Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Role of S100 and YKL40 on Intraventricular Cerebral Hemorrhages in the Preterm Infant and the Neuroprotective Role of miR-138- siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 in Neonatal Mice with Nerve Injury

Author(s): Roghayeh Ijabi, Zachary A. Kaminsky, Parisa Roozehdar, Janat Ijabi*, Hemen Moradi-Sardareh and Najmeh Tehranian

Volume 31, Issue 34, 2024

Published on: 28 September, 2023

Page: [5638 - 5656] Pages: 19

DOI: 10.2174/0929867331666230915103147

Price: $65

Abstract

Background: Epilepsy and intraventricular-cerebral hemorrhage is a common complication irreversible in preterm infants. Inflammation leads to an increase in intracellular calcium, acidosis, and oxygen usage, and finally, may damage brain cells. Increases in HIF-1a and HVCN1 can reduce the complications of oxygen consumption and acidosis in infants with intraventricular hemorrhage (IVH). On the other hand, decreases in S100B can shield nerve cells from apoptosis and epilepsy by reducing brain damage.

Objective: In this research, we investigated how miR-138-siRNAs-HIF-1a and miR-21- siRNAs-HVCN1 affect apoptosis in hypoxic mice.

Methods: On the first and third days after delivery, the YKL40, HIF-1a, HVCN1, and S100b genes were compared between two groups of preterm infants with and without maternal inflammation. Afterward, the miRNAs were transfected into cell lines to monitor variations in YKL40, HIF-1a, HVCN1, and S100b gene expression and nerve cell apoptosis. We changed the expression of S100b, HVCN1, and HIF-1a genes by using specific siRNAs injected into mice. Using real-time PCR, Western blotting, flow cytometry (FCM), and immunofluorescence, and changes in gene expression were evaluated (IHC).

Results: HVCN1 gene expression showed a strong negative correlation with epilepsy in both groups of infants (Pβ0.001). Significant correlations between epilepsy and the expression levels of the S100b, YKL40, and HIF-1a genes were found (Pβ0.001). According to FCM, after transfecting miRNA-431 and miRNA-34a into cell lines, the apoptosis index (A.I.) were 41.6 3.3 and 34.5 5.2%, respectively, while the A.I. were 9.6 2.7 and 7.1 4.2% after transfecting miRNA-21 and miRNA-138. MiR-138-siRNAs-HIF-1a and miR-21-siRNAs-HVCN1 were simultaneously injected into hypoxic mice, and IHC double-labeling revealed that this reduced apoptosis and seizures compared to the hypoxic group.

Conclusion: Our findings demonstrate that miR-138-siRNAs-HIF-1a and miR-21-siRNAs- HVCN1 injections prevent cerebral ischemia-induced brain damage in hypoxia mice by increasing HVCN1 and HIF-1a and decreasing S100b, which in turn lessens apoptosis and epilepsy in hypoxic mice.

[1]
Kusters, C.D.J.; Chen, M.L.; Follett, P.L.; Dammann, O. “Intraventricular” hemorrhage and cystic periventricular leukomalacia in preterm infants: How are they related? J. Child Neurol., 2009, 24(9), 1158-1170.
[http://dx.doi.org/10.1177/0883073809338064] [PMID: 19745088]
[2]
Ijabi, R.; Roozehdar, P.; Afrisham, R.; Moradi-Sardareh, H.; Kaviani, S.; Ijabi, J.; Sahebkar, A. Association of GRP78, HIF-1α and BAG3 expression with the severity of chronic lymphocytic leukemia. Anticancer. Agents Med. Chem., 2020, 20(4), 429-436.
[http://dx.doi.org/10.2174/1871520619666191211101357]
[3]
Ijabi, J.; Afrisham, R.; Moradi-Sardareh, H.; Roozehdar, P.; Seifi, F.; Ijabi, R. The correlation of SKA2 with cortisol, IL-1β and anxiety in pregnant women with the risk of preterm delivery. Psychiatry Investig., 2020, 17(5), 387-394.
[http://dx.doi.org/10.30773/pi.2019.0127] [PMID: 32375462]
[4]
Ijabi, J.; Afrisham, R.; Moradi-Sardareh, H.; Roozehdar, P.; Seifi, F.; Sahebkar, A.; Ijabi, R. The Shift of HbF to HbA under influence of SKA2 gene; A possible link between cortisol and hematopoietic maturation in term and preterm newborns. Endocr. Metab. Immune. Disord. Drug Targets, 2021, 21(3), 485-494.
[http://dx.doi.org/10.2174/1871530320666200504091354]
[5]
Strober, J.B.; Bienkowski, R.S.; Maytal, J. The incidence of acute and remote seizures in children with intraventricular hemorrhage. Clin. Pediatr., 1997, 36(11), 643-647.
[http://dx.doi.org/10.1177/000992289703601105] [PMID: 9391738]
[6]
Wu, T.; Wang, Y.; Xiong, T.; Huang, S.; Tian, T.; Tang, J.; Mu, D. Risk factors for the deterioration of periventricular–intraventricular hemorrhage in preterm infants. Sci. Rep., 2020, 10(1), 13609.
[http://dx.doi.org/10.1038/s41598-020-70603-z] [PMID: 32788671]
[7]
Stark, M.J.; Hodyl, N.A.; Belegar V, K.K.; Andersen, C.C. Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns. Arch. Dis. Child. Fetal Neonatal Ed., 2016, 101(2), F137-F142.
[http://dx.doi.org/10.1136/archdischild-2014-306945] [PMID: 26265677]
[8]
Krüger, B.; Krick, S.; Dhillon, N.; Lerner, S.M.; Ames, S.; Bromberg, J.S.; Lin, M.; Walsh, L.; Vella, J.; Fischereder, M.; Krämer, B.K.; Colvin, R.B.; Heeger, P.S.; Murphy, B.T.; Schröppel, B. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci., 2009, 106(9), 3390-3395.
[http://dx.doi.org/10.1073/pnas.0810169106] [PMID: 19218437]
[9]
Haanen, C.; Vermes, I. Apoptosis and inflammation. Mediators Inflamm., 1995, 4(1), 5-15.
[http://dx.doi.org/10.1155/S0962935195000020] [PMID: 18475609]
[10]
Kjaergaard, A.D.; Bojesen, S.E.; Johansen, J.S.; Nordestgaard, B.G. Elevated plasma YKL-40 levels and ischemic stroke in the general population. Ann. Neurol., 2010, 68(5), 672-680.
[http://dx.doi.org/10.1002/ana.22220] [PMID: 21031582]
[11]
Tian, S.; Wang, G.; Yang, Y. Mechanism of YKL-40 regulating apoptosis of rabbit osteoarthritis chondrocytes via PI3K/Akt signaling pathway. Chin. J. Tissue Eng. Res., 2020, 24(32), 5108.
[12]
Ouyang, W.; Li, J.; Shi, X.; Costa, M.; Huang, C. Essential role of PI-3K, ERKs and calcium signal pathways in nickel-induced VEGF expression. Mol. Cell. Biochem., 2005, 279(1-2), 35-43.
[http://dx.doi.org/10.1007/s11010-005-8214-3] [PMID: 16283513]
[13]
Viard, P.; Butcher, A.J.; Halet, G.; Davies, A.; Nürnberg, B.; Heblich, F.; Dolphin, A.C. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat. Neurosci., 2004, 7(9), 939-946.
[http://dx.doi.org/10.1038/nn1300] [PMID: 15311280]
[14]
Castets, F.; Griffin, W.S.T.; Marks, A.; Van Eldik, L.J. Transcriptional regulation of the human S100β gene. Brain Res. Mol. Brain Res., 1997, 46(1-2), 208-216.
[http://dx.doi.org/10.1016/S0169-328X(96)00298-7] [PMID: 9191095]
[15]
Rezaei, O.; Pakdaman, H.; Gharehgozli, K.; Simani, L.; Vahedian-Azimi, A.; Asaadi, S.; Sahraei, Z.; Hajiesmaeili, M. S100 B: A new concept in neurocritical care. Iran. J. Neurol., 2017, 16(2), 83-89.
[PMID: 28761630]
[16]
Lu, Y.L.; Wang, R.; Huang, H.T.; Qin, H.M.; Liu, C.H.; Xiang, Y.; Wang, C.F.; Luo, H.C.; Wang, J.L.; Lan, Y.; Wei, Y.S. Association of S100B polymorphisms and serum S100B with risk of ischemic stroke in a Chinese population. Sci. Rep., 2018, 8(1), 971.
[http://dx.doi.org/10.1038/s41598-018-19156-w] [PMID: 29343763]
[17]
Perera, C.; McNeil, H.P.; Geczy, C.L. S100 Calgranulins in inflammatory arthritis. Immunol. Cell Biol., 2010, 88(1), 41-49.
[http://dx.doi.org/10.1038/icb.2009.88] [PMID: 19935766]
[18]
Foell, D.; Wittkowski, H.; Vogl, T.; Roth, J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol., 2007, 81(1), 28-37.
[http://dx.doi.org/10.1189/jlb.0306170] [PMID: 16943388]
[19]
Egberts, F.; Kotthoff, E.M.; Gerdes, S.; Egberts, J.H.; Weichenthal, M.; Hauschild, A. Comparative study of YKL-40, S-100B and LDH as monitoring tools for Stage IV melanoma. Eur. J. Cancer, 2012, 48(5), 695-702.
[http://dx.doi.org/10.1016/j.ejca.2011.08.007] [PMID: 21917447]
[20]
Tharp, B.R. Neonatal seizures and syndromes. Epilepsia, 2002, 43(S3), 2-10.
[http://dx.doi.org/10.1046/j.1528-1157.43.s.3.11.x] [PMID: 12060001]
[21]
Mikkonen, K.; Pekkala, N.; Pokka, T.; Romner, B.; Uhari, M.; Rantala, H. S100B proteins in febrile seizures. Seizure, 2012, 21(2), 144-146.
[http://dx.doi.org/10.1016/j.seizure.2011.10.006] [PMID: 22130006]
[22]
Schulte, S.; Schiffer, T.; Sperlich, B.; Knicker, A.; Podlog, L.W.; Strüder, H.K. The impact of increased blood lactate on serum S100B and prolactin concentrations in male adult athletes. Eur. J. Appl. Physiol., 2013, 113(3), 811-817.
[http://dx.doi.org/10.1007/s00421-012-2503-9] [PMID: 23053124]
[23]
Wagerle, L.C.; Mishra, O.P. Mechanism of CO2 response in cerebral arteries of the newborn pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Circ. Res., 1988, 62(5), 1019-1026.
[http://dx.doi.org/10.1161/01.RES.62.5.1019] [PMID: 3129206]
[24]
Yoon, S.; Zuccarello, M.; Rapoport, R.M. pCO2 and pH regulation of cerebral blood flow. Front. Physiol., 2012, 3, 365.
[http://dx.doi.org/10.3389/fphys.2012.00365] [PMID: 23049512]
[25]
Ding, H.G.; Li, X.S.; Liu, X.Q.; Wang, K.R.; Li, Y.; Wen, M.Y.; Zeng, H. Hypercapnia intensifies cerebral hypoxia via increasing cerebral oxygen extraction ratio: implication in neuroinflammation in hypoxemic adult rats. Research Square, 2019.
[http://dx.doi.org/10.21203/rs.2.17155/v1]
[26]
Li, Y.; Ritzel, R.M.; He, J.; Cao, T.; Sabirzhanov, B.; Li, H.; Liu, S.; Wu, L.J.; Wu, J. The voltage-gated proton channel Hv1 plays a detrimental role in contusion spinal cord injury via extracellular acidosis-mediated neuroinflammation. Brain Behav. Immun., 2021, 91, 267-283.
[http://dx.doi.org/10.1016/j.bbi.2020.10.005] [PMID: 33039662]
[27]
Amalia, L.; Sadeli, H.A.; Parwati, I.; Rizal, A.; Panigoro, R. Hypoxia-inducible factor-1α in acute ischemic stroke: Neuroprotection for better clinical outcome. Heliyon, 2020, 6(6), e04286.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04286] [PMID: 32637689]
[28]
Asuaje, A.; Smaldini, P.; Martín, P.; Enrique, N.; Orlowski, A.; Aiello, E.A.; Gonzalez León, C.; Docena, G.; Milesi, V. The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch., 2017, 469(2), 251-261.
[http://dx.doi.org/10.1007/s00424-016-1928-0] [PMID: 28013412]
[29]
Hong, L.; Kim, I.H.; Tombola, F. Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives. Proc. Natl. Acad. Sci., 2014, 111(27), 9971-9976.
[http://dx.doi.org/10.1073/pnas.1324012111] [PMID: 24912149]
[30]
Martins, R.O. Relationship of S100B protein with neonatal hypoxia., 2005.
[31]
Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med., 2007, 80(2), 51-60.
[PMID: 18160990]
[32]
Navaratna, D.; Guo, S.; Arai, K.; Lo, E.H. Mechanisms and targets for angiogenic therapy after stroke. Cell Adhes. Migr., 2009, 3(2), 216-223.
[http://dx.doi.org/10.4161/cam.3.2.8396] [PMID: 19363301]
[33]
Janbandhu, V. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell, 2022, 29(2), 281-297.e12.
[34]
Arnould, T.; Michiels, C.; Alexandre, I.; Remacle, J. Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J. Cell. Physiol., 1992, 152(1), 215-221.
[http://dx.doi.org/10.1002/jcp.1041520127] [PMID: 1618920]
[35]
Hui, A.S.; Bauer, A.L.; Striet, J.B.; Schnell, P.O.; Czyzyk-Krzeska, M.F. Calcium signaling stimulates translation of HIF‐α during hypoxia. FASEB J., 2006, 20(3), 466-475.
[http://dx.doi.org/10.1096/fj.05-5086com] [PMID: 16507764]
[36]
Azimi, I. The interplay between HIF-1 and calcium signalling in cancer. Int. J. Biochem. Cell Biol., 2018, 97, 73-77.
[http://dx.doi.org/10.1016/j.biocel.2018.02.001] [PMID: 29407528]
[37]
Ahn, G.O.; Seita, J.; Hong, B.J.; Kim, Y.E.; Bok, S.; Lee, C.J.; Kim, K.S.; Lee, J.C.; Leeper, N.J.; Cooke, J.P.; Kim, H.J.; Kim, I.H.; Weissman, I.L.; Brown, J.M. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proc. Natl. Acad. Sci., 2014, 111(7), 2698-2703.
[http://dx.doi.org/10.1073/pnas.1320243111] [PMID: 24497508]
[38]
Sorci, G.; Riuzzi, F.; Agneletti, A.L.; Marchetti, C.; Donato, R. S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J. Cell. Physiol., 2004, 199(2), 274-283.
[http://dx.doi.org/10.1002/jcp.10462] [PMID: 15040010]
[39]
Deng, Y.; Chen, D.; Gao, F.; Lv, H.; Zhang, G.; Sun, X.; Liu, L.; Mo, D.; Ma, N.; Song, L.; Huo, X.; Yan, T.; Zhang, J.; Miao, Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng., 2019, 13(1), 71.
[http://dx.doi.org/10.1186/s13036-019-0193-0] [PMID: 31485266]
[40]
Amin, N.; Chen, S.; Ren, Q.; Tan, X.; Botchway, B.O.A.; Hu, Z.; Chen, F.; Ye, S.; Du, X.; Chen, Z.; Fang, M. Hypoxia inducible factor-1α attenuates ischemic brain damage by modulating inflammatory response and glial activity. Cells, 2021, 10(6), 1359.
[http://dx.doi.org/10.3390/cells10061359] [PMID: 34205911]
[41]
Most, P.; Lerchenmüller, C.; Rengo, G.; Mahlmann, A.; Ritterhoff, J.; Rohde, D.; Goodman, C.; Busch, C.J.; Laube, F.; Heissenberg, J.; Pleger, S.T.; Weiss, N.; Katus, H.A.; Koch, W.J.; Peppel, K. S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation. Circ. Res., 2013, 112(1), 66-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.275156] [PMID: 23048072]
[42]
Rippe, C.; Blimline, M.; Magerko, K.A.; Lawson, B.R.; LaRocca, T.J.; Donato, A.J.; Seals, D.R. MicroRNA changes in human arterial endothelial cells with senescence: Relation to apoptosis, eNOS and inflammation. Exp. Gerontol., 2012, 47(1), 45-51.
[http://dx.doi.org/10.1016/j.exger.2011.10.004] [PMID: 22037549]
[43]
Zheng, Q.; Zhao, Y.; Guo, J.; Zhao, S.; Song, L.; Fei, C.; Zhang, Z.; Li, X.; Chang, C. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk. Res., 2017, 58, 55-62.
[http://dx.doi.org/10.1016/j.leukres.2017.04.005] [PMID: 28460338]
[44]
Sun, R.; Meng, X.; Pu, Y.; Sun, F.; Man, Z.; Zhang, J.; Yin, L.; Pu, Y. Overexpression of HIF-1a could partially protect K562 cells from 1,4-benzoquinone induced toxicity by inhibiting ROS, apoptosis and enhancing glycolysis. Toxicol. In Vitro, 2019, 55, 18-23.
[http://dx.doi.org/10.1016/j.tiv.2018.11.005] [PMID: 30448556]
[45]
Hou, G.; Chen, H.; Yin, Y.; Pan, Y.; Zhang, X.; Jia, F. MEL ameliorates post-sah cerebral vasospasm by affecting the expression of eNOS and HIF1α via H19/miR-138/eNOS/NO and H19/miR-675/HIF1α. Mol. Ther. Nucleic Acids, 2020, 19, 523-532.
[http://dx.doi.org/10.1016/j.omtn.2019.12.002] [PMID: 31927306]
[46]
Wu, H.; Wang, J.; Ma, H.; Xiao, Z.; Dong, X. MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget, 2017, 8(54), 92914-92925.
[http://dx.doi.org/10.18632/oncotarget.21656] [PMID: 29190966]
[47]
La Sala, L.; Mrakic-Sposta, S.; Micheloni, S.; Prattichizzo, F.; Ceriello, A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc. Diabetol., 2018, 17(1), 105.
[http://dx.doi.org/10.1186/s12933-018-0748-2] [PMID: 30037352]
[48]
Peng, J.; Yi, M.H.; Jeong, H.; McEwan, P.P.; Zheng, J.; Wu, G.; Ganatra, S.; Ren, Y.; Richardson, J.R.; Oh, S.B.; Wu, L.J. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain, 2021, 14(1), 99.
[http://dx.doi.org/10.1186/s13041-021-00812-8] [PMID: 34183051]
[49]
Stefanini, M. Molecular mechanisms underlying the development of Atrial Fibrillation; University of Oxford, 2018.
[50]
Ma, J.; Gao, X.; Li, Y.; DeCoursey, T.E.; Shull, G.E.; Wang, H.S. The HVCN1 voltage‐gated proton channel contributes to pH regulation in canine ventricular myocytes. J. Physiol., 2022, 600(9), 2089-2103.
[http://dx.doi.org/10.1113/JP282126] [PMID: 35244217]
[51]
Wu, L-J.; Zheng, J.; Murugan, M.; Wang, L. Microglial voltage-gated proton channel Hv1 in spinal cord injury. Neural Regen. Res., 2022, 17(6), 1183-1189.
[http://dx.doi.org/10.4103/1673-5374.327325] [PMID: 34782552]
[52]
Tu, Y.; Chen, D.; Pan, T.; Chen, Z.; Xu, J.; Jin, L.; Sheng, L.; Jin, X.; Wang, X.; Lan, X.; Ge, Y.; Sun, H.; Chen, Y. Inhibition of miR-431-5p attenuated liver apoptosis through KLF15/p53 signal pathway in S100 induced autoimmune hepatitis mice. Life Sci., 2021, 280, 119698.
[http://dx.doi.org/10.1016/j.lfs.2021.119698] [PMID: 34111466]
[53]
Han, X.R.; Wen, X.; Wang, Y.J.; Wang, S.; Shen, M.; Zhang, Z.F.; Fan, S.H.; Shan, Q.; Wang, L.; Li, M.Q. Retracted: Protective effects of microRNA‐431 against cerebral ischemia‐reperfusion injury in rats by targeting the Rho/Rho‐kinase signaling pathway; Wiley Online Library, 2018.
[54]
Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Dua, P.; Alexandrov, P.N.; Hill, J.M.; Lukiw, W.J. Regulation of TREM2 expression by an NF-кB-sensitive miRNA-34a. Neuroreport, 2013, 24(6), 318-323.
[http://dx.doi.org/10.1097/WNR.0b013e32835fb6b0] [PMID: 23462268]
[55]
Sekerdag, E.; Solaroglu, I.; Gursoy-Ozdemir, Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr. Neuropharmacol., 2018, 16(9), 1396-1415.
[http://dx.doi.org/10.2174/1570159X16666180302115544] [PMID: 29512465]
[56]
Northington, F.J.; Chavez-Valdez, R.; Martin, L.J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol., 2011, 69(5), 743-758.
[http://dx.doi.org/10.1002/ana.22419] [PMID: 21520238]
[57]
Jie, L.; Guohui, J.; Chen, Y.; Chen, L.; Li, Z.; Wang, Z.; Wang, X. Altered expression of hypoxia-Inducible factor-1α participates in the epileptogenesis in animal models. Synapse, 2014, 68(9), 402-409.
[http://dx.doi.org/10.1002/syn.21752] [PMID: 24889205]
[58]
Gervois, P.; Lambrichts, I. The emerging role of triggering receptor expressed on myeloid cells 2 as a target for immunomodulation in ischemic stroke. Front. Immunol., 2019, 10, 1668.
[http://dx.doi.org/10.3389/fimmu.2019.01668] [PMID: 31379859]
[59]
Wang, Y.C.; Lin, S.; Yang, Q.W. Toll-like receptors in cerebral ischemic inflammatory injury. J. Neuroinflammation, 2011, 8(1), 134.
[http://dx.doi.org/10.1186/1742-2094-8-134] [PMID: 21982558]
[60]
Llorens, F.; Thüne, K.; Tahir, W.; Kanata, E.; Diaz-Lucena, D.; Xanthopoulos, K.; Kovatsi, E.; Pleschka, C.; Garcia-Esparcia, P.; Schmitz, M.; Ozbay, D.; Correia, S.; Correia, Â.; Milosevic, I.; Andréoletti, O.; Fernández-Borges, N.; Vorberg, I.M.; Glatzel, M.; Sklaviadis, T.; Torres, J.M.; Krasemann, S.; Sánchez-Valle, R.; Ferrer, I.; Zerr, I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener., 2017, 12(1), 83.
[http://dx.doi.org/10.1186/s13024-017-0226-4] [PMID: 29126445]
[61]
Park, K.R.; Yun, H.M.; Yoo, K.; Ham, Y.W.; Han, S.B.; Hong, J.T. Chitinase 3 like 1 suppresses the stability and activity of p53 to promote lung tumorigenesis. Cell Commun. Signal., 2020, 18(1), 5.
[http://dx.doi.org/10.1186/s12964-019-0503-7] [PMID: 32127023]
[62]
Francescone, R.A.; Scully, S.; Faibish, M.; Taylor, S.L.; Oh, D.; Moral, L.; Yan, W.; Bentley, B.; Shao, R. Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biol. Chem., 2011, 286(17), 15332-15343.
[http://dx.doi.org/10.1074/jbc.M110.212514] [PMID: 21385870]
[63]
Shao, R.; Hamel, K.; Petersen, L.; Cao, Q.J.; Arenas, R.B.; Bigelow, C.; Bentley, B.; Yan, W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene, 2009, 28(50), 4456-4468.
[http://dx.doi.org/10.1038/onc.2009.292] [PMID: 19767768]
[64]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[65]
Selçuk, O.; Yayla, V.; Çabalar, M.; Güzel, V.; Uysal, S.; Gedikbaşi, A. The relationship of serum S100B levels with infarction size and clinical outcome in acute ischemic stroke patients. Noro Psikiyatri Arsivi, 2014, 51(4), 395-400.
[http://dx.doi.org/10.5152/npa.2014.7213] [PMID: 28360660]
[66]
Tsoporis, J.N.; Mohammadzadeh, F.; Parker, T.G. Intracellular and extracellular effects of S100B in the cardiovascular response to disease. Cardiovasc. Psychiatry Neurol., 2010, 2010, 1-6.
[http://dx.doi.org/10.1155/2010/206073] [PMID: 20672023]
[67]
Tubaro, C.; Arcuri, C.; Giambanco, I.; Donato, R. S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(5), 1092-1104.
[http://dx.doi.org/10.1016/j.bbamcr.2010.11.015] [PMID: 21130124]
[68]
Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med., 2013, 13(1), 24-57.
[http://dx.doi.org/10.2174/156652413804486214] [PMID: 22834835]
[69]
Liang, K.G.; Mu, R.Z.; Liu, Y.; Jiang, D.; Jia, T.T.; Huang, Y.J. Increased serum S100B levels in patients with epilepsy: A systematic review and meta-analysis study. Front. Neurosci., 2019, 13, 456.
[http://dx.doi.org/10.3389/fnins.2019.00456] [PMID: 31156363]
[70]
Piazza, O.; Leggiero, E.; De Benedictis, G.; Pastore, L.; Salvatore, F.; Tufano, R.; De Robertis, E. S100B induces the release of pro-inflammatory cytokines in alveolar type I-like cells. Int. J. Immunopathol. Pharmacol., 2013, 26(2), 383-391.
[http://dx.doi.org/10.1177/039463201302600211] [PMID: 23755753]
[71]
Rossol, M.; Pierer, M.; Raulien, N.; Quandt, D.; Meusch, U.; Rothe, K.; Schubert, K.; Schöneberg, T.; Schaefer, M.; Krügel, U.; Smajilovic, S.; Bräuner-Osborne, H.; Baerwald, C.; Wagner, U. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun., 2012, 3(1), 1329.
[http://dx.doi.org/10.1038/ncomms2339] [PMID: 23271661]
[72]
Zimmer, D.B.; Weber, D.J. The calcium-dependent interaction of S100B with its protein targets. Cardiovasc. Psychiatry Neurol., 2010, 2010, 1-17.
[http://dx.doi.org/10.1155/2010/728052] [PMID: 20827422]
[73]
Jiang, P.; Liu, R.; Zheng, Y.; Liu, X.; Chang, L.; Xiong, S.; Chu, Y. MiR-34a inhibits lipopolysaccharide-induced inflammatory response through targeting Notch1 in murine macrophages. Exp. Cell Res., 2012, 318(10), 1175-1184.
[http://dx.doi.org/10.1016/j.yexcr.2012.03.018] [PMID: 22483937]
[74]
Yu, M.H.; Hung, T.W.; Wang, C.C.; Wu, S.W.; Yang, T.W.; Yang, C.Y.; Tseng, T.H.; Wang, C.J. Neochlorogenic acid attenuates hepatic lipid accumulation and inflammation via regulating miR-34a in vitro. Int. J. Mol. Sci., 2021, 22(23), 13163.
[http://dx.doi.org/10.3390/ijms222313163] [PMID: 34884968]
[75]
Bu, P.; Wang, L.; Chen, K.Y.; Srinivasan, T.; Murthy, P.K.L.; Tung, K.L.; Varanko, A.K.; Chen, H.J.; Ai, Y.; King, S.; Lipkin, S.M.; Shen, X. A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer. Cell Stem Cell, 2016, 18(2), 189-202.
[http://dx.doi.org/10.1016/j.stem.2016.01.006] [PMID: 26849305]
[76]
Heo, J.S.; Lim, J.Y.; Yoon, D.W.; Pyo, S.; Kim, J. Exosome and melatonin additively attenuates inflammation by transferring miR-34a, miR-124, and miR-135b. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/1621394] [PMID: 33299858]
[77]
Eyo, U.B.; Murugan, M.; Wu, L.J. Microglia-neuron communication in epilepsy. Glia, 2017, 65(1), 5-18.
[http://dx.doi.org/10.1002/glia.23006] [PMID: 27189853]
[78]
Murugan, M.; Zheng, J.; Wu, G.; Mogilevsky, R.; Zheng, X.; Hu, P.; Wu, J.; Wu, L.J. The voltage-gated proton channel Hv1 contributes to neuronal injury and motor deficits in a mouse model of spinal cord injury. Mol. Brain, 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13041-020-00682-6] [PMID: 33081841]
[79]
Kawai, T.; Tatsumi, S.; Kihara, S.; Sakimura, K.; Okamura, Y. Mechanistic insight into the suppression of microglial ROS production by voltage-gated proton channels (VSOP/Hv1). Channels., 2018, 12(1), 1-8.
[http://dx.doi.org/10.1080/19336950.2017.1385684] [PMID: 28961043]
[80]
Teixeira, J.; Basit, F.; Swarts, H.G.; Forkink, M.; Oliveira, P.J.; Willems, P.H.G.M.; Koopman, W.J.H. Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biol., 2018, 15, 394-404.
[http://dx.doi.org/10.1016/j.redox.2017.12.018] [PMID: 29331741]
[81]
Wang, Q.J.; Cai, X.B.; Liu, M.H.; Hu, H.; Tan, X.J.; Jing, X.B. Apoptosis induced by emodin is associated with alterations of intracellular acidification and reactive oxygen species in EC-109 cellsThis paper is one of a selection of papers published in this special issue entitled “Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine” and has undergone the Journal’s usual peer review process. Biochem. Cell Biol., 2010, 88(4), 767-774.
[http://dx.doi.org/10.1139/O10-020] [PMID: 20651850]
[82]
Coe, D.; Poobalasingam, T.; Fu, H.; Bonacina, F.; Wang, G.; Morales, V.; Moregola, A.; Mitro, N.; Cheung, K.C.P.; Ward, E.J.; Nadkarni, S.; Aksentijevic, D.; Bianchi, K.; Norata, G.D.; Capasso, M.; Marelli-Berg, F.M. Loss of voltage-gated hydrogen channel 1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T cells. JCI Insight, 2022, 7(10), e147814.
[http://dx.doi.org/10.1172/jci.insight.147814] [PMID: 35472029]
[83]
La Sala, L.; Mrakic-Sposta, S.; Tagliabue, E.; Prattichizzo, F.; Micheloni, S.; Sangalli, E.; Specchia, C.; Uccellatore, A.C.; Lupini, S.; Spinetti, G.; de Candia, P.; Ceriello, A. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc. Diabetol., 2019, 18(1), 18.
[http://dx.doi.org/10.1186/s12933-019-0824-2] [PMID: 30803440]
[84]
La Sala, L.; Tagliabue, E.; Mrakic-Sposta, S.; Uccellatore, A.C.; Senesi, P.; Terruzzi, I.; Trabucchi, E.; Rossi-Bernardi, L.; Luzi, L.; Rossi-Bernardi, L.; Luzi, L. Lower miR-21/ROS/HNE levels associate with lower glycemia after habit-intervention: DIAPASON study 1-year later. Cardiovasc. Diabetol., 2022, 21(1), 35.
[http://dx.doi.org/10.1186/s12933-022-01465-0] [PMID: 35246121]
[85]
Jiang, Y.; Chen, X.; Tian, W.; Yin, X.; Wang, J.; Yang, H. The role of TGF-β1–miR-21–ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br. J. Cancer, 2014, 111(4), 772-780.
[http://dx.doi.org/10.1038/bjc.2014.368] [PMID: 24992582]
[86]
Dong, J.; Zhao, Y.P.; Zhou, L.; Zhang, T.P.; Chen, G. Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch. Med. Res., 2011, 42(1), 8-14.
[http://dx.doi.org/10.1016/j.arcmed.2011.01.006] [PMID: 21376256]
[87]
Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velázquez, I.A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; Herrera, L.A. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol. Ther. Nucleic Acids, 2020, 20, 409-420.
[http://dx.doi.org/10.1016/j.omtn.2020.03.003] [PMID: 32244168]
[88]
Shi, L.; Chen, J.; Yang, J.; Pan, T.; Zhang, S.; Wang, Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res., 2010, 1352, 255-264.
[http://dx.doi.org/10.1016/j.brainres.2010.07.009] [PMID: 20633539]
[89]
Xu, L.; Wu, Z.; Chen, Y.; Zhu, Q.; Hamidi, S.; Navab, R. MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One, 2014, 9(8), e103698.
[http://dx.doi.org/10.1371/journal.pone.0103698] [PMID: 25084400]
[90]
Bojarczuk, K.; Wienand, K.; Ryan, J.A.; Chen, L.; Villalobos-Ortiz, M.; Mandato, E.; Stachura, J.; Letai, A.; Lawton, L.N.; Chapuy, B.; Shipp, M.A. Targeted inhibition of PI3Kα/δ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL. Blood, 2019, 133(1), 70-80.
[http://dx.doi.org/10.1182/blood-2018-08-872465] [PMID: 30322870]
[91]
Roffe, C.; Nevatte, T.; Crome, P.; Gray, R.; Sim, J.; Pountain, S.; Handy, L.; Handy, P. The Stroke Oxygen Study (SO2S) - a multi-center study to assess whether routine oxygen treatment in the first 72 hours after a stroke improves long-term outcome: study protocol for a randomized controlled trial. Trials, 2014, 15(1), 99.
[http://dx.doi.org/10.1186/1745-6215-15-99] [PMID: 24684940]
[92]
Shi, H. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr. Med. Chem., 2009, 16(34), 4593-4600.
[http://dx.doi.org/10.2174/092986709789760779] [PMID: 19903149]
[93]
Hellwig-Bürgel, T. HIF-1 and neuroinflammation. In: Encyclopedia of Neuroscience; Binder, M.D.; Hirokawa, N.; Windhorst, U., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp. 1836-1839.
[http://dx.doi.org/10.1007/978-3-540-29678-2_2202]
[94]
Zhao, C.; Hong, L.; Galpin, J.D.; Riahi, S.; Lim, V.T.; Webster, P.D.; Tobias, D.J.; Ahern, C.A.; Tombola, F. HIFs: New arginine mimic inhibitors of the Hv1 channel with improved VSD–ligand interactions. J. Gen. Physiol., 2021, 153(9), e202012832.
[http://dx.doi.org/10.1085/jgp.202012832] [PMID: 34228044]
[95]
Sen, A.; Ren, S.; Lerchenmüller, C.; Sun, J.; Weiss, N.; Most, P.; Peppel, K. MicroRNA-138 regulates hypoxia-induced endothelial cell dysfunction by targeting S100A1. PLoS One, 2013, 8(11), e78684.
[http://dx.doi.org/10.1371/journal.pone.0078684] [PMID: 24244340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy