag, and object bag, to deal with the appearance changes of an object in a complex environment. A Gaussian kernel function is used to compute the inner product for selecting the powerful weak classifiers, which further improves the efficiency of the tracker. Moreover, the tracking situation is determined by using these five classifiers, and the correlating classifiers are updated.

Results: The experimental results show that the proposed algorithm is robust in terms of occlusion and various appearance changes.

Conclusion: The proposed algorithm preforms well in complex situations.

[1]
Y. Bin, Y. Jiang, and S. Peize, “Towards grand unification of object tracking”, ECCV., 2022. Available from: https://arXiv.org/abs/220707078
[2]
J. Gao, H. Ling, W. Hu, and J. Xing, "Transfer learning based visual tracking with Gaussian processes regression", In: D. Fleet, T. Pajdla, B. Schiele and , T. Tuytelaars, Eds., Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8691. Springer: Cham, 2014.
[http://dx.doi.org/10.1007/978-3-319-10578-9_13]
[3]
C. Zedu, Z.H. Bineng, L. Guorong, G. Zhang, and R. Ji, Siamese box adaptive network for visual tracking., Axriv., 2020. Available from https://arXiv.org/abs/2003.06761
[4]
C. Rui, P. Martins, and J. Batista, "Exploiting the circulant structure of tracking-by-detection with kernels", In European Conference on Computer Vision, 2012.
[5]
N.Y. Wang, J.P. Shi, D.Y. Yeung, and J.Y. Jia, "Understanding and diagnosing visual tracking systems", 2015 IEEE International Conference on Computer Vision (ICCV) 2015pp, pp. 3101-3109, .
Santiago, Chile [http://dx.doi.org/10.1109/ICCV.2015.355]
[6]
T. Ojala, M. Pietikainen, and T. MAenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, 2002.
[http://dx.doi.org/10.1109/TPAMI.2002.1017623]
[7]
K. Zhang, L. Zhang, and M.H. Yang, "Real-time compressive tracking", In: A. Fitzgibbon, S. Lazebnik, Y. Sato, C. Schmid and , P. Perona, Eds., Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, Springer: Berlin, Heidelberg, 2012.
[http://dx.doi.org/10.1007/978-3-642-33712-3_62]
[8]
Z Cao, C Fu, J Ye, B Li, and Y Li, “SiamAPN++: Siamese attentional aggregation network for real-time UAV tracking”, arXiv., 2021. Available from https://arXiv.org/abs/2106.08816
[9]
Z. Dong, G. Li, Y. Liao, F. Wang, P. Ren, and C. Qian, “CentripetalNet: Pursuing high-quality keypoint pairs for object detection”, arXiv., 2020. Available from: https://arXiv.org/abs/2003.09119
[10]
G. Li, X. Chen, M. Li, W. Li, S. Li, G. Guo, H. Wang, and H. Deng, "One-shot multi-object tracking using CNN-based networks with spatial-channel attention mechanism", Opt. Laser Technol., vol. 153, p. 108267, 2022.
[http://dx.doi.org/10.1016/j.optlastec.2022.108267]
[11]
F. Zhang, S. Ma, Y. Zhang, and Z. Qiu, "Perceiving temporal environment for correlation filters in real-time UAV tracking", IEEE Signal Process. Lett., vol. 29, pp. 6-10, 2022.
[http://dx.doi.org/10.1109/LSP.2021.3120943]
[12]
J.F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-speed tracking with kernelized correlation filters", IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583-596, 2015.
[http://dx.doi.org/10.1109/TPAMI.2014.2345390] [PMID: 26353263]
[13]
M. Danelljan, G. Hager, F.S. Khan, and M. Felsberg, "Discriminative scale space tracking", IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1561-1575, 2017.
[http://dx.doi.org/10.1109/TPAMI.2016.2609928] [PMID: 27654137]
[14]
J. Ning, J. Yang, and S. Jiang, "Object tracking via dual linear structured svm and explicit feature map, computer vision and pattern recognition", 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016pp., pp. 4266-4274, .
Las Vegas, NV, USA [http://dx.doi.org/10.1109/CVPR.2016.462]
[15]
H. Grabner, M. Grabner, and H. Bischof, "Real-time tracking via online boosting", In: C. Chantler, B. Fisher and , M. Trucco, Eds., Proceedings of the british machine conference, BMVA Press, 2006, pp. 6.1-6.10.
[http://dx.doi.org/10.5244/C.20.6]
[16]
H. Grabner, C. Leistner, and H. Bischof, Semi-supervised on-line boosting for robust tracking, European conference on computer vision D. Forsyth, P. Torr, and A. Zisserman, Eds. Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science., Springer-Verlag: Berlin, Heidelberg, 2008, pp. 234-247.
[17]
S. Hare, A. Saffari, and P.H.S. Torr, Struck: Structured output tracking with kernels IEEE International Conference on Computer Vision, 2012, pp. 263-270.
[18]
P. Viola, J.C. Platt, and C. Zhang, "Multiple instance boosting for object detection", In: Y. Weiss, B. Sch and , J. Platt, Eds., Multiple Instance Boosting for Object Detection., vol. 18. MIT Press, 2005.
[19]
B. Babenko, Ming-Hsuan. Yang, and S. Belongie, "Robust object tracking with online multiple instance learning", IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1619-1632, 2011.
[http://dx.doi.org/10.1109/TPAMI.2010.226] [PMID: 21173445]
[20]
K. Zhang, and H. Song, "Real-time visual tracking via online weighted multiple instance learning", Pattern Recognit., vol. 46, no. 1, pp. 397-411, 2013.
[http://dx.doi.org/10.1016/j.patcog.2012.07.013]
[21]
C. Xu, W. Tao, Z. Meng, and Z. Feng, "Robust visual tracking via online multiple instance learning with Fisher information", Pattern Recognit., vol. 48, no. 12, pp. 3917-3926, 2015.
[http://dx.doi.org/10.1016/j.patcog.2015.06.004]
[22]
J. Liu, Y. Lu, and T. Zhou, “Instance significance guided multiple instance boosting for robust visual tracking”, arXiv., 2015. Available from: https://arXiv.org/abs./1501.04378
[23]
T. Han, L. Wang, and B. Wen, "The kernel based multiple instances learning algorithm for object tracking", Electronics (Basel), vol. 7, no. 6, p. 97, 2018.
[http://dx.doi.org/10.3390/electronics7060097]
[24]
K. Li, F. He, H. Yu, and X. Chen, "A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning", Front. Comput. Sci., vol. 13, no. 5, pp. 1116-1135, 2019.
[http://dx.doi.org/10.1007/s11704-018-6442-4]
[25]
H. Zhang, and L.J. Wang, "Object Tracking with the multi-templates regression model based MS algorithm", J Inform Process Syst, vol. 14, no. 6, pp. 1307-1317, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy