Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Hydrothermally Synthesized Boletus Brucella-derived Carbon Quantum Dots as a Fluorescent Probe for the Detection of Vitamin B2

In Press, (this is not the final "Version of Record"). Available online 03 October, 2023
Author(s): Qiang Wan*, Rong Li*, Meiping Ren and Gang Ke
Published on: 03 October, 2023

DOI: 10.2174/0115734137259719230921065320

open access plus

Abstract

Background: In the paper, Boletus Brucella was used as carbon source material to prepare carbon dots (CDs) by one-step hydrothermal method. The CDs had high quantum yield and high photostability.

Methods: A range of characterization studies were conducted on CDs, and the results showed that the average particle size of CDs was 5 nm, emitting blue fluorescence. The optimal excitation wavelength was 337 nm, and the emission wavelength was 440 nm.

Results: Based on the static quenching, the fluorescence of CDs could be effectively quenched by VB2. Therefore, a highly sensitive and selective fluorescent probe for detecting VB2 was constructed. The CDs were successfully used to detect tablets, human blood, and urine.

Conclusion: The recovery rate of VB2 was 97.55~99.45%, and the relative standard deviation was 1.29~3.76 (n=3).

[1]
Gu, Y.; Huang, Y.; Qiu, Z.; Xu, Z.; Li, D.; Chen, L.; Jiang, J.; Gao, L. Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Sci. China Life Sci., 2020, 63(1), 68-79.
[http://dx.doi.org/10.1007/s11427-019-9590-6] [PMID: 31463739]
[2]
Lin, J.; Mei, Q.; Duan, Y.; Yu, C.; Ding, Y.; Li, L. A highly sensitive electrochemical sensor based on nanoflower-like MoS2-Ag-CNF nanocomposites for the detection of VB2. J. Nanopart. Res., 2020, 22(9), 274.
[http://dx.doi.org/10.1007/s11051-020-04998-1]
[3]
Su, X.; Liu, J.; Zhang, H.; Gu, Q.; Zhou, X.; Ji, M.; Yao, D. Lenvatinib promotes the antitumor effect of doxorubicin in anaplastic thyroid cancer. OncoTargets Ther., 2020, 13, 11183-11192.
[http://dx.doi.org/10.2147/OTT.S278349] [PMID: 33173310]
[4]
Hu, J.; Wang, R.; Fan, R.; Huang, Z.; Liu, Y.; Guo, G.; Fu, H. Enhanced luminescence in Yb3+ doped core-shell upconversion nanoparticles for sensitive doxorubicin detection. J. Lumin., 2020, 217, 116812.
[http://dx.doi.org/10.1016/j.jlumin.2019.116812]
[5]
Alizadeh, P.M.; Hasanzadeh, M.; Soleymani, J.; Gharamaleki, J.V.; Jouyban, A. Application of bioactive cyclic oligosaccharide on the detection of doxorubicin hydrochloride in unprocessed human plasma sample: A new platform towards efficient chemotherapy. Microchem. J., 2019, 145, 450-455.
[http://dx.doi.org/10.1016/j.microc.2018.11.012]
[6]
Tesfaye, G.; Negash, N.; Tessema, M. Sensitive and selective determination of vitamin B2 in non-alcoholic beverage and milk samples at poly (glutamic acid)/zinc oxide nanoparticles modified carbon paste electrode. BMC Chem., 2022, 16(1), 69.
[http://dx.doi.org/10.1186/s13065-022-00863-5] [PMID: 36117181]
[7]
Seiichi, Yamamoto Detection of luminescence from Vitamin B2 plate during alpha particle irradiation. JINST, 2022, 17, T11005.
[8]
Jindal, G.; Kaur, N. Uracil-appended fluorescent sensor for Cu2+ and Hg2+ ions: Real-life utilities including recognition of vitamin B2 (Riboflavin) in milk products and invisible ink applications. J. Fluoresc., 2022, 32(5), 1913-1919.
[http://dx.doi.org/10.1007/s10895-022-02994-3] [PMID: 35751749]
[9]
Meng, L.; Xia, Z.; Zhang, Y.; Tan, Y.; Yang, S. Nanosensor composed of N-doped carbon dots for highly selective detection of riboflavin. J. Appl. Spectrosc., 2023, 89(6), 1212-1219.
[http://dx.doi.org/10.1007/s10812-023-01488-9]
[10]
Du, F.F.; Cheng, Z.; Wang, G.H.; Li, M.; Dong, C. Carbon nanodots as a multifunctional fluorescent sensing plat-form for ratiometric determination of vitamin B2 and “Turn-off” detection of pH. J. Agric. Food. Chem., 2021, 69(9), 2836-2844.
[11]
Sharma, A.; Khosla, A.; Arya, S. Synthesis of SnO2 nanowires as a reusable and flexible electrode for electrochemical detection of riboflavin. Microchem. J., 2020, 156, 104858.
[12]
Hareesha, N.; Manjunatha, J.G. Elevated and rapid voltammetric sensing of riboflavin at poly(helianthin dye) blended carbon paste electrode with heterogeneous rate constant elucidation. J. Indian Chem. Soc., 2020, 17(6), 1507-1519.
[http://dx.doi.org/10.1007/s13738-020-01876-4]
[13]
Yang, X.; Gao, H.; Qian, F.; Zhao, C.; Liao, X. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J. Pharm. Biomed. Anal., 2016, 117, 118-124.
[http://dx.doi.org/10.1016/j.jpba.2015.08.037] [PMID: 26350558]
[14]
Isnaeni, I.; Suliyanti, M.M.; Shiddiq, M.; Sambudi, N.S. Optical properties of toluene-soluble carbon dots prepared from laserablated coconut fiber. Makara J. Sci., 2019, 23(4), 187-192.
[http://dx.doi.org/10.7454/mss.v23i4.10639]
[15]
Fu, L.; Yin, Y.; Cao, G.; Wu, P.; Wang, J.; Yan, L.; Zhang, B.; Li, M. A new sulfur-doped source and synergistic effect with nitrogen for carbon dots produced from glucose. Chin. Phys. B, 2019, 28(12), 128102.
[http://dx.doi.org/10.1088/1674-1056/ab5213]
[16]
Zhu, Y.; Li, G.; Li, W.; Luo, X.; Hu, Z.; Wu, F. Facile synthesis of efficient red-emissive carbon quantum dots as a multifunctional platform for biosensing and bioimaging. Dyes Pigments, 2023, 215, 111303.
[http://dx.doi.org/10.1016/j.dyepig.2023.111303]
[17]
Tu, Y.; Liu, Z.; Yuan, L.; Xiang, Y.; Song, F.; Jiang, L. Synthesis of fluorescent carbon quantum dots based on boletus speciosus and analysis of metronidazole. Curr. Nanosci., 2023, 19(5), 715-725.
[http://dx.doi.org/10.2174/1573413718666220901124531]
[18]
Zhao, S.; Yue, G.; Liu, X.; Qin, S.; Wang, B.; Zhao, P.; Ragauskas, A.J.; Wu, M.; Song, X. Lignin-based carbon quantum dots with high fluorescence performance prepared by supercritical catalysis and solvothermal treatment for tumor-targeted labeling. Adv. Compos. Hybrid Mater., 2023, 6(2), 73.
[http://dx.doi.org/10.1007/s42114-023-00645-0]
[19]
Pant, M.; Kumar, S.; Kiran, K.; Bisht, N.S.; Pande, V.; Dandapat, A. A universal green approach for the synthesis of NPS-codoped carbon quantum dots with enhanced broad-spectrum antibacterial and antioxidant activities. RSC Advances, 2023, 13(14), 9186-9194.
[http://dx.doi.org/10.1039/D2RA08103B] [PMID: 36950712]
[20]
Giordano, M.G.; Seganti, G.; Bartoli, M.; Tagliaferro, A. An overview on carbon quantum dots optical and chemical features. Molecules, 2023, 28(6), 2772.
[http://dx.doi.org/10.3390/molecules28062772] [PMID: 36985743]
[21]
Zhang, D.; Chao, D.; Yu, C.; Fu, Y.; Zhou, S.; Tian, L.; Zhou, L. One-pot synthesis of multicolor carbon quantum dots: One as pH sensor, one with ultra-narrow emission as fluorescent sensor for uric acid. Dyes Pigments, 2023, 213, 111201.
[http://dx.doi.org/10.1016/j.dyepig.2023.111201]
[22]
Dall Agnol, L.; Dias, F.T.G.; Bianchi, O. Photoactive coating based on waterborne polyurethane and carbon quantum dots as a prevention strategy for bacterial resistance. Prog. Org. Coat., 2023, 179, 107492.
[http://dx.doi.org/10.1016/j.porgcoat.2023.107492]
[23]
Yakusheva, A.; Aly-Eldeen, M.; Gusev, A.; Zakharova, O.; Kuznetsov, D. Cyan fluorescent carbon quantum dots with amino derivatives for the visual detection of copper (II) cations in sea water. Nanomaterials, 2023, 13(6), 1004.
[http://dx.doi.org/10.3390/nano13061004] [PMID: 36985898]
[24]
Guo, Y.; Wang, R.; Wei, C.; Li, Y.; Fang, T.; Tao, T. Carbon quantum dots for fluorescent detection of nitrite: A review. Food Chem., 2023, 415, 135749.
[http://dx.doi.org/10.1016/j.foodchem.2023.135749] [PMID: 36848836]
[25]
Tadesse, A.; Hagos, M.; RamaDevi, D.; Belachew, N.; Basavaiah, K. Correction to “fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: Green synthesis, Mercury(II) ion sensing, and live cell imaging”. ACS Omega, 2020, 5(11), 6228-6228.
[http://dx.doi.org/10.1021/acsomega.0c00832] [PMID: 32226909]
[26]
Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 2016, 10(1), 484-491.
[http://dx.doi.org/10.1021/acsnano.5b05406] [PMID: 26646584]
[27]
Hsu, P-C.; Chang, H-T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: Role of functional groups. Chem. Commun., 2012, 48(33), 3984-3986.
[http://dx.doi.org/10.1039/c2cc30188a]
[28]
Ay, U. Effect of heavy metals on dynamic and static quenching of the fluorescence of the host-guest inclusion complex Methyl-β-Cyclodextrin by 2,9-Dimethyl-4,7-Diphenyl-1,10-phenanthroline in aqueous media. J. Appl. Spectrosc., 2021, 88(4), 838-846.
[http://dx.doi.org/10.1007/s10812-021-01248-7]
[29]
Hou, Q.; Wang, T.; Zhou, J.; Zhou, X.; Hao, Q.; Qiao, J. The improvement of the plasticity of a Zr - Ni - Al bulk metallic glass by static quenching. Mater. Sci. Eng. A, 2022, 851, 143624.
[http://dx.doi.org/10.1016/j.msea.2022.143624]
[30]
Genovese, D.; Cingolani, M.; Rampazzo, E.; Prodi, L.; Zaccheroni, N. Static quenching upon adduct formation: A treatment without shortcuts and approximations. Chem. Soc. Rev., 2021, 50(15), 8414-8427.
[http://dx.doi.org/10.1039/D1CS00422K] [PMID: 34142693]
[31]
Yue, Q.; Hu, Y.; Tao, L.; Zhang, B.; Liu, C.; Wang, Y.; Chen, C.; Zhao, J.; Li, C.Z. Fluorometric sensing of pH values using green-emitting black phosphorus quantum dots. Mikrochim. Acta, 2019, 186(9), 640.
[http://dx.doi.org/10.1007/s00604-019-3768-z] [PMID: 31440852]
[32]
Gong, X.; Liu, Y.; Yang, Z.; Shuang, S.; Zhang, Z.; Dong, C. An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal. Chim. Acta, 2017, 968, 85-96.
[http://dx.doi.org/10.1016/j.aca.2017.02.038] [PMID: 28395778]
[33]
Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Mikrochim. Acta, 2017, 184(7), 1899-1914.
[http://dx.doi.org/10.1007/s00604-017-2318-9]

© 2025 Bentham Science Publishers | Privacy Policy