Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Advancements in Autologous Stem Cell Transplantation for Parkinson’s Disease

Author(s): Jia-Xin Shi and Ke-Zhong Zhang*

Volume 19, Issue 10, 2024

Published on: 08 September, 2023

Page: [1321 - 1327] Pages: 7

DOI: 10.2174/1574888X19666230907112413

Price: $65

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disease marked by comparatively focal dopaminergic neuron degeneration in the substantia nigra of the midbrain and dopamine loss in the striatum, which causes motor and non-motor symptoms. Currently, pharmacological therapy and deep brain stimulation(DBS) are the primary treatment modalities for PD in clinical practice. While these approaches offer temporary symptom control, they do not address the underlying neurodegenerative process, and complications often arise. Stem cell replacement therapy is anticipated to prevent further progression of the disease due to its regenerative capacity, and considering the cost of immunosuppression and the potential immune dysfunctions, autologous stem cell transplantation holds promise as a significant method against allogeneic one to treat Parkinson's disease. In this review, the safety concerns surrounding tumorigenicity and complications associated with transplantation are discussed, along with methods utilized to evaluate the efficacy of such procedures. Subsequently, we summarize the preclinical and clinical studies involving autologous stem cell transplantation for PD, and finally talk about the benefits of autologous stem cell transplantation against allogeneic transplants.

[1]
McGregor, M.M.; Nelson, A.B. Circuit mechanisms of parkinson’s disease. Neuron, 2019, 101(6), 1042-1056.
[http://dx.doi.org/10.1016/j.neuron.2019.03.004] [PMID: 30897356]
[2]
Antonini, A.; Moro, E.; Godeiro, C.; Reichmann, H. Medical and surgical management of advanced Parkinson’s disease. Mov. Disord., 2018, 33(6), 900-908.
[http://dx.doi.org/10.1002/mds.27340] [PMID: 29570862]
[3]
Cury, R.G.; Pavese, N.; Aziz, T.Z.; Krauss, J.K.; Moro, E. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 8.
[http://dx.doi.org/10.1038/s41531-021-00276-6] [PMID: 35017551]
[4]
Hidding, U.; Gulberti, A.; Pflug, C. Modulation of specific components of sleep disturbances by simultaneous subthalamic and nigral stimulation in Parkinson’s disease. Parkinsonism Relat. Disord., 2019, 62, 141-147.
[http://dx.doi.org/10.1016/j.parkreldis.2018.12.026] [PMID: 30616868]
[5]
Tsui, A.; Isacson, O. Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in Parkinson’s disease. J. Neurol., 2011, 258(8), 1393-1405.
[http://dx.doi.org/10.1007/s00415-011-6061-6] [PMID: 21544566]
[6]
Parmar, M.; Grealish, S.; Henchcliffe, C. The future of stem cell therapies for Parkinson disease. Nat. Rev. Neurosci., 2020, 21(2), 103-115.
[http://dx.doi.org/10.1038/s41583-019-0257-7] [PMID: 31907406]
[7]
Osborn, T.M.; Hallett, P.J.; Schumacher, J.M.; Isacson, O. Advantages and recent developments of autologous cell therapy for parkinson’s disease patients. Front. Cell. Neurosci., 2020, 14, 58.
[http://dx.doi.org/10.3389/fncel.2020.00058] [PMID: 32317934]
[8]
Tao, Y.; Vermilyea, S.C.; Zammit, M. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat. Med., 2021, 27(4), 632-639.
[http://dx.doi.org/10.1038/s41591-021-01257-1] [PMID: 33649496]
[9]
Piao, J.; Zabierowski, S.; Dubose, B.N. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell, 2021, 28(2), 217-229.e7.
[http://dx.doi.org/10.1016/j.stem.2021.01.004] [PMID: 33545080]
[10]
Morizane, A.; Takahashi, J. Evading the immune system: Immune modulation and immune matching in cell replacement therapies for parkinson’s disease. J. Parkinsons Dis., 2021, 11(s2), S167-S172.
[http://dx.doi.org/10.3233/JPD-212608] [PMID: 34024783]
[11]
Yousefi, N.; Abdollahii, S.; Kouhbanani, M.A.J.; Hassanzadeh, A. Induced pluripotent stem cells (iPSCs) as game‐changing tools in the treatment of neurodegenerative disease: Mirage or reality? J. Cell. Physiol., 2020, 235(12), 9166-9184.
[http://dx.doi.org/10.1002/jcp.29800] [PMID: 32437029]
[12]
Fan, Y. Winanto, Ng SY. Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease. Transl. Neurodegener., 2020, 9(1), 2.
[http://dx.doi.org/10.1186/s40035-019-0180-x] [PMID: 31911835]
[13]
Shrigley, S.; Nilsson, F.; Mattsson, B. Grafts derived from an α-Synuclein triplication patient mediate functional recovery but develop disease-associated pathology in the 6-OHDA model of parkinson’s disease. J. Parkinsons Dis., 2021, 11(2), 515-528.
[http://dx.doi.org/10.3233/JPD-202366] [PMID: 33361611]
[14]
Schweitzer, J.S.; Song, B.; Herrington, T.M. Personalized iPSC-derived dopamine progenitor cells for parkinson’s disease. N. Engl. J. Med., 2020, 382(20), 1926-1932.
[http://dx.doi.org/10.1056/NEJMoa1915872] [PMID: 32402162]
[15]
Lanza, R.; Russell, D.W.; Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol., 2019, 19(12), 723-733.
[http://dx.doi.org/10.1038/s41577-019-0200-1] [PMID: 31417198]
[16]
Giehrl-Schwab, J.; Giesert, F.; Rauser, B. Parkinson’s disease motor symptoms rescue by CRISPRa‐reprogramming astrocytes into GABAergic neurons. EMBO Mol. Med., 2022, 14(5), e14797.
[http://dx.doi.org/10.15252/emmm.202114797] [PMID: 35373464]
[17]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[18]
Wang, H.; Yang, Y.; Liu, J.; Qian, L. Direct cell reprogramming: Approaches, mechanisms and progress. Nat. Rev. Mol. Cell Biol., 2021, 22(6), 410-424.
[http://dx.doi.org/10.1038/s41580-021-00335-z] [PMID: 33619373]
[19]
Zheng, W; Chen, Z Generation of induced neural stem cells from peripheral mononuclear cells and differentiation toward dopaminergic neuron precursors for transplantation studies. J Vis Exp, 2019, (149)
[http://dx.doi.org/10.3791/59690] [PMID: 31355797]
[20]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Mesenchymal stem cell therapy in Parkinson’s disease animal models. Curr. Res. Transl. Med., 2017, 65(2), 51-60.
[http://dx.doi.org/10.1016/j.retram.2016.10.007] [PMID: 28466824]
[21]
Alizadeh, R.; Ramezanpour, F.; Mohammadi, A. Differentiation of human olfactory system‐derived stem cells into dopaminergic neuron‐like cells: A comparison between olfactory bulb and mucosa as two sources of stem cells. J. Cell. Biochem., 2019, 120(12), 19712-19720.
[http://dx.doi.org/10.1002/jcb.29277] [PMID: 31297865]
[22]
Alizadeh, R.; Kamrava, S.K.; Bagher, Z. Human olfactory stem cells: As a promising source of dopaminergic neuron-like cells for treatment of Parkinson’s disease. Neurosci. Lett., 2019, 696, 52-59.
[http://dx.doi.org/10.1016/j.neulet.2018.12.011] [PMID: 30552942]
[23]
Alizadeh, R.; Bagher, Z.; Kamrava, S.K. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. J. Chem. Neuroanat., 2019, 96, 126-133.
[http://dx.doi.org/10.1016/j.jchemneu.2019.01.003] [PMID: 30639339]
[24]
Staff, N.P.; Jones, D.T.; Singer, W. Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin. Proc., 2019, 94(5), 892-905.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.001] [PMID: 31054608]
[25]
Venkataramana, N.K.; Kumar, S.K.V.; Balaraju, S. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res., 2010, 155(2), 62-70.
[http://dx.doi.org/10.1016/j.trsl.2009.07.006] [PMID: 20129486]
[26]
Zakerinia, M.; Kamgarpour, A.; Nemati, H. Intrathecal autologous bone marrow-derived hematopoietic stem cell therapy in neurological diseases. Int. J. Organ Transplant. Med., 2018, 9(4), 157-167.
[PMID: 30863518]
[27]
Boika, A.; Aleinikava, N.; Chyzhyk, V.; Zafranskaya, M.; Nizheharodava, D.; Ponomarev, V. Mesenchymal stem cells in Parkinson’s disease: Motor and nonmotor symptoms in the early posttransplant period. Surg. Neurol. Int., 2020, 11, 380.
[http://dx.doi.org/10.25259/SNI_233_2020] [PMID: 33408914]
[28]
Duma, C.; Kopyov, O.; Kopyov, A. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: Results of a 3-year phase 1 study of 113 injections in 31 patients. Mol. Biol. Rep., 2019, 46(5), 5257-5272.
[http://dx.doi.org/10.1007/s11033-019-04983-5]
[29]
Carstens, M.; Haq, I.; Martinez-Cerrato, J.; Dos-Anjos, S.; Bertram, K.; Correa, D. Sustained clinical improvement of Parkinson’s disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. J. Clin. Neurosci., 2020, 81, 47-51.
[http://dx.doi.org/10.1016/j.jocn.2020.09.001] [PMID: 33222965]
[30]
Shigematsu, K.; Komori, N.; Tahara, K.; Yamagishi, H. Repeated infusion of autologous adipose tissue‐derived stem cells for Parkinson’s disease. Acta Neurol. Scand., 2022, 145(1), 119-122.
[http://dx.doi.org/10.1111/ane.13547] [PMID: 34716582]
[31]
Henchcliffe, C.; Sarva, H. Restoring function to dopaminergic neurons: Progress in the development of cell-based therapies for parkinson’s disease. CNS Drugs, 2020, 34(6), 559-577.
[http://dx.doi.org/10.1007/s40263-020-00727-3] [PMID: 32472450]
[32]
Malat, G.; Culkin, C. The ABCs of immunosuppression. Med. Clin. North Am., 2016, 100(3), 505-518.
[http://dx.doi.org/10.1016/j.mcna.2016.01.003] [PMID: 27095642]
[33]
Takahashi, J. Preclinical evaluation of patient-derived cells shows promise for Parkinson’s disease. J. Clin. Invest., 2020, 130(2), 601-603.
[http://dx.doi.org/10.1172/JCI134031] [PMID: 31929191]
[34]
Kikuchi, T.; Morizane, A.; Doi, D. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature, 2017, 548(7669), 592-596.
[http://dx.doi.org/10.1038/nature23664] [PMID: 28858313]
[35]
Desgres, M.; Menasché, P. Clinical translation of pluripotent stem cell therapies: Challenges and considerations. Cell Stem Cell, 2019, 25(5), 594-606.
[http://dx.doi.org/10.1016/j.stem.2019.10.001] [PMID: 31703770]
[36]
Majhail, N.S.; Mau, L.W.; Denzen, E.M.; Arneson, T.J. Costs of autologous and allogeneic hematopoietic cell transplantation in the United States: A study using a large National Private Claims Database. Bone Marrow Transplant., 2013, 48(2), 294-300.
[http://dx.doi.org/10.1038/bmt.2012.133] [PMID: 22773126]
[37]
Fričová, D.; Korchak, J.A.; Zubair, A.C. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson’s disease. NPJ Regen. Med., 2020, 5(1), 20.
[http://dx.doi.org/10.1038/s41536-020-00106-y] [PMID: 33298940]
[38]
Yamanaka, S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 2012, 10(6), 678-684.
[http://dx.doi.org/10.1016/j.stem.2012.05.005] [PMID: 22704507]
[39]
Tiklová, K.; Björklund, Å.K.; Lahti, L. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun., 2019, 10(1), 581.
[http://dx.doi.org/10.1038/s41467-019-08453-1] [PMID: 30718509]
[40]
Liu, K.; Ji, K.; Guo, L. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res., 2014, 92, 10-18.
[http://dx.doi.org/10.1016/j.mvr.2014.01.008] [PMID: 24486322]
[41]
Guo, X.; Tang, L.; Tang, X. Current developments in cell replacement therapy for parkinson’s disease. Neuroscience, 2021, 463, 370-382.
[http://dx.doi.org/10.1016/j.neuroscience.2021.03.022] [PMID: 33774124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy