Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Review Article

Deciphering the Role of Various Signaling Pathways in the Pathophysiology of Depression

Author(s): Etash Vashisht, Vishal Vats, Ravinder Verma, Jatin Parashar, Vandana Garg, Rohit Dutt, Vineet Mittal, Govind Singh and Deepak Kaushik*

Volume 18, Issue 3, 2023

Published on: 05 October, 2023

Article ID: e051023221775 Pages: 11

DOI: 10.2174/0115743624255521230920070219

Price: $65

Abstract

Background: Depression is one of the leading causes of disability around the globe. In the early years of depression, it is hypothesized that neurotransmitters have a major or dominant role in depression pathophysiology. The roles of different parts of the brain and neurotransmitters have emerged at different intervals of time, and various hypotheses beyond monoamines have arisen. In this review, numerous theories that have been proposed in the last 60 years are covered based on the literature.

Methodology: This review was prepared with literature and data presented from different databases including PubMed, Frontier in Pharmacology, Elsevier, Journal of Depression and Anxiety, etc.

Results: The different hypotheses of depression have been presented in different eras. Each hypothesis of depression tries to explore different aspects of depression, which shifts the pathogenesis of depression approaches towards bio-molecule and genetic roles.

Conclusion: The pathophysiology of depression is very complex. None of the hypotheses alone can explain the pathophysiology of depression. All of these hypotheses are interconnected with each other. Through these hypotheses, it can be concluded that neuro-inflammation can be the base of depression and by reducing this factor we can overcome this problem.

Graphical Abstract

[1]
Walia V, Kaushik D, Mittal V, et al. Delineation of neuroprotective effects and possible benefits of antioxidants therapy for the treatment of alzheimer’s diseases by targeting mitochondrial-derived reactive oxygen species: Bench to bedside. Mol Neurobiol 2022; 59(1): 657-80.
[http://dx.doi.org/10.1007/s12035-021-02617-1] [PMID: 34751889]
[2]
Aboul-Fotouh S. Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: Prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology 2015; 232(6): 1095-105.
[http://dx.doi.org/10.1007/s00213-014-3745-5] [PMID: 25315361]
[3]
Fekadu N, Shibeshi W, Engidawork E. Major depressive disorder: Pathophysiology and clinical management. J Depress Anxiety 2017; 6(1): 1-7.
[http://dx.doi.org/10.4172/2167-1044.1000255]
[4]
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J Neuroinflammation 2014; 11: 98.
[5]
Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2017; 10: 174.
[http://dx.doi.org/10.3389/fnmol.2017.00174] [PMID: 28620280]
[6]
Bansal Y, Singh R, Parhar I, Kuhad A, Soga T. Quinolinic acid and nuclear factor erythroid 2-related factor 2 in depression: Role in neu-roprogression. Front Pharmacol 2019; 10: 452.
[http://dx.doi.org/10.3389/fphar.2019.00452] [PMID: 31164818]
[7]
Brietzke E, Stertz L, Fernandes BS, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord 2009; 116(3): 214-7.
[http://dx.doi.org/10.1016/j.jad.2008.12.001] [PMID: 19251324]
[8]
Czéh B, Lucassen PJ. What causes the hippocampal volume decrease in depression? Eur Arch Psychiatry Clin Neurosci 2007; 257(5): 250-60.
[http://dx.doi.org/10.1007/s00406-007-0728-0] [PMID: 17401728]
[9]
Nicolini AP, Sienaert P. Borderline personality disorder and outcome of electroconvulsive therapy in patients with depression: A system-atic review. J ECT 2023; 39(2): 74-80.
[http://dx.doi.org/10.1097/YCT.0000000000000900] [PMID: 36821825]
[10]
Dehlaghi Jadid K, Davidsson J, Lidin E, et al. COX-2 inhibition by diclofenac is associated with decreased apoptosis and lesion area after experimental focal penetrating traumatic brain injury in rats. Front Neurol 2019; 10: 811.
[http://dx.doi.org/10.3389/fneur.2019.00811] [PMID: 31417487]
[11]
Leighton SP, Nerurkar L, Krishnadas R, Johnman C, Graham GJ, Cavanagh J. Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Mol Psychiatry 2018; 23(1): 48-58.
[http://dx.doi.org/10.1038/mp.2017.205] [PMID: 29133955]
[12]
Duman CH. Models of depression. Vitam Horm 2010; 82(10): 1-21.
[PMID: 20472130]
[13]
Yirmiya R, Pollak Y, Morag M, et al. Illness, cytokines, and depression. Ann N Y Acad Sci 2000; 917(1): 478-87.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05412.x] [PMID: 11268375]
[14]
Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology 2011; 36(12): 2452-9.
[http://dx.doi.org/10.1038/npp.2011.132] [PMID: 21796103]
[15]
Schedlowski M, Engler H, Grigoleit JS. Endotoxin-induced experimental systemic inflammation in humans: A model to disentangle im-mune-to-brain communication. Brain Behav Immun 2014; 35: 1-8.
[http://dx.doi.org/10.1016/j.bbi.2013.09.015] [PMID: 24491305]
[16]
Engler H, Brendt P, Wischermann J, et al. Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: Association with depressive symptoms. Mol Psychiatry 2017; 22(10): 1448-54.
[http://dx.doi.org/10.1038/mp.2016.264] [PMID: 28138158]
[17]
Hasler G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry 2010; 9(3): 155-61.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[18]
Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J Affect Disord 2012; 141(2-3): 308-14.
[http://dx.doi.org/10.1016/j.jad.2012.03.033] [PMID: 22516310]
[19]
Kopschina Feltes P, Doorduin J, Klein HC, et al. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol 2017; 31(9): 1149-65.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[20]
Watson C, Kirkcaldie M, Paxinos G. Nerve cells and synapses. In: The Brain. Elsevier 2010; pp. 1-10.
[http://dx.doi.org/10.1016/B978-0-12-373889-9.50001-2]
[21]
Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011; 33(3-4): 199-209.
[http://dx.doi.org/10.1159/000328989] [PMID: 21757877]
[22]
Guo Y, Hong W, Wang X, et al. MicroRNAs in microglia: How do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci 2019; 12: 125.
[http://dx.doi.org/10.3389/fnmol.2019.00125] [PMID: 31133802]
[23]
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic brain injury. Front Aging Neurosci 2017; 9: 208.
[http://dx.doi.org/10.3389/fnagi.2017.00208] [PMID: 28701948]
[24]
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12(7): 388-99.
[http://dx.doi.org/10.1038/nrn3053] [PMID: 21673720]
[25]
Miller AH, Maletic V, Raison CL. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[26]
Shukuri M, Mawatari A, Ohno M, et al. Detection of cyclooxygenase-1 in activated microglia during amyloid plaque progression: PET studies in Alzheimer’s disease model mice. J Nucl Med 2016; 57(2): 291-6.
[http://dx.doi.org/10.2967/jnumed.115.166116] [PMID: 26585055]
[27]
Xue WZ, Yang QQ, Chen Y, et al. Kiwifruit alleviates learning and memory deficits induced by pb through antioxidation and inhibition of microglia activation in vitro and in vivo. Oxid Med Cell Longev 2017; 2017: 1-14.
[http://dx.doi.org/10.1155/2017/5645324] [PMID: 28386309]
[28]
Parrott JM, Redus L, Santana-Coelho D, Morales J, Gao X, O’Connor JC. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation. Transl Psychiatry 2016; 6(10): e918.
[http://dx.doi.org/10.1038/tp.2016.200] [PMID: 27754481]
[29]
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9(1): 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[30]
Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun 2016; 55: 105-13.
[http://dx.doi.org/10.1016/j.bbi.2015.09.016] [PMID: 26408795]
[31]
El-Sawy ER, Ebaid MS, Abo-Salem HM, Al-Sehemi AG, Mandour AH. Synthesis, anti-inflammatory, analgesic and anticonvulsant activi-ties of some new 4,6-dimethoxy-5-(heterocycles)benzofuran starting from naturally occurring visnagin. Arab J Chem 2014; 7(6): 914-23.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.041]
[32]
Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gulyaeva N. Rodent models of depression: Neurotrophic and neuroinflammatory biomarkers. BioMed Res Int 2014; 2014: 1-20.
[http://dx.doi.org/10.1155/2014/932757] [PMID: 24999483]
[33]
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 2019; 20(9): 2293.
[http://dx.doi.org/10.3390/ijms20092293] [PMID: 31075861]
[34]
Fernandes BS, Steiner J, Berk M, et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: Meta-analysis and implications. Mol Psychiatry 2015; 20(9): 1108-19.
[http://dx.doi.org/10.1038/mp.2014.117] [PMID: 25266124]
[35]
Vancassel S, Capuron L, Castanon N. Brain Kynurenine and BH4 Pathways: Relevance to the pathophysiology and treatment of inflamma-tion-driven depressive symptoms. Front Neurosci 2018; 12(1): 499.
[http://dx.doi.org/10.3389/fnins.2018.00499] [PMID: 30140200]
[36]
Xu Y, Li S, Chen R, et al. Antidepressant-like effect of low molecular proanthocyanidin in mice: Involvement of monoaminergic system. Pharmacol Biochem Behav 2010; 94(3): 447-53.
[http://dx.doi.org/10.1016/j.pbb.2009.10.007] [PMID: 19857512]
[37]
Schwarcz R, Stone TW. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017; 112((Pt B)): 237-47.
[38]
Sumi-Ichinose C, Urano F, Kuroda R, et al. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. A study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem 2001; 276(44): 41150-60.
[http://dx.doi.org/10.1074/jbc.M102237200] [PMID: 11517215]
[39]
Sarris J, Murphy J, Mischoulon D, et al. Adjunctive nutraceuticals for depression: A systematic review and meta-analyses. Am J Psychiatry 2016; 173(6): 575-87.
[http://dx.doi.org/10.1176/appi.ajp.2016.15091228] [PMID: 27113121]
[40]
Woodling NS, Colas D, Wang Q, et al. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 2016; 139(7): 2063-81.
[http://dx.doi.org/10.1093/brain/aww117] [PMID: 27190010]
[41]
Sil S, Ghosh T. Role of cox-2 mediated neuroinflammation on the neurodegeneration and cognitive impairments in colchicine induced rat model of Alzheimer’s Disease. J Neuroimmunol 2016; 291: 115-24.
[http://dx.doi.org/10.1016/j.jneuroim.2015.12.003] [PMID: 26857505]
[42]
Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15(3I): 1768-77.
[43]
Duman RS. Pathophysiology of depression: The concept of synaptic plasticity. Eur Psychiatry 2002; 17(S3): 306s-10s.
[http://dx.doi.org/10.1016/S0924-9338(02)00654-5] [PMID: 15177086]
[44]
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008; 33(1): 88-109.
[http://dx.doi.org/10.1038/sj.npp.1301574] [PMID: 17851537]
[45]
Duman RS, Aghajanian GK. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012; 338(6103): 68-72.
[http://dx.doi.org/10.1126/science.1222939] [PMID: 23042884]
[46]
Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 2002; 3(6): 453-62.
[http://dx.doi.org/10.1038/nrn849] [PMID: 12042880]
[47]
Xu L, Anwyl R, Rowan MJ. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 1997; 387(6632): 497-500.
[http://dx.doi.org/10.1038/387497a0] [PMID: 9168111]
[48]
Liu W, Ge T, Leng Y, et al. the role of neural plasticity in depression: From hippocampus to prefrontal cortex. Neural Plast 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/6871089] [PMID: 28246558]
[49]
Sheline YI. Depression and the hippocampus: Cause or effect? Biol Psychiatry 2011; 70(4): 308-9.
[http://dx.doi.org/10.1016/j.biopsych.2011.06.006] [PMID: 21791257]
[50]
MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal volumes are associated with remission rates in pa-tients with major depressive disorder. Biol Psychiatry 2008; 64(10): 880-3.
[http://dx.doi.org/10.1016/j.biopsych.2008.06.027] [PMID: 18722590]
[51]
Owen CM, Howard A, Binder DK. Hippocampus minor, calcar avis, and the Huxley-Owen debate. Neurosurgery 2009; 65(6): 1098-105.
[http://dx.doi.org/10.1227/01.NEU.0000359535.84445.0B] [PMID: 19934969]
[52]
Hosseinian S, Arefian E, Rakhsh-Khorshid H, et al. A meta-analysis of gene expression data highlights synaptic dysfunction in the hippo-campus of brains with Alzheimer’s disease. Sci Rep 2020; 10(1): 8384.
[http://dx.doi.org/10.1038/s41598-020-64452-z] [PMID: 32433480]
[53]
Huang X, Mao YS, Li C, Wang H, Ji JL. Venlafaxine inhibits apoptosis of hippocampal neurons by up-regulating brain-derived neu-rotrophic factor in a rat depression model. Int J Clin Exp Pathol 2014; 7(8): 4577-86.
[PMID: 25197330]
[54]
Djordjevic A, Djordjevic J, Elaković I, Adzic M, Matić G, Radojcic MB. Fluoxetine affects hippocampal plasticity, apoptosis and depres-sive-like behavior of chronically isolated rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36(1): 92-100.
[http://dx.doi.org/10.1016/j.pnpbp.2011.10.006] [PMID: 22019604]
[55]
Arora D, Bhatt S, Kumar M, et al. QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics. Front Aging Neurosci 2022; 14: 960246.
[http://dx.doi.org/10.3389/fnagi.2022.960246] [PMID: 36034142]
[56]
Treadway MT, Waskom ML, Dillon DG, et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 2015; 77(3): 285-94.
[http://dx.doi.org/10.1016/j.biopsych.2014.06.018] [PMID: 25109665]
[57]
Koenigs M, Grafman J. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 2009; 201(2): 239-43.
[http://dx.doi.org/10.1016/j.bbr.2009.03.004] [PMID: 19428640]
[58]
Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001; 24(1): 167-202.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.167] [PMID: 11283309]
[59]
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 2014; 121(8): 799-817.
[http://dx.doi.org/10.1007/s00702-014-1180-8] [PMID: 24578174]
[60]
Walker AG, Wenthur CJ, Xiang Z, et al. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proc Natl Acad Sci 2015; 112(4): 1196-201.
[http://dx.doi.org/10.1073/pnas.1416196112] [PMID: 25583490]
[61]
Kaut O, Schmitt I, Hofmann A, et al. Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur Arch Psychiatry Clin Neurosci 2015; 265(4): 331-41.
[http://dx.doi.org/10.1007/s00406-014-0572-y] [PMID: 25571874]
[62]
Wei YB, Melas PA, Villaescusa PJJL, Xu N, Christiansen SH. MicroRNA 101b is downregulated in the prefrontal cortex of a genetic model of depression and targets the glutamate transporter SLC1A1 (EAAT3) in vitro. Int J Neuropsychopharmacol 2016; 19(12): 30.
[http://dx.doi.org/10.1093/ijnp/pyw069]
[63]
Deutschenbaur L, Beck J, Kiyhankhadiv A, et al. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64: 325-.
[http://dx.doi.org/10.1016/j.pnpbp.2015.02.015]
[64]
Larrieu T, Hilal LM, Fourrier C, et al. Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion. Transl Psychiatry 2014; 4(9): e437.
[http://dx.doi.org/10.1038/tp.2014.77] [PMID: 25203168]
[65]
Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: Implications for dopamine-associated psychiatric disorders. Biol Psychiatry 2002; 51(10): 775-87.
[http://dx.doi.org/10.1016/S0006-3223(01)01362-2] [PMID: 12007451]
[66]
Dubey T, Sahu G, Kumari S, Yadav BS, Sahu AN. Role of herbal drugs on neurotransmitters for treating various CNS disorders: A review. Indian J Tradit Knowl 2018; 17(1): 113-21.
[67]
Know your brain: Amygdala - Neuroscientifically Challenged. Available from: https://www.neuroscientificallychallenged.com/blog/know-your-brain-amygdala
[68]
Xiang L, Szebeni K, Szebeni A, et al. Dopamine receptor gene expression in human amygdaloid nuclei: Elevated D4 receptor mRNA in major depression. Brain Res 2008; 1207: 214-24.
[http://dx.doi.org/10.1016/j.brainres.2008.02.009] [PMID: 18371940]
[69]
Lakshminarasimhan H, Chattarji S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocam-pus and amygdala. PLoS One 2012; 7(1): e30481.
[http://dx.doi.org/10.1371/journal.pone.0030481] [PMID: 22272355]
[70]
Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression: Possible implications for the pharmacotherapy of depres-sion. CNS Drugs 2011; 25(11): 913-31.
[http://dx.doi.org/10.2165/11595900-000000000-00000] [PMID: 22054117]
[71]
Darbinyan V, Aslanyan G, Amroyan E, Gabrielyan E, Malmström C, Panossian A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry 2007; 61(5): 343-8.
[http://dx.doi.org/10.1080/08039480701643290] [PMID: 17990195]
[72]
Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol 2009; 12(2): 143-53.
[http://dx.doi.org/10.1017/S1461145708008985] [PMID: 18570704]
[73]
Gardier AM. Antidepressant activity: Contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT trans-porter/5-HT autoreceptor interactions. Front Pharmacol 2013; 4: 98.
[http://dx.doi.org/10.3389/fphar.2013.00098] [PMID: 23964240]
[74]
Klein AB, Williamson R, Santini MA, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 2011; 14(3): 347-53.
[http://dx.doi.org/10.1017/S1461145710000738] [PMID: 20604989]
[75]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[76]
Kit SE. ChemiKine TM Brain Derived Neurotrophic Factor (BDNF). 2000. Available from: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/413/117/cyt306.pdf
[77]
Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression. CNS Drugs 2011; 25(11): 913-31.
[http://dx.doi.org/10.2165/11595900-000000000-00000] [PMID: 22054117]
[78]
Gerritsen L, Comijs HC, van der Graaf Y, Knoops AJG, Penninx BWJH, Geerlings MI. Depression, hypothalamic pituitary adrenal axis, and hippocampal and entorhinal cortex volumes--the SMART Medea study. Biol Psychiatry 2011; 70(4): 373-80.
[http://dx.doi.org/10.1016/j.biopsych.2011.01.029] [PMID: 21439552]
[79]
Harrer G, Sommer H. Treatment of mild/moderate depressions with Hypericum. Phytomedicine 1994; 1(1): 3-8.
[http://dx.doi.org/10.1016/S0944-7113(11)80016-4] [PMID: 23195809]
[80]
Overstreet DH, Wegener G. The flinders sensitive line rat model of depression--25 years and still producing. Pharmacol Rev 2013; 65(1): 143-55.
[http://dx.doi.org/10.1124/pr.111.005397] [PMID: 23319547]
[81]
Pace TWW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: Relevance to glucocorticoid resistance and the patho-physiology and treatment of major depression. Brain Behav Immun 2007; 21(1): 9-19.
[http://dx.doi.org/10.1016/j.bbi.2006.08.009] [PMID: 17070667]
[82]
Cooke JD, Grover LM, Spangler PR. Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience 2009; 162(4): 1411-9.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.037] [PMID: 19464349]
[83]
Cooke JD, Cavender HM, Lima HK, Grover LM. Antidepressants that inhibit both serotonin and norepinephrine reuptake impair long-term potentiation in hippocampus. Psychopharmacology 2014; 231(23): 4429-41.
[http://dx.doi.org/10.1007/s00213-014-3587-1] [PMID: 24781518]
[84]
Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 2006; 16(7): 916-28.
[http://dx.doi.org/10.1093/cercor/bhj043] [PMID: 16207933]
[85]
Hurley LL, Akinfiresoye L, Nwulia E, Kamiya A, Kulkarni AA, Tizabi Y. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav Brain Res 2013; 239(1): 27-30.
[http://dx.doi.org/10.1016/j.bbr.2012.10.049] [PMID: 23142609]
[86]
Fowler JS, Logan J, Shumay E, Alia-Klein N, Wang GJ, Volkow ND. Monoamine oxidase: Radiotracer chemistry and human studies. J Labelled Comp Radiopharm 2015; 58(3): 51-64.
[http://dx.doi.org/10.1002/jlcr.3247] [PMID: 25678277]
[87]
Meyer JH, Ginovart N, Boovariwala A, et al. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbal-ance of major depression. Arch Gen Psychiatry 2006; 63(11): 1209-16.
[http://dx.doi.org/10.1001/archpsyc.63.11.1209] [PMID: 17088501]
[88]
Samad N, Parveen T, Haider S, Haleem DJ. Attenuation of stress-induced behavioral deficits by Azadirachta indica (NEEM): Role of sero-tonin. Pak J Bot 2006; 38(1): 131-8.
[89]
Dadomo H, Sanghez V, Di Cristo L, et al. Vulnerability to chronic subordination stress-induced depression-like disorders in adult 129SvEv male mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(6): 1461-71.
[http://dx.doi.org/10.1016/j.pnpbp.2010.11.016] [PMID: 21093519]
[90]
Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology 2008; 201(3): 435-42.
[http://dx.doi.org/10.1007/s00213-008-1300-y] [PMID: 18766332]
[91]
Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology 2012; 62(1): 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036] [PMID: 21827775]
[92]
Kaur S, Singh R. Role of Different Neurotransmitters in anxiety: A systemic review. Int J Pharm Sci Res 2017; 8(2): 411.
[93]
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2018; 341: 79-90.
[http://dx.doi.org/10.1016/j.bbr.2017.12.025] [PMID: 29284108]
[94]
Morgan A, Kondev V, Bedse G, Baldi R, Marcus D, Patel S. Cyclooxygenase-2 inhibition reduces anxiety-like behavior and normalizes enhanced amygdala glutamatergic transmission following chronic oral corticosterone treatment. Neurobiol Stress 2019; 11(8): 100190.
[http://dx.doi.org/10.1016/j.ynstr.2019.100190] [PMID: 31467944]
[95]
Walker AJ, Burnett SA, Hasebe K, et al. Chronic adrenocorticotrophic hormone treatment alters tricyclic antidepressant efficacy and pre-frontal monoamine tissue levels. Behav Brain Res 2013; 242(1): 76-83.
[http://dx.doi.org/10.1016/j.bbr.2012.12.033] [PMID: 23276607]
[96]
Schneider T, Popik P. Increased depressive-like traits in an animal model of premenstrual irritability. Horm Behav 2007; 51(1): 142-8.
[http://dx.doi.org/10.1016/j.yhbeh.2006.09.006] [PMID: 17049520]
[97]
Di Stefano G, Casoli T, Fattoretti P, Gracciotti N, Solazzi M, Bertoni-Freddari C. Distribution of map2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem Cytochem 2001; 49(8): 1065-6.
[http://dx.doi.org/10.1177/002215540104900818] [PMID: 11457938]
[98]
Xu Y, Wang Z, You W, et al. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 2010; 20(6): 405-13.
[http://dx.doi.org/10.1016/j.euroneuro.2010.02.013] [PMID: 20353885]
[99]
Grosso C, Medicine T, Delivery ID. Herbal medicine in depression. Herbal Med in Depression 2016; 1(1): 1-10.
[100]
Fleming P, Roubille C, Richer V, et al. Effect of biologics on depressive symptoms in patients with psoriasis: A systematic review. J Eur Acad Dermatol Venereol 2015; 29(6): 1063-70.
[http://dx.doi.org/10.1111/jdv.12909] [PMID: 25490866]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy