Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Cancer Stem Cells and Treatment of Cancer: An Update and Future Perspectives

Author(s): Mudassir Khan, Mashal Naeem, Sana Aftab Chaudary, Affan Ahmed and Aftab Ahmed*

Volume 19, Issue 10, 2024

Published on: 05 October, 2023

Page: [1312 - 1320] Pages: 9

DOI: 10.2174/011574888X247548230921063514

Price: $65

Abstract

Cancer stem cells (CSCs) play an essential role in tumour progression and metastasis. Stem cell ability of self-renewal enables it to persist over time, thereby contributing to cancer relapse or recurrence and also resistance to current therapies. Therefore, targeting CSCs emerged as a promising strategy of cancer treatment. CSCs exhibit differentiation, self-renewal, and plasticity, they contribute to formation of malignant tumours, also favors, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Coventional cancer treatments predominantly target cancer cells that are not CSCs, CSCs frequently survive, eventually leading to relapse. This article focuses on the development of novel therapeutic strategies that combine conventional treatments and CSC inhibitors to eradicate cancer cells and CSCs, for the better and permanent treatment. However, the diversity of CSCs is a significant obstacle in the development of CSC-targeted therapies, necessitating extensive research for a better understanding and exploration of therapeutic approaches. Future development of CSC-targeted therapies will rely heavily on overcoming this obstacle.

[1]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[2]
Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574.
[http://dx.doi.org/10.1056/NEJM199705293362206] [PMID: 9164814]
[3]
Sonnenschein, C.; Soto, A.M. Theories of carcinogenesis: An emerging perspective. Semin. Cancer Biol., 2008, 18(5), 372-377.
[http://dx.doi.org/10.1016/j.semcancer.2008.03.012] [PMID: 18472276]
[4]
Baker, S.G.; Kramer, B.S. Paradoxes in carcinogenesis: New opportunities for research directions. BMC Cancer, 2007, 7(1), 151.
[http://dx.doi.org/10.1186/1471-2407-7-151] [PMID: 17683619]
[5]
Soto, A.M.; Sonnenschein, C. The somatic mutation theory of cancer: Growing problems with the paradigm? BioEssays, 2004, 26(10), 1097-1107.
[http://dx.doi.org/10.1002/bies.20087] [PMID: 15382143]
[6]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[7]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature., 2001, 414(6859), 105-111.
[8]
Marzagalli, M.; Fontana, F.; Raimondi, M.; Limonta, P. Cancer stem cells—Key players in tumor relapse. Cancers., 2021, 13(3), 376.
[http://dx.doi.org/10.3390/cancers13030376] [PMID: 33498502]
[9]
Li, Y.; Laterra, J. Cancer stem cells: Distinct entities or dynamically regulated phenotypes? Cancer Res., 2012, 72(3), 576-580.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3070] [PMID: 22298594]
[10]
Cruz, M.H.; Sidén, Å.; Calaf, G.M.; Delwar, Z.M.; Yakisich, J.S. The stemness phenotype model. ISRN Oncol., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/392647] [PMID: 22928120]
[11]
Vermeulen, L.; de Sousa e Melo, F.; Richel, D.J.; Medema, J.P. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol., 2012, 13(2), e83-e89.
[http://dx.doi.org/10.1016/S1470-2045(11)70257-1] [PMID: 22300863]
[12]
Kim, E.; Davidson, L.A.; Zoh, R.S.; Hensel, M.E.; Patil, B.S.; Jayaprakasha, G.K.; Callaway, E.S.; Allred, C.D.; Turner, N.D.; Weeks, B.R.; Chapkin, R.S. Homeostatic responses of colonic LGR5 + stem cells following acute in vivo exposure to a genotoxic carcinogen. Carcinogenesis, 2016, 37(2), 206-214.
[http://dx.doi.org/10.1093/carcin/bgv250] [PMID: 26717997]
[13]
Fayi, M.A.; Alamri, A.; Rajagopalan, P. IOX-101 Reverses drug resistance through suppression of Akt/mTOR/NF-κB signaling in cancer stem cell-like, sphere-forming NSCLC cell. Oncol. Res., 2020, 28(2), 177-189.
[http://dx.doi.org/10.3727/096504019X15746768080428] [PMID: 31771696]
[14]
Deng, J.; Bai, X.; Feng, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer, 2019, 19(1), 618.
[http://dx.doi.org/10.1186/s12885-019-5824-9] [PMID: 31234823]
[15]
Khan, P.; Bhattacharya, A.; Sengupta, D.; Banerjee, S.; Adhikary, A.; Das, T. Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci. Rep., 2019, 9(1), 16913.
[http://dx.doi.org/10.1038/s41598-019-53134-0] [PMID: 31729456]
[16]
Paramanantham, A.; Kim, M.J.; Jung, E.J.; Kim, H.J.; Chang, S.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, G.S.; Lee, W.S. Anthocyanins isolated from vitis coignetiae pulliat enhances cisplatin sensitivity in MCF-7 human breast cancer cells through inhibition of Akt and NF-κB activation. Molecules, 2020, 25(16), 3623.
[http://dx.doi.org/10.3390/molecules25163623] [PMID: 32784919]
[17]
Su, C.; Zhang, J.; Yarden, Y.; Fu, L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct. Target. Ther., 2021, 6(1), 109.
[http://dx.doi.org/10.1038/s41392-021-00499-2] [PMID: 33678805]
[18]
Martins-Neves, S.R.; Cleton-Jansen, A.M.; Gomes, C.M.F. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacol. Res., 2018, 137, 193-204.
[http://dx.doi.org/10.1016/j.phrs.2018.10.011] [PMID: 30316903]
[19]
Bae, J.H.; Park, S.H.; Yang, J.H.; Yang, K.; Yi, J.M. Stem cell-like gene expression signature identified in ionizing radiation-treated cancer cells. Gene, 2015, 572(2), 285-291.
[http://dx.doi.org/10.1016/j.gene.2015.08.005] [PMID: 26255092]
[20]
Najafi, M.; Mortezaee, K.; Ahadi, R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci., 2019, 231, 116520.
[http://dx.doi.org/10.1016/j.lfs.2019.05.076] [PMID: 31158379]
[21]
Tanei, T.; Morimoto, K.; Shimazu, K.; Kim, S.J.; Tanji, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin. Cancer Res., 2009, 15(12), 4234-4241.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1479] [PMID: 19509181]
[22]
van den Hoogen, C.; van der Horst, G.; Cheung, H.; Buijs, J.T.; Lippitt, J.M.; Guzmán-Ramírez, N.; Hamdy, F.C.; Eaton, C.L.; Thalmann, G.N.; Cecchini, M.G.; Pelger, R.C.M.; van der Pluijm, G. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res., 2010, 70(12), 5163-5173.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3806] [PMID: 20516116]
[23]
Singh, S.; Arcaroli, J.; Chen, Y.; Thompson, D.C.; Messersmith, W.; Jimeno, A.; Vasiliou, V. ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-catenin, Notch and PI3K/Akt signaling pathways. PLoS One, 2015, 10(5), e0121648.
[http://dx.doi.org/10.1371/journal.pone.0121648] [PMID: 25950950]
[24]
Sullivan, J.P.; Spinola, M.; Dodge, M.; Raso, M.G.; Behrens, C.; Gao, B.; Schuster, K.; Shao, C.; Larsen, J.E.; Sullivan, L.A.; Honorio, S.; Xie, Y.; Scaglioni, P.P.; DiMaio, J.M.; Gazdar, A.F.; Shay, J.W.; Wistuba, I.I.; Minna, J.D. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res., 2010, 70(23), 9937-9948.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0881] [PMID: 21118965]
[25]
Chefetz, I.; Grimley, E.; Yang, K.; Hong, L.; Vinogradova, E.V.; Suciu, R.; Kovalenko, I.; Karnak, D.; Morgan, C.A.; Chtcherbinine, M.; Buchman, C.; Huddle, B.; Barraza, S.; Morgan, M.; Bernstein, K.A.; Yoon, E.; Lombard, D.B.; Bild, A.; Mehta, G.; Romero, I.; Chiang, C.Y.; Landen, C.; Cravatt, B.; Hurley, T.D.; Larsen, S.D.; Buckanovich, R.J. A pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep., 2019, 26(11), 3061-3075.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.02.032] [PMID: 30865894]
[26]
Hirschmann-Jax, C.; Foster, A.E.; Wulf, G.G.; Nuchtern, J.G.; Jax, T.W.; Gobel, U.; Goodell, M.A.; Brenner, M.K. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci., 2004, 101(39), 14228-14233.
[http://dx.doi.org/10.1073/pnas.0400067101] [PMID: 15381773]
[27]
Nobili, S.; Lapucci, A.; Landini, I.; Coronnello, M.; Roviello, G.; Mini, E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin. Cancer Biol., 2020, 60, 72-95.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.006] [PMID: 31412294]
[28]
Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[29]
Lathia, J.; Liu, H.; Matei, D. The clinical impact of cancer stem cells. Oncologist, 2020, 25(2), 123-131.
[http://dx.doi.org/10.1634/theoncologist.2019-0517] [PMID: 32043793]
[30]
Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Reisz, J.A.; Culp-Hill, R.; Nemkov, T.; Pei, S.; Khan, N.; Adane, B.; Ye, H.; Krug, A.; Reinhold, D.; Smith, C.; DeGregori, J.; Pollyea, D.A.; Jordan, C.T. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell, 2018, 34(5), 724-740.e4.
[http://dx.doi.org/10.1016/j.ccell.2018.10.005] [PMID: 30423294]
[31]
Saraceni, A.F.D.C.F.; Olivieri, D.M.A.P.A. The Time has come for targeted therapies for AML: Lights and shadows. Oncol Ther., 2020, 8(1), 13-32.
[32]
Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J.D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell, 2019, 24(1), 25-40.
[http://dx.doi.org/10.1016/j.stem.2018.11.017] [PMID: 30595497]
[33]
Molina-Peña, R.; Tudon-Martinez, J.C.; Aquines-Gutiérrez, O. A mathematical model of average dynamics in a stem cell hierarchy suggests the combinatorial targeting of cancer stem cells and progenitor cells as a potential strategy against tumor growth. Cancers., 2020, 12(9), 2590.
[http://dx.doi.org/10.3390/cancers12092590] [PMID: 32932755]
[34]
Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer Stem Cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells, 2021, 10(3), 621.
[http://dx.doi.org/10.3390/cells10030621] [PMID: 33799798]
[35]
Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ., 2006, 13(7), 1238-1241.
[http://dx.doi.org/10.1038/sj.cdd.4401872] [PMID: 16456578]
[36]
Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[37]
DeSano, J.T.; Xu, L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J., 2009, 11(4), 682-692.
[http://dx.doi.org/10.1208/s12248-009-9147-7] [PMID: 19842044]
[38]
Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[39]
Gaston-Massuet, C.; Andoniadou, C.L.; Signore, M.; Jayakody, S.A.; Charolidi, N.; Kyeyune, R.; Vernay, B.; Jacques, T.S.; Taketo, M.M.; Le Tissier, P.; Dattani, M.T.; Martinez-Barbera, J.P. Increased Wingless ( Wnt ) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl. Acad. Sci., 2011, 108(28), 11482-11487.
[http://dx.doi.org/10.1073/pnas.1101553108] [PMID: 21636786]
[40]
Kawano, Y.; Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci., 2003, 116(13), 2627-2634.
[http://dx.doi.org/10.1242/jcs.00623] [PMID: 12775774]
[41]
Martinez, N.J.; Gregory, R.I. MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell, 2010, 7(1), 31-35.
[http://dx.doi.org/10.1016/j.stem.2010.06.011] [PMID: 20621047]
[42]
Marson, A.; Foreman, R.; Chevalier, B.; Bilodeau, S.; Kahn, M.; Young, R.A.; Jaenisch, R. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 2008, 3(2), 132-135.
[http://dx.doi.org/10.1016/j.stem.2008.06.019] [PMID: 18682236]
[43]
Qian, S.; Ding, J.; Xie, R.; An, J.; Ao, X.; Zhao, Z.; Sun, J.; Duan, Y.; Chen, Z.; Zhu, B. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem. Biophys. Res. Commun., 2008, 377(2), 668-673.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.052] [PMID: 18948085]
[44]
Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; Dirbas, F.M.; Somlo, G.; Pera, R.A.R.; Lao, K.; Clarke, M.F. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009, 138(3), 592-603.
[http://dx.doi.org/10.1016/j.cell.2009.07.011] [PMID: 19665978]
[45]
Greer Card, D.A.; Hebbar, P.B.; Li, L.; Trotter, K.W.; Komatsu, Y.; Mishina, Y.; Archer, T.K. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol., 2008, 28(20), 6426-6438.
[http://dx.doi.org/10.1128/MCB.00359-08] [PMID: 18710938]
[46]
Lin, S.L.; Chang, D.C.; Chang-Lin, S.; Lin, C.H.; Wu, D.T.S.; Chen, D.T.; Ying, S.Y. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008, 14(10), 2115-2124.
[http://dx.doi.org/10.1261/rna.1162708] [PMID: 18755840]
[47]
Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; Sun, Q.; Wang, K.; Ba, Y.; Wang, Q.; Wang, D.; Yang, J.; Liu, P.; Xu, T.; Yan, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, 39(1), 133-144.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[48]
Khaled, W.T.; Read, E.K.C.; Nicholson, S.E.; Baxter, F.O.; Brennan, A.J.; Came, P.J.; Sprigg, N.; McKenzie, A.N.J.; Watson, C.J. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development, 2007, 134(15), 2739-2750.
[http://dx.doi.org/10.1242/dev.003194] [PMID: 17611223]
[49]
Korkaya, H.; Liu, S.; Wicha, M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest., 2011, 121(10), 3804-3809.
[http://dx.doi.org/10.1172/JCI57099] [PMID: 21965337]
[50]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[51]
Voog, J.; Jones, D.L. Stem cells and the niche: A dynamic duo. Cell Stem Cell, 2010, 6(2), 103-115.
[http://dx.doi.org/10.1016/j.stem.2010.01.011] [PMID: 20144784]
[52]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[53]
Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol., 2019, 7, 16.
[http://dx.doi.org/10.3389/fcell.2019.00016] [PMID: 30834247]
[54]
Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 2020, 9(7), 1651.
[http://dx.doi.org/10.3390/cells9071651] [PMID: 32660072]
[55]
Park, C.Y.; Tseng, D.; Weissman, I.L. Cancer stem cell-directed therapies: Recent data from the laboratory and clinic. Mol. Ther., 2009, 17(2), 219-230.
[http://dx.doi.org/10.1038/mt.2008.254] [PMID: 19066601]
[56]
Beachy, P.A.; Karhadkar, S.S.; Berman, D.M. Tissue repair and stem cell renewal in carcinogenesis. Nature, 2004, 432(7015), 324-331.
[http://dx.doi.org/10.1038/nature03100] [PMID: 15549094]
[57]
Aramini, B.; Masciale, V.; Grisendi, G.; Bertolini, F.; Maur, M.; Guaitoli, G.; Chrystel, I.; Morandi, U.; Stella, F.; Dominici, M.; Haider, K.H. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers, 2022, 14(4), 976.
[http://dx.doi.org/10.3390/cancers14040976] [PMID: 35205721]
[58]
Alves, A.L.V.; Gomes, I.N.F.; Carloni, A.C.; Rosa, M.N.; da Silva, L.S.; Evangelista, A.F.; Reis, R.M.; Silva, V.A.O. Role of glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res. Ther., 2021, 12(1), 206.
[http://dx.doi.org/10.1186/s13287-021-02231-x] [PMID: 33762015]
[59]
Bhardwaj, A.; Arora, S.; Prajapati, V.; Singh, S.; Singh, A. Cancer “stemness”- regulating microRNAs: Role, mechanisms and therapeutic potential. Curr. Drug Targets, 2013, 14(10), 1175-1184.
[http://dx.doi.org/10.2174/13894501113149990190] [PMID: 23834145]
[60]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[61]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[62]
Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; Davis, I.D.; de Bono, J.S.; Evans, C.P.; Fizazi, K.; Joshua, A.M.; Kim, C.S.; Kimura, G.; Mainwaring, P.; Mansbach, H.; Miller, K.; Noonberg, S.B.; Perabo, F.; Phung, D.; Saad, F.; Scher, H.I.; Taplin, M.E.; Venner, P.M.; Tombal, B. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med., 2014, 371(5), 424-433.
[http://dx.doi.org/10.1056/NEJMoa1405095] [PMID: 24881730]
[63]
Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl. Cancer Inst., 2016, 108(7), djv439.
[http://dx.doi.org/10.1093/jnci/djv439] [PMID: 26819347]
[64]
Eggermont, A.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Nathan, P. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol., 2021, 22(5), 643-654.
[65]
Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; Robert, C.; Mortier, L.; Schachter, J.; Schadendorf, D.; Lesimple, T.; Plummer, R.; Ji, R.; Zhang, P.; Mookerjee, B.; Legos, J.; Kefford, R.; Dummer, R.; Kirkwood, J.M. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med., 2017, 377(19), 1813-1823.
[http://dx.doi.org/10.1056/NEJMoa1708539] [PMID: 28891408]
[66]
Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; Grob, J.J.; Butler, M.O.; Middleton, M.R.; Maio, M.; Atkinson, V.; Queirolo, P.; Gonzalez, R.; Kudchadkar, R.R.; Smylie, M.; Meyer, N.; Mortier, L.; Atkins, M.B.; Long, G.V.; Bhatia, S.; Lebbé, C.; Rutkowski, P.; Yokota, K.; Yamazaki, N.; Kim, T.M.; de Pril, V.; Sabater, J.; Qureshi, A.; Larkin, J.; Ascierto, P.A. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med., 2017, 377(19), 1824-1835.
[http://dx.doi.org/10.1056/NEJMoa1709030] [PMID: 28891423]
[67]
Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; Chiarion-Sileni, V.; Drucis, K.; Krajsova, I.; Hauschild, A.; Lorigan, P.; Wolter, P.; Long, G.V.; Flaherty, K.; Nathan, P.; Ribas, A.; Martin, A.M.; Sun, P.; Crist, W.; Legos, J.; Rubin, S.D.; Little, S.M.; Schadendorf, D. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med., 2015, 372(1), 30-39.
[http://dx.doi.org/10.1056/NEJMoa1412690] [PMID: 25399551]
[68]
Albertsen, P.C.; Hanley, J.A.; Fine, J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA, 2005, 293(17), 2095-2101.
[http://dx.doi.org/10.1001/jama.293.17.2095] [PMID: 15870412]
[69]
Lu-Yao, G.L.; Albertsen, P.C.; Moore, D.F.; Shih, W.; Lin, Y.; DiPaola, R.S.; Barry, M.J.; Zietman, A.; O’Leary, M.; Walker-Corkery, E.; Yao, S.L. Outcomes of localized prostate cancer following conservative management. JAMA, 2009, 302(11), 1202-1209.
[http://dx.doi.org/10.1001/jama.2009.1348] [PMID: 19755699]
[70]
Shappley, W.V., III; Kenfield, S.A.; Kasperzyk, J.L.; Qiu, W.; Stampfer, M.J.; Sanda, M.G.; Chan, J.M. Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J. Clin. Oncol., 2009, 27(30), 4980-4985.
[http://dx.doi.org/10.1200/JCO.2008.21.2613] [PMID: 19720918]
[71]
Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; Carles, J.; Mulders, P.F.A.; Basch, E.; Small, E.J.; Saad, F.; Schrijvers, D.; Van Poppel, H.; Mukherjee, S.D.; Suttmann, H.; Gerritsen, W.R.; Flaig, T.W.; George, D.J.; Yu, E.Y.; Efstathiou, E.; Pantuck, A.; Winquist, E.; Higano, C.S.; Taplin, M.E.; Park, Y.; Kheoh, T.; Griffin, T.; Scher, H.I.; Rathkopf, D.E. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med., 2013, 368(2), 138-148.
[http://dx.doi.org/10.1056/NEJMoa1209096] [PMID: 23228172]
[72]
Wells, S.A., Jr; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; Raue, F.; Frank-Raue, K.; Robinson, B.; Rosenthal, M.S.; Santoro, M.; Schlumberger, M.; Shah, M.; Waguespack, S.G. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid, 2015, 25(6), 567-610.
[http://dx.doi.org/10.1089/thy.2014.0335] [PMID: 25810047]
[73]
Tannock, I.F. Conventional cancer therapy: Promise broken or promise delayed? Lancet, 1998, 351(S2), SII9-SII16.
[http://dx.doi.org/10.1016/S0140-6736(98)90327-0] [PMID: 9606361]
[74]
Sordella, R.; Bell, D.W.; Haber, D.A.; Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004, 305(5687), 1163-1167.
[http://dx.doi.org/10.1126/science.1101637] [PMID: 15284455]
[75]
Arnedos, M.; Soria, J.C.; Andre, F.; Tursz, T. Personalized treatments of cancer patients: A reality in daily practice, a costly dream or a shared vision of the future from the oncology community? Cancer Treat. Rev., 2014, 40(10), 1192-1198.
[http://dx.doi.org/10.1016/j.ctrv.2014.07.002] [PMID: 25441102]
[76]
Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144(5), 646-674.
[77]
Andre, F.; Mardis, E.; Salm, M.; Soria, J.C.; Siu, L.L.; Swanton, C. Prioritizing targets for precision cancer medicine. Ann. Oncol., 2014, 25(12), 2295-2303.
[http://dx.doi.org/10.1093/annonc/mdu478] [PMID: 25344359]
[78]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy